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This paper presents the multi-objective fuzzy optimization of sizing and 
location of piezoelectric actuators and sensors on the thin-walled 
composite beam for active vibration control, using the degree of 
controllability (DC) for controlled modes as optimization criteria. The 
optimization process is performed constraining the original dynamics 
properties change including the limitation of increase of the mass, using or 
neglecting the limitation in degrees of controllability for residual modes 
for reduction spillover effect. Pseudogoal functions derived on the fuzzy set 
theory gives a unique expression for global objective functions eliminating 
the use of penalty functions. The problem is formulated using the finite 
element method based on the third-order shear deformation theory. The 
particle swarm optimization technique is used to find optimal 
configuration. Several numerical examples are presented for the cantilever 
beam. 
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1. INTRODUCTION 
 

Piezoelectric actuators and sensors have a wide range of 
applications in vibration suppression and shape control. 
The optimization of sizing and location of actuators and 
sensors for active vibration control of flexible structures 
has been shown as the one of the most important issues 
in the design of active structures since these parameters 
have a major influence on the performance of the 
control system [1,2]. The optimization problem can be 
divided into two approaches. The first approach consists 
of the combination of optimal location and size of 
sensors and actuators and controller parameters [3,4]. 
The second approach deals with optimal location and 
size of sensors and actuators independently of controller 
definition [5-7]. 

Many times, an active structure is discretized into a 
finite number of elements for vibration analysis and 
control. For practical implementation, this model needs 
to be truncated, where only the first few modes are 
taken into account. However, the state feedback control 
law, based on a reduced model, may excite the residual 
modes resulting with spillover instability for even 
simple beam problem [8]. Considering that fact, some 
authors involved residual modes in the optimization 
problem [6,9]. 

Due to the complexity of the problem, classical 
optimization methods that apply gradient-based search 
techniques are not convenient for use. A good solution 
for such optimization problems relies on heuristic 
optimization algorithms. Some studies have used 
genetic algorithm (GA) [6,10], and Simulated annealing 

(SA) algorithm [11] for finding out the optimal sizing 
and location of sensors and actuators and other 
parameters related to the control performances. 

This paper deals with the multi-objective fuzzy 
optimization of placement and sizing of collocated 
piezoelectric actuators and sensors on a composite beam 
for maximum active vibration control effectiveness. The 
optimization problem is formulated independently of 
controller definition using the DC to measure control 
effectiveness for the vibration in the controlled modes. 
Optimization criteria are used ensuring a good DC for the 
controlled modes. The optimization process is performed 
constraining the original dynamic properties change 
including the limitation of increase of the mass, using or 
neglecting the limitation in DCs for residual modes for 
spillover effect reduction. To the best of our knowledge, 
the multi-objective fuzzy optimization based on the 
particle swarm optimization technique will present an 
innovative approach for solving the problem of sizing and 
location of piezoelectric actuators and sensors. Both 
objective functions and constraints are evaluated by the 
membership function. In that way, the use of weighting 
coefficients and penalty functions are avoided. 

 
2. FINITE ELEMENT MODEL 

 
A laminated composite beam with integrated 
piezoelectric sensors and actuators is considered (Fig. 
1). The coordinate x is coincident with the beam axis, 
the x – y plane coincides with a mid-plane of the beam 
and the z axis is defined as normal to the mid-plane 
according to the right-hand rule. Both elastic and 
piezoelectric layers are supposed to be thin, such that a 
plane stress state can be assumed. The sensors and 
actuators are perfectly bonded on the upper and lower 
surfaces at different locations along the length of the 
beam. It is assumed that they span the entire width of 
the beam. Elastic layers are obtained by setting their 
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piezoelectric coefficients to zero. The equivalent single 
layer theory is used, so the same displacement field is 
considered for all layers of the beam. The formulation 
results in a coupled finite element model with 
mechanical (displacement) and electrical (potentials of 
piezoelectric patches) degrees of freedom. Also, only 
specially orthotropic layers are considered. 

 
Figure 1. Laminated composite beam with piezoelectric 
sensors and actuators 

 
2.1 Mechanical displacements and strains 

 
The displacement field based on the third-order shear 
deformation theory of Reddy’s [12] is given: 
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where u and w are displacement components in the x 
and z directions respectively, u0, w0 are mid-plane (z = 
0) displacement and ψx is bending rotation of mid-plane, 
c1 = 4/(3h2), where h is total thickness of the beam. The 
strains associated with above displacement field are: 
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2.2 Piezoelectric constitutive equations 

 
Specific electric enthalpy density of a piezoelectric 
layer is given in [13]: 

 T T T1 1{ } [ ]{ } { } [ ]{ } { } [ ]{ }
2 2

h Q e E E k Eε ε ε= − − , (5) 

where [Q] is the elastic stiffness matrix, {ε} is the strain 
vector, [e] is the piezoelectric constant matrix, {E} is 

the electric field vector and [k] is the permittivity 
matrix. Therefore, the constitutive equations for each 
piezoelectric layer can be obtained: 
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where {σ} is the stress vector and {D} is the electric 
displacement vector. For a one-dimensional composite 
beam, the width (y-direction) is free of stresses. 
Therefore, σy = σyz = σxy = 0 and εy ≠ γyz ≠ γxy ≠ 0. Using 
the above constraints, assuming that E1 = E2 = 0 and 
taking into account specially orthotropic laminate which 
consists of n layers, constitutive equation for k-th layer 
can be written as: 
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where material constants are expressed in principal 
directions. Relations between material constants 
expressed in the principal direction and material 
directions for orthotropic lamina are: 

 4 4
11 11 22cos sinQ Q QΘ Θ= + ,  

 2 2
55 55 44cos sinQ Q QΘ Θ= + ,  

 2 2
31 31 32cos sine e eΘ Θ= + ,  

 33 33k k=  (8) 

where Θ presents an angle between the material 
directions of the layer and the principal direction of the 
lamina. 

 
2.3 Finite element discretization and coupled 

equations of motions 
 

After finite element discretization [11], global equations 
of motions can be written in terms of the nodal 
mechanical and electrical degrees of freedom as: 

m me A A me S S m[ ]{ } [ ]{ } [ ] { } [ ] { } { }M u K u K K Fφ φ+ + + = , 

 T
me A e A A e A AA[ ] { } [ ] { } [ ] { }K u K Kφ φ− = ,  

 T
me S e S S[ ] { } [ ] { } 0K u K φ− = , (9) 

where [M] presents mass matrix, [Km] presents elastic 
stiffness matrix, [Kme]A and [Kme]S are piezoelectric 
stiffness matrices of actuator and sensor, respectively, 
[Ke]A and [Ke]S are dielectric stiffness matrices of 
actuator and sensor, respectively, {u} presents vector of 
mechanical nodal variables,  {φ }A and  {φ }S are 
electric potentials on actuators and sensors, respectively 
and {φ }AA is vector of external applied electric 
potentials on actuators. {Fm} presents vector of external 
forces. From (9), it can be obtained the following 
equation of motion: 

 m me A AA[ ]{ } [ ]{ } { } [ ] { }*M u K u F K φ+ = + , (10) 
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where: 

 1 T
m me A e A me A[ ] [ ] [ ] [ ] [ ]*K K K K K−= + +   

 1 T
me S e S me S [ ] [ ] [ ]K K K−+ . (11) 

 
2.4 Modal form and state-space representation 

 
Equation (10) can be converted to modal-space as: 

   2 T T
m me A AA{ } [ ]{ } [ ] { } [ ] [ ] { }Ψ F Ψ Kη ω η φ+ = + , (12) 

where Ψ presents modal matrix which has been 
normalized with respect to mass, {η} vector of modal 
coordinates and [ω2] diagonal matrix of squares natural 
frequencies obtained in following way: 

 2 T[ ] [ ] [ ][ ]*Ψ K Ψω = . (13) 

Lower ordered modes are the most easily excitable 
because they have lower energy associated. Due to that, 
a controller has been designed for active control for 
only first few modes. Thus, (12), expressed in truncated 
modal-space, becomes: 

  2 T T
C C m C me A AA{ } [ ] { } [ ] { } [ ] [ ] { }Ψ F Ψ Kη ω η φ+ = + , (14) 

where matrix [ω2]C is consisted of first few controlled 
eigen-modes. For residual modes, (12) becomes: 

  2 T T
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Equations (14) and (15) can be presented in state-
space form as: 

 AA{ } [ ]{ } [ ]{ } { }X A X B dφ= + + , (16) 

where 
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[ ]

2
C

2
R

[0] [0] [I] [0]
[0] [0] 0 [I]

[ ]
 [ ] [0] [0] [0]

[0]  [ ] [0] [0]

A
ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (18) 

presents state matrix, 
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presents control matrix, and 
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is disturbance vector, where [I] and [0] are appropriately 
dimensioned identity and zero matrix, respectively. 

 
3. OPTIMIZATION CRITERIA FOR COLLOCATED 

PIEZOELECTRIC ACTUATORS AND SENSORS 
SIZING 
 

3.1 Multi-objective optimization problem statement 
 

In [14], a controllability index for actuator is proposed, 
which is obtained by maximizing the global control 
force. The modal control force applied to the system can 
be written as: 

 C AA{ } [ ]{ }f B φ= . (21) 

It follows from (21) that 
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Using singular value analysis, [B] can be written as 
[B] = [M][S][N]T, where [M]T[M] = [I], [N]T[N] = [I] and 
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where NA presents the number of actuators. Equation 
(22) can be written as: 

 T T T T
C C AA AA{ } { } { } [ ][ ] [ ][ ] { }f f N S S Nφ φ=  (24) 

or 

 2 2 2
C AAf Sφ= . (25) 

Thus, maximizing this norm independently of the 
applied voltage {φ }AA induces maximizing ||S||2. The 
magnitude of σi is a function of location and size of 
piezoelectric actuator. In [14] the proposed 
controllability index which is defined by: 

 
A
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N

i
i

σ
=

Ω =∏ . (26) 

The higher controllability index, the smaller 
electrical potential will be required for control. This 
index represents controllability for all the modes 
globally, and its magnitude is a function of the location 
and size of the piezoelectric actuators. The lack of this 
definition of controllability index is in fact that it gives 
only information of controllability for all modes of all 
actuators, i.e. it can not be seen controllability for a 
certain mode. Controllability index can be obtained in a 
more suitable form for models based on finite element, 
where, instead of maximizing the norm ||S||2, the applied 
force for each mode have been maximized 
independently of {φ }AA. According to (19), the 
controllability index can be written in the following 
way: 
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 2 T
C C C( ) ( )i i iB Bσ =  (27) 

for controlled mode, and 

 R 2 T
C R R( ) ( ) ( )i i iB Bσ =  (28) 

for residual mode. (Bi)C and (Bi)R present i-th row of 
matrices [B]C and [B]R, respectively. 

As mentioned earlier, the piezoelectric patches 
sizing and location should be such that those should 
give good controllability for controlled modes, so the 
objective functions can be written as: 

 maximize 
2
C

C 2
C max

100i
i

i
DC

σ

σ
= ⋅ , C1,..,i N= , (29) 

where CiDC  presents the degree of controllability (DC) 

for controlled modes, C maxiσ  denotes the maximum 
controllability index for controlled modes and NC 
presents the number of controlled modes. It is shown 
that misplaced sensors and actuators lead to control 
system instability [15]. Due to that, in this work, only 
collocated sensors and actuators will be considered. The 
actuator and its corresponding sensor have equal length 
and they are set symmetrically: sensor at the bottom 
surface, and actuator on the top surface of the beam. 

 
3.2 Constraints 

 
Constraints are related to the change of natural 
frequencies and mass of parent structure and DC of 
residual modes. They can be written as follows: 

 f

*
i i

i
i

ω ω
ε

ω

−
< , fmods1,..,i N= , (30) 

 m

*m m

m
ε

−
< , (31) 

 max
R Ri i

DC DC< , R1,..,i N= , (32) 

where *
iω  denotes natural frequency of the i-th mode of 

the beam with piezoelectric patches, ωi denotes natural 
frequency of the i-th mode of the beam without 
piezoelectric patches, εfi is tolerance of change of the i-
th natural frequency, Nfmods presents the number of 
constrained modes, m* denotes mass of the beam with 
piezoelectric patches, m denotes mass of the parent 
beam and εm is tolerance of the mass change and 

max
Ri

DC  denotes the maximum allowable DC for the i-

th residual mode. 
 

3.3 Mathematical model of multi-objective fuzzy 
optimization 

 
In this section, a fuzzy optimization approach based on 
pseudogoal function for the multi-objective problem is 
proposed. The objective functions (29), which have to 
be maximized, can be written as the pseudogoal 
function in the form of the fuzzy number: 

 C C min
C

C max C min

( )
( )

p
p i i

i
i i

DC DC

DC DC
µ

−
=

−
, (33) 

where C miniDC  and C maxiDC  denote the minimum 
and maximum DC for controlled modes, respectively, 

C ( )piµ  presents the membership function of the i-th 
objective function and p presents the design variables 
set. According to the formulation of DC ( C min 0iDC =  

and C max 100iDC = ), previous expression becomes 
(Fig. 2a): 

 C
Cont

( )
( )

100

p
p i

i

DC
µ = . (34) 

 
Figure 2. Membership functions of objective functions and 
constraints 

Constraints may also receive the same fuzzification 
process as the objective functions. In this process, the 
amplification method [16] is used. This method is often 
used in engineering to determine the tolerance of the 
upper limit of the constraints. Usually, the value of this 
coefficient is 1.05 1.3β = − . So, the membership 
functions of constraints become (Figs. 2b, 2c and 2d): 
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According to the fuzzy decision principle proposed 
in [17], the fuzzy decision is defined as the intersection 
of fuzzy objectives and fuzzy constraints. Thus, the 
optimum solution p* can be selected by maximizing the 
smallest membership function: 

 *
D D( ) max ( )µ µ=p p , (38) 

where 

 D C f m Rmin { , , , }i j kµ µ µ µ µ=  (39) 

presents the membership function of the optimal 
decision function. 

 
4. OPTIMIZATION IMPLEMENTATION USING 

PARTICLE SWARM OPTIMIZATION 
 

The particle swarm optimization (PSO) has been 
inspired by the social behaviour of animals such as fish 
schooling, insect swarming and birds flocking. It was 
introduced in [18]. The system is initialized with a 
population of random solutions (called the particle 
position in PSO). Every particle is affected by three 

factors: its own velocity, the best position it has 
achieved (best local position) which is determined by 
the highest value of the objective function encountered 
by this particle in all previous iteration and overall best 
position achieved by all particles (best global position), 
which is determined by the highest value of the 
objective function encountered in all the previous 
iteration. A particle changes its velocity (v) and position 
(p) in the following way: 

 1
1 1 2 2( ) ( )k k k k

id id id id d idv wv c r l p c r g p+ = + − + − , (40) 

 1 1k k k
id id idp p v+ += + , 1,..,i n= , 1,...,d m= , (41) 

where w is inertia weight, c1 is cognition factor, c2 is 
social learning factor, r1 and r2 are random numbers 
between 0 and 1, the superscript k denotes iterative 
generation, n is population size, m is particle’s 
dimension, lid and gd are best local and global position. 
The cognition factor and social learning factor are 
usually set as c1 = c2 = 1.5. The upper and lower limits 
of inertia weight for structural design are given in [19]. 
Each S/A pair is determined by two parameters: the 
position which presents the distance from the root of the 
beam (r) and their length (l) (Fig. 3a). In this work, the 
beam is discretized in finite elements, so, the position of 
S/A pair is defined by the position of left node and the 
length is defined by the number of elements covered by 
this pair (Fig. 3b). According to the previous, (2 1)

k
i jp −  

presents the position of the j-th S/A pair, and (2 )
k
i jp  

presents its length. 

 
Figure 3. (a) position and length of arbitrary S/A pair on 
beam and (b) position and length of arbitrary S/A pair after 
discretization 

It is obvious that coordinates of the particle and 
corresponding velocity are an integer number. Because 
of that, the discrete method must be used. According to 
[20], the velocity is updated by the following equation 
on every iteration: 

   1
1 1 2 2int ( ( ) ( ))k k k k

id id id id d idv wv c r l p c r g p+ = + − + − , (42) 

in which int (f) is getting an integer part of f. Due to the 
formulation of the coordinates of a particle, other 
constraints appear – the geometric constraints. These 
constraints are: 

• the coordinates of the particle must not be a non-
positive number; 

• the minimum distance between two patches is 
one element (there is no overlapping); 

• the last piezoelectric patch must not to be outside 
of the beam. 

The membership function of this constraint can be 
represented in the following way 
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  G
1, if  geometric constraints are not violated
0, if  geometric constraints are violated

µ
⎧

= ⎨
⎩

 (43) 

and optimization problem can be transformed on 
following way 

 *
D D( ) max ( )µ µ=p p , (44) 

where 

 D C f m R Gmin { , , , , }i j kµ µ µ µ µ µ= . (45) 

 
5. NUMERICAL EXAMPLE 

 
In this example, the cantilever laminated beam is 
considered. The length of beam is 0.6 m, and its width is 
0.03 m. The beam is made of seven graphite-epoxy 
(carbon-fibre reinforced) layers. The thickness of each 
layer is 0.5 mm and orientations are 
(900/900/00/00/00/900/900). Piezoelectric patches are made 
of PZT. Their thicknesses are 0.2 mm. Material properties 
of graphite-epoxy and PZT are given in table 1. 
Table 1. Material properties of graphite-epoxy and PZT 

Material properties Graphite-epoxy PZT 
E1 [GPa]  174 63 
E2 [GPa]  10.3 63 
G13 [GPa]  7.17 24.6 
G23 [GPa]  6.21 24.6 

ν12 0.25 0.28 
ρ [kg/m3]  1389.23 7600 
e31 [C/m2]  – 10.62 
k33 [F/m]  – 0.1555 · 10–7 

 
The beam is discretized in 60 elements. The first 

five modes are considered as controlled modes, and the 
next five modes are used to reduce the spillover effect. 
As mentioned earlier, the mounting piezoelectric 
sensor/actuator pairs cause changes of the original 
dynamic properties and mass of parent structure. Table 
2 shows natural frequencies of the first ten modes of 
parent beam and maximum change of natural 
frequencies after mounting of piezoelectric S/A pairs. 
Table 2. Natural frequencies of parent beam, maximum value 
of natural frequencies after mounting S/A pairs and maximum 
change of natural frequencies after mounting of S/A pairs 

Mode  

Natural 
frequency of 
parent beam 

[Hz] 

Maximum value of 
natural frequencies 
after mounting S/A 

pairs [Hz] 

Maximum 
NF change 

[%] 

1 6.437 9.189 42.755 
2 40.347 50.545 25.277 
3 113.014 137.879 22.002 
4 221.573 267.361 20.665 
5 366.513 439.328 19.867 
6 547.942 653.635 19.289 
7 766.030 910.748 18.892 
8 1020.962 1209.595 18.476 
9 1313.008 1549.875 18.040 
10 1642.389 1931.187 17.584 

The mass of beam without S/A pairs is 0.0875 kg, and 
the mass of beam fully covered by S/A pairs is 0.1422 kg, 
resulting in the maximum change of mass that is 62.56 %. 

In the optimization problem, the numbers of S/A 
pairs are varied from one to three. Two examples for 
every number of S/A pairs are done: one without limit 
of the spillover effect, and other, where the spillover 
effect is considered to be less than 2 % with tolerance of 
the upper limit Rez 1.1iβ = . Changes of the first five 
natural frequencies are less than 10 %, and the mass 
change is less than 15 % with tolerance of the upper 
limit f m 1.15iβ β= = . 

In order to search efficiently for the optimal sizing 
and location of S/A pairs, the cognition and social 
learning factors in PSO algorithm are set as c1 = c2 = 
1.5, and inertia weights are linearly varied from 1 to 0.5. 
The number of population is 30 particles, and the 
number of iteration is 50. 

Numbers of S/A pairs are varied from one to three. 
Figure 4 shows the objective function value against the 
number of iteration for the case of one S/A pair. Figures 
5 – 10 present the location and length of S/A pairs and 
DCs for the first ten modes for unconstrained (Figs. 5, 7 
and 9) and constrained (Figs. 6, 8 and 10) DCs for 
residual modes, in case of one, two and three S/A pairs, 
respectively. Table 3 presents the optimal sizes and 
locations of one, two and three S/A pairs. 

 
Figure 4. The objective function value against number of 
iteration for single S/A pair: (a) unconstrained DC for 
residual modes and (b) DC for residual modes less than 2 % 
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Figure 5. Single S/A pair, unconstrained DC for residual 
modes: (a) location and sizing of S/A pair and (b) DC for 
first ten modes 

 

 
Figure 6. Single S/A pair, DC for residual modes less than 2 
%: (a) location and sizing of S/A pair and (b) DC for first ten 
mode 

 

 
Figure 7. Two S/A pair, unconstrained DC for residual 
modes: (a) location and sizing of S/A pairs and (b) DC for 
first ten modes 

 

 
Figure 8. Two S/A pairs, DC for residual modes less than 2 
%: (a) location and sizing of S/A pairs and (b) DC for first 
ten modes 

 

 
Figure 9. Three S/A pair, unconstrained DC for residual 
modes: (a) location and sizing of S/A pairs and (b) DC for 
first ten modes 

 

 
Figure 10. Three S/A pairs, DC for residual modes less than 
2 %: (a) location and sizing of S/A pairs and (b) DC for first 
ten modes 
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Table 3. Optimal sizing and location of S/A pairs 

Unconstrained DC for 
res. modes 

DC for res. modes less 
then 2 % Number of 

S/A pairs Location 
[mm] 

Length 
[mm] 

Location 
[mm] 

Length 
[mm] 

1 120 160 220 20 
0 90 10 30 2 

490 50 230 10 
0 70 10 30 

190 50 240 10 3 
480 40 380 10 

 
Comparing DCs in the case of unconstrained DC for 

residual modes among the number of S/A pairs (Fig. 11), 
it is clear that increase of the number of S/A pairs leads to 
increase of DCs for all modes, globally. Figure 5b shows 
that in the case of a single S/A pairs only two modes have 
a good DC, but the rest three have a low DC. In this case, 
DC for residual modes is very high, even higher than 
some controlled modes (Figs. 5b, 7b and 9b). 
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Figure 11. DC for controlled modes versus number of S/A 
pairs for unconstrained DC for residual modes 

Keeping DC for residual modes below 2 % leads to 
decreasing the DC for controlled modes. For a single 
S/A pair, DCs for controlled modes are less than DCs 
for residual modes (Fig. 6b). In this case, increasing the 
number of S/A pairs leads to increase of DCs for 
controlled modes (Fig. 12). 
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Figure 12. DC for controlled modes versus number of S/A 
pairs for constrained DC for residual modes 

 
6. CONCLUSION 

 
The degree of controllability (DC), which is used to 
represent control effectiveness, is defined in а such way 
that it possesses computational simplicity, independence 
of the applied control law and easy handling in the case 
of finite element discretization. The fuzzy set theory 

implementation enables easy computation, expression 
simplicity of constraints and objective functions, and 
avoiding the use of weighing coefficients and penalty 
functions. Also, the particle swarm optimization 
technique provides fast convergence, reducing the 
computational time. 

Although this work deals with optimization 
problems in the case of laminated beam, taking into 
account all advantages presented here, the considered 
optimization technique can be also studied for more 
complex structures. 
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ВИШЕЦИЉНА ФАЗИ ОПТИМИЗАЦИЈА 

ВЕЛИЧИНЕ И ПОЛОЖАЈА 
ПИЕЗОЕЛЕКТРИЧНИХ АКТУАТОРА И 

СЕНЗОРА 
 
Немања Д. Зорић, Александар М. Симоновић, 

Зоран С. Митровић, Слободан Н. Ступар 
 
Овај рад представља вишециљну фази оптимизацију 
величине и положаја пиезоелектричних актуатора и 
сензора на танкозиду композитну греду за активно 
управљање вибрација користећи степен 
управљивости (DC) контролисаних модова као 
критеријум оптимизације. Процес оптимизације је 
извршен уз ограничење промене првобитних 
динамичких карактеристика, укључујући ограничење 
у порасту масе, употребљавајући или занемарујући 
ограничења степена управљивости резидуалних 
модова за редукцију „spillover“ ефекта. Псеудоциљне 
функције изведене на бази теорије фази скупова на 
јединствен начин дефинишу глобалне функције 
циља елиминишући употребу казнених функција. 
Проблем је дефинисан употребом методе коначних 
елемената базиране на „TSD“ теорији. „Particle 
swarm“ оптимизација је употребљена за налажење 
оптималне конфигурације. Неколико нумеричких 
примера је приказано за случај конзоле. 

 


