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In the present study, modal analysis has been performed on modified 
Gazelle helicopter blade. The construction of the blade is fully composite 
with the honeycomb core. The approach to determining structure mode 
shapes and natural frequencies is presented. Modified blade consists of 
core material, 3D unidirectional composite spar and thin carbon 
composite facesheets as blade skin. To determine the stiffness of the 
honeycomb core, the equivalent mass approach was used. Several methods 
of eigenvalue extraction have been investigated in order to find optimal 
method which can be used in dynamic analysis of composite structures 
containing honeycomb cores. Among all extraction methods investigated, it 
was found that combined Lanczos method is most effective in terms of 
accuracy and CPU time for eigenvalue extraction in composite structures 
with honeycomb core having large number of degrees of freedom. Strain 
energies for first four mode shapes of modified helicopter blade have been 
calculated using numerical approach and results are presented. 
 
Keywords: normal mode, natural frequencies, helicopter composite blade, 
hexagonal honeycomb core, carbon fiber. 

 
 

1. INTRODUCTION 
 
Because of the very serious effects that unwanted 
vibrations can have on rotating helicopter blades, it is 
essential that vibration analysis be carried out as an 
inherent part of their design; there are two factors that 
control the amplitude and frequency of vibration in such 
a structure: the excitation applied and the response of 
the structure to that particular excitation. This is because 
vibration creates dynamic stresses and strains which can 
cause fatigue and failure of the complete structure, 
fretting corrosion between contacting elements and 
noise in the environment; also it can impair the function 
and life of the blade itself. 

It is necessary to analyze the vibration in order to 
predict the natural frequencies and the response to the 
expected excitation. 

The natural frequencies of the structure must be 
found because if the structure is excited at one of these 
frequencies resonance occurs, resulting in high vibration 
amplitudes, dynamic stresses and noise levels [1]. 
Resonance should be avoided and the structure designed 
so that it is not encountered during normal conditions; 
this often means that the structure needs to be analyzed 
over the expected frequency range of excitation. 

Vibration analysis of helicopter blades can be 
carried out most conveniently by adopting the following 
three-stage approach: 

Stage I Devise a mathematical or physical model of 
the structure to be analyzed. 

Stage II From the model, write the equations of 
motion. 

Stage III Evaluate the structure response to a 
relevant specific excitation. 

Natural frequencies and corresponding mode shapes 
are functions of the structural properties and boundary 
conditions. 

Computation of the natural frequencies and mode 
shapes is performed by solving an Eigen value problem. 
In order to assess the dynamic interaction between a 
component and its supporting structure natural 
frequencies must be computed. Decisions regarding 
subsequent dynamic analyses (transient response, 
frequency response, response spectrum analysis, etc.) 
can be based on the results of a natural frequency 
analysis [2,3]. 

 
2. MODIFIED BLADE CONSTRUCTION 

 
The overall dimensions of the helicopter blade are given 
on the following picture (Fig. 1).  

 
Figure 1. Helicopter blade dimensions 

The original Gazelle helicopter blade [4] was 
modified and consists of Nomex honeycomb core, 
carbon fiber +/-45° crossply wrap, stainless steel 
corrosion shield, glass fiber balancing tube, carbon fiber 
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+/-45° crossply inner wrap, glass fiber thick spar and 
carbon fiber crossply skins. The structure of the 
modified rotor blade investigated in this paper is 
presented in the following picture (Fig. 2). 

 
Figure 2. Modified helicopter blade construction 

3. ANALYTIC SOLUTIONS 
 

The solution of the equation of motion for natural 
frequencies and normal modes requires a special 
reduced form of the equation of motion. If there is no 
damping and no applied loading, the equation of motion 
in matrix form reduces to [5]: 

       0,M u K u   (1) 

where [M] is the mass matrix and [K] is the stiffness 
matrix. This is the equation of motion for undamped 
free vibration. To solve previous equation, harmonic 
solution is assumed in the following form: 

    sin ,u t   (2) 

where {} are the mode shapes and ω is the circular 
natural frequency. Aside from this harmonic form being 
the key to the numerical solution of the problem, this 
form also has a physical importance. The harmonic 
form of the solution means that all the degrees-of-
freedom of the vibrating structure move in a 
synchronous manner. 

The structural configuration does not change its 
basic shape during motion; only its amplitude changes. 
If differentiation of the assumed harmonic solution is 
performed and substituted into the equation of motion, 
the following is obtained: 

      2 sin sin .M t K t       (3) 

This after simplification becomes: 

      2 0.K M    (4) 

This represents the eigenequation, which is a set of 
homogeneous algebraic equations for the components of 
the eigenvector and forms the basis for the eigenvalue 
problem.  

The basic form of an eigenvalue problem is: 

   0,A I x   (5) 

where [A] is a square matrix, λ are eigenvalues, [I] is 
identity matrix and x eigenvector. Assuming non-trivial 
solution, the det([K]- ω2[M]) is zero only at a set of 

discrete eigenvalues ω2
i, therefore the equation can be 

rewritten: 

      2
1, 2, 3...0,   iiK M     (6) 

Each eigenvalue and eigenvector define free 
vibration mode of the structure. The i-th eigenvalue λi is 
related to the i-th natural frequency fi= ωi/2π.  

Modal quantities can be used to identify problem 
areas by indicating the more highly stressed elements. 
Elements that are consistently highly stressed across 
many or all modes will probably be highly stressed 
when dynamic loads are applied. Modal strain energy is 
a useful quantity in identifying candidate elements for 
design changes to eliminate problem frequencies. 
Elements with large values of strain energy in a mode 
indicate the location of large elastic deformation 
(energy). These elements are those which most directly 
affect the deformation in a mode. Therefore, changing 
the properties of these elements with large strain energy 
should have more effect on the natural frequencies and 
mode shapes than if elements with low strain energy 
were changed.  
 
4. METHODS OF COMPUTATION 
 
In present analysis two groups of methods for 
eigenvalue extraction are investigated in order to 
determine the most efficient method that can be used 
when composite structures with solid or honeycomb 
cores are analyzed. 

Methods analyzed are Transformation methods and 
Tracking methods [6,7]. In the transformation method, 
the eigenvalue equation is transformed into a special 
form from which eigenvalues may easily be extracted. 
In the tracking method, the eigenvalues are extracted 
one at a time using an iterative procedure. 

In the present work four transformation methods are 
analyzed: Givens method, Householder method, 
modified Givens method and modified Householder 
method. Two tracking methods analyzed are inverse 
power method and Sturm modified inverse power 
method. The Givens and Householder modal extraction 
methods require a positive definite mass matrix (all 
degrees-of-freedom must have mass). There is no 
restriction on the stiffness matrix except that it must be 
symmetric. These matrices always result in real 
(positive) eigenvalues. 

The Givens and Householder methods are the most 
efficient methods for small problems and problems with 
dense matrices when large portions of the eigenvectors 
are needed. These methods find all of the eigenvalues 
and as many eigenvectors as requested. While these 
methods do not take advantage of sparse matrices, they 
are efficient with the dense matrices sometimes created 
using dynamic reduction. The Givens and Householder 
methods fail if the mass matrix is not positive definite.  

To minimize this problem, degrees-of-freedom with 
null columns are removed by the application of static 
condensation. The modified Givens and modified 
Householder methods are similar to their standard 
methods with the exception that the mass matrix can be 
singular. Although the mass matrix is not required to be 
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nonsingular in the modified methods, a singular mass 
matrix can produce one or more infinite eigenvalues. 

Due to round off error, these infinite eigenvalues 
appear in the output as very large positive or negative 
eigenvalues. To reduce the incidence of such 
meaningless results, degrees-of-freedom with null 
masses are eliminated by static condensation as in the 
case of the unmodified methods.  

The modified methods require more computer time 
than the standard methods. The inverse power method is 
a tracking method since the lowest eigenvalue and 
eigenvector in the desired range are found first. Then 
their effects are “swept” out of the dynamic matrix, the 
next higher mode is found, and its effects are “swept” 
out, and so on. In addition, each root is found via an 
iterative procedure. However, the inverse power method 
can miss modes, making it unreliable.  

Sturm sequence logic ensures that all modes are 
found. The Sturm sequence check determines the 
number of eigenvalues below a trial eigenvalue, and 
then finds all of the eigenvalues below this trial 
eigenvalue until all modes in the designed range are 
computed. This process helps to ensure that modes are 
not missed. The Sturm modified inverse power method 
is useful for models in which only the lowest few modes 
are needed. This method is also useful as a backup 
method to verify the accuracy of other methods. 

The Lanczos method overcomes the limitations and 
combines the best features of the other methods. It 
requires that the mass matrix is positive semidefinite 
and the stiffness is symmetric. 

Like the transformation methods, it does not miss 
roots, but has the efficiency of the tracking methods, 
because it only makes the calculations necessary to find 
the roots requested by the user. This method computes 
accurate eigenvalues and eigenvectors. Unlike the other 
methods, its performance has been continually enhanced 
since its introduction giving it an advantage. The 
Lanczos method is the preferred method for most 
medium to large-sized problems, since it has a 
performance advantage over other methods.  

The analysis of extraction methods is presented in 
the following table (Table 1). 

 
5. MODELLING  

 
Finite element model of the analyzed helicopter blade is 
presented in the following figure (Fig. 3).  

Modelling of 3D structure is generally more 
complex and tedious. In the present model eight nodal 
hexahedron elements are being used for meshing the 

sandwich structure. Plate elements, based on Kirchoff 
thin plate theory are used for modelling top and bottom 
skins of the analyzed helicopter blade. 

 
Figure 3. FEA of the helicopter blade 

Detailed mesh construction at the blade rotor tip is 
presented in the following picture (Fig. 4): 

 
Figure 4. Detailed FEA Mesh at the rotor tip (leading edge 
top skin removed for clarity) 

 
5.1 Honeycomb core model 

 
It is assumed that the core can resist the transverse 
shearing deformation and has some in-plane stiffness, 
while the top and bottom surface layer cannot resist the 
shearing deformation but satisfy the Kirchoff hypothesis 
(Fig. 5). Under the above assumption the honeycomb 
core can be regarded as an orthotropic layer.  

For the hexagon honeycomb core with θ=30°, the 
equivalent elastic parameters are as follows [8,9,10]. 

Table 1. Comparison of methods for eigenvalue extraction 

Method  
Givens, 

Householder 
Modified Givens, 

Householder 
Inverse power Strum modified 

Inverse power 
Lanczos 

Reliability High High Low High High 
Cost: 

Few modes 
Many modes 

 
Medium 

High 

 
Medium 

High 

 
Low 
High 

 
Low 
High 

 
Medium 
Medium 

Limitations Cannot analyze 
singular [M] 

- Can miss modes - Difficulties with 
mechanisms 

Application Small models 
(DOF) 

Small models 
(DOF) 

Few modes Few modes Large (DOF) 
models 
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Figure 5. Honeycomb structure of the core with face sheets 
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where E and G are the engineering constants of the core 
material; l and t are the length and thickness of the 
honeycomb cell. In the previous equations coefficient ξ 
is the technology correction coefficient. The value of 
correction coefficient varies between 0.4 and 0.6 when 
the honeycomb is fabricated by the expansion method.  

Stress strain analysis of a single hexagon [11] cell 
has been performed and the deformed state is presented 
in the following picture (Fig. 6). 

 
Figure 6. Deformed honeycomb cell 

 
5.2 Facesheets model 

 
Facesheets are considered to be thin composite 
laminates with continuous fibers. The stress strain 
relation for composite facesheet lamina can be 
expressed as [12]: 
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Each lamina can be considered as orthotropic (three 
mutually perpendicular planes of material symmetry 
exist) and it can be regarded as transversely isotropic 
(one of the material planes is plane of isotropy). For the 
facesheet lamina, in previous relation coefficients of 
mutual influence (ηij,ji) and Chentsov coefficients (μij,ji) 
are equal to zero since there is no interaction between 
normal stresses and shear strains, shear stresses and 
normal (axial) strains nor interaction between shear 
stresses and shear strains on different planes. 

The remaining nine elastic coefficients in relation 
(8) can be determined as follows: The mechanics of 
materials predictions are adequate for longitudinal 
properties such as Young’s modulus E11 and major 
Poisson ratio ν12. These properties are not sensitive to 
fiber shape and distribution. 

In order to predict transverse and shear moduli 
Semi-empirical Tsai-Hahn relations (9,10) were used, 
since the mechanics of materials approach 
underestimates the transverse and shear properties. Both 
E22 and G12 are sensitive to void content, fiber 
anisotropy and the matrix Poisson’s ratio. 
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In Tsai-Hahn relations coefficients η’ij are stress 
partitioning parameters. They are experimentally 
obtained. Typical values for η’22 and η’12 for epoxy 
matrix composites are given in the following table 
(Table 2). 

Table 2 stress partitioning parameters for epoxy matrix 
composites 

fiber  η'22 η'12 
Carbon 0.500 0.400 
Glass 0.516 0.316 

Kevlar 49 0.516 0.400 
 
Using Betti’s reciprocal law according to which 

transverse deformation due to a stress applied in the 
longitudinal direction is equal to the longitudinal 
direction due to an equal stress applied in the transverse 
direction, the following relation for composite laminate 
facesheets can be written: 

    , 1, 2,3
ij ji

ii jj
i j

E E

 
  . (11) 

In the case of transversely isotropic material with the 
2-3 plane as the plane of isotropy elastic parameters are: 
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The Poisson ratio coefficient ν23, as a function of 
constituents’ properties and volume fractions can be 
expressed as: 
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In the previous equation Vf is the fiber volume 
fraction in the composite, νf and νm are fiber and 
matrix Poisson ratios respectively, Em is matrix 
modulus of elasticity and Ef is fiber longitudinal 
modulus of elasticity [13]. Based on equations (9) to 
(13) and rule of mixtures, all elastic coefficients in 
relation (8) can be determined for each lamina in the 
composite laminate facesheet based on known 
properties of constituents.  

 
5.3 Adhesive model 

 
It is assumed that the attachment of facesheets to 
honeycomb core is made by bonding at node bonds 
locations and that perfect bonding is achieved. Taking 
into consideration the elasto-plastic adhesive 
behaviour, shear stress-strain relation for a ductile 
adhesive is modelled by a two-parameter exponential 
fitting curve [14]. The adhesive non-linear model is 
added as the contact layer between blade skins, leading 
edge and honeycomb. 

    1 1 1 k
a aG kB B e       . (14) 

 
Figure 7. Adhesive stress-strain curve 

In the previous equation γ is the strain in the 
adhesive and Ga adhesive shear modulus. The 
parameters, k and B1, are chosen based on the 
following conditions: (a) the final stress at ultimate 
strain should equal the average between the ultimate and 
final stress and (b) the area of the fitting curve should 
match the area of the experimental data (Fig. 7). 
 
6. NUMERICAL RESULTS 

 
Using material models described in previous section for 
each component of the modified composite helicopter 
blade (blade skins, blade spar and core) modal analysis 
is performed. Eigenvalue extraction is performed using 
Lanczos method and the results for first four modes 

with corresponding strain energies are presented in 
Figures 8,9,10 and 11 for each computed mode. 

 
Figure 8. First mode, strain energy 

 

Figure 9. Second mode, strain energy 

 

Figure 10. Third mode, strain energy 

 

Figure 11. Fourth mode, strain energy 
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CONCLUSION 

 
In the present work, the new modeling approach for 
determining natural frequencies and normal modes of 
helicopter composite rotor blade is presented. It was 
found that the most effective method for matrix 
decomposition and eigenvalue extraction is Lanczos 
method. The accuracy and computing time is highly 
influenced by proper mesh creation and material 
models. The structure that contains honeycomb 
structure can be modeled as a continuum, using 
equivalent plate theory since the exact modeling of 
honeycomb at cell level is tedious and does not affect 
results accuracy. When composite structures with many 
degrees of freedom are analyzed, modeling of 
honeycomb core at cell level is not even possible and 
equivalent plate theories have to be used. 
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ДИНАМИЧКА АНАЛИЗА МОДИФИКОВАНЕ 

ХЕЛИКОПТЕРСКЕ ЛОПАТИЦЕ ОД 
КОМПОЗИТНИХ МАТЕРИЈАЛА 

 

Димитриос Гаринис, Мирко Динуловић, 
 Бошко Рашуо 

 
У овом раду извршена је модална анализа 
модификоване лопатице хеликоптера „Газела“. 
Модификована лопатица је комплетно композитна 
са саћастом испуном. Приказан је метод одређивања 
модова осциловања и сопствених фреквенција. 
Модификована лопатица састоји се од саћасте 
испуне, рамењаче од 3Д усмереног композита и 
танких карбонских плоча као оплате. Да би се 
одредила матрица крутости испуне коришћен је 
метод еквивалентних маса. У циљу налажења 
оптималног метода за одређивање сопствених 
фреквенција испитано је неколико познатих метода. 
Метод Ланцоса показао је најтачније резултате кроз 
умерено процесорско време када је у питању 
одређивање сопствених фреквенција и модова 
осциловања код структура од композитних 
материјала са саћастим испунама. Овом методом 
израчуната су прва четири мода осциловања 
модификоване композитне лопатице, и приказани су 
резултати модова осциловања и деформационе 
енергије лопатице. 

 


