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The paper treats Riemann’s partial differential equations in the form (1), 
where variable μ is defined by relation (2). Corresponding boundary 
conditions are defined in various forms, such as boundary conditions of 
pressure and flow on the fixed and movable boundaries. Problem 
formulation is constructed in order to describe hydraulic actuator 
dynamics in a complete form, including its real flow and geometric 
characteristics. Special algorithm is generated and a corresponding 
computer package for simulation of the complete hydraulic actuator 
dynamics, including the existing wave effects, using the method of 
characteristics to obtain the desired problem solution. Results of computer 
simulation of hydraulic actuator dynamics are presented in 3-D diagrams. 
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1. INTRODUCTION 
 
Wave propagation effects can be evaluated by partial 
differential equations of continuity and momentum with 
additional fluid compressibility law for one dimensional 
flow[1,3,6]. The effect of fluid viscosity can be entered 
as a friction between fluid streamline and pipeline wall. 
Local viscous effects at control servo valve and flow 
inlet and outlet of actuator cylinder represented by 
corresponding pressure loss coefficients are involved as 
boundary conditions. Fast hydraulic actuator can be 
assumed as serial connected compressible fluid flows 
controlled by supply and return variable restrictors 
enclosed in the control servo-valve and separated by the 
actuator piston [5]. The solution of presented 
mathematical model is evaluated using the method of 
characteristics.  

Corresponding computer package for actuator 
simulation enables it for the arbitrary states of function 
by using the same computational procedure. It also 
enables relatively high computational accuracy of 
pressure and velocity distribution. For fast actuator its 
state is characterized by strongly expressed wave 
traveling effects and high gradients of flow velocity and 
pressure changes along the fluid streamline. These 
effects are placed mostly in the source part of the 
actuator. The paper also presents the results of 
visualization of computer simulation of generalized fast 
hydraulic actuator. 
 
2. MATHEMATICAL MODELLING OF ACTUATOR 
 
Equations of continuity and momentum for one 
dimensional fluid flow including the effects of wall 
friction are presented in the form of Riemann’s partial 
differential equations of small wave’s propagation 

through compressible medium in addition with the 
corresponding boundary conditions. 

By using the method of characteristics the 
corresponding system model is presented as a system of 
algebraic linear equations. Riemann’s partial differential 
equations including the wall friction are given in the 
form: 
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where u is the fluid velocity, p is fluid static pressure, ρ 
is fluid density, c is velocity of sound, ξ is coefficient of 
pressure loses, x is co-ordinate along streamline and 
time. The presented partial differential equations (1) can 
be written in the form of characteristics, where λ is the 
coefficient of pressure losses per unit length of 
streamline. The corresponding equations of 
characteristics are given in the following form: 
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(3) 

In the case of small fluid compressibility, where ρ0 is 

fluid density for zero fluid static pressure and χ is fluid 
bulk module, fluid density ρ and variable μ can be 
presented in the linear mathematical form as follows: 
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2.1 Boundary Conditions 
 
Any direction change of actuator motion produces 
pressure discontinuity which is caused by the inversion 
of fluid flow between supply pipeline and both actuator 
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chambers. Possible pressure drop or surge is also caused 
by geometric asymmetry of the servo valve. Complete 
actuator (points B through E’), connected into hydraulic 
system into points A (by supply pipeline A-B) and F’ 
(by return pipeline E’-F’), is presented in Figure 1. 
Static pressure in supply and return pipelines is 
presented as ps and p0, respectively. 

 
Figure 1. Complete actuator boundary conditions 

A complete problem formulation includes the 
corresponding boundary and initial conditions for each 
of the assumed system sub domains. These domains 
correspond to the inlet and outlet pipelines, supply and 
return fluid flow sections between the control servo 
valve and the actuator piston. Wave effects of return 
flow can be assumed to be completely separated by the 
actuator piston. The corresponding boundary conditions 
are defined in the form of continuity and Bernoulli 
equations or piston momentum equation in addition to 
the pressure and velocity conditions. Left boundaries are 
determined with Q-characteristics, and right ones by P-
characteristics. At the boundaries B-C, D-E, B’-C’ and 
D’-E’ the corresponding values of μ and u must be 
determined by interpolation. At points F and A’ some of 
numeric integration methods must be applied for 
determination of corresponding pressure value on the 
movable piston surfaces. Boundary condition in the 
point A is caused by the performances and behavior of 
the power pump of hydraulic system and its connection 
with a relief valve. The corresponding boundary 
conditions can be defined in an alternate form as 
follows: 
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At points B-C the corresponding boundary conditions 
are defined as flow continuity and pressure loss caused 
by control servo valve throttle leakage. At points D-E 
the boundary conditions are of the same type as for the 
points B-C the difference being only in pressure loss 
caused by fluid viscous effects at the cylinder flow inlet. 
At point F boundary conditions of static pressure are 
defined as well as piston velocity, whose relation is 
defined by equivalent actuator stiffness. At point A’ 
boundary conditions of static pressure are defined as 
well as velocity from the other side of the piston. At 
points B’-C’ boundary conditions are of the same type 
as for the points D’-E’, the difference being only in 
pressure loss caused by fluid viscous effects at cylinder 
flow outlet. In points D’-E’ corresponding boundary 
conditions are defined as flow continuity, and pressure 

lose caused by control servo valve throttle leakage. As a 
boundary condition at point F’ the nominal return 
pressure of hydraulic system can be assumed. Initial 
conditions are defined at each of the domains (A-B 
through E’-F’). Initial conditions of fluid static pressure 
are assumed to be supply static pressure (A-B) and 
cylinder static supply pressure (C-D and E-F). 
 
2.2 Boundary conditions of inlet and outlet control 

servo- valve 
 
Boundary conditions are given by the following 
Bernoulli’s equation with additional equation of 
continuity in the form:  
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Given equations can be approximated by assuming the 
equivalence of pipeline area on the inlet and outlet 
section of the servo valve, and equivalence of fluid 
velocity caused by the change of fluid density on the 
inlet and outlet servo-valve section:  
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2.3 Boundary conditions on the fluid inlet and outlet 

of actuator chamber 
 
Previous relations for the actuator servo-valve can be 
used to determine the mentioned boundary conditions in 
the following form: 
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where η0 is the corresponding coefficient of local 
pressure losses at these points of streamline. 
 
2.4 Boundary conditions of the actuator piston 
 
Equations of piston equilibrium are given in the form:  
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3. NON-DIMENSIONAL PROBLEM FORMULATION 
 
It is more convenient to present the given equations in 
non dimensional form by introducing the following non 
dimensional system co-ordinates and variables: 
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where Vmax is maximal fluid velocity along the 
streamline caused by the system pump, pmax is maximal 
fluid nominal static pressure and L is total length of the 
assumed streamline. Non-dimensional form of equations 
of characteristics can be presented as:  
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with the corresponding non dimensional characteristics:  
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Co-ordinates of cross point R and corresponding 
values of non dimensional velocity xu and parameter xm 
are given by the following relations:  
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For the left boundary non dimensional variables are 
defined along Q characteristics only. For the left 
boundary static pressure condition, the corresponding 
parameters of non dimensional time τ and velocity ξu are 
defined in the form:  
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For the left boundary velocity condition, the 
corresponding parameters of non dimensional time τ and 
parameter ξμ are defined in the form:  
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For the right boundary non dimensional variables are 
defined along P characteristics only. For the right 
boundary static pressure condition, the corresponding 
parameters of non dimensional time τ and velocity ξu are 
defined in the form: 
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For the right boundary velocity condition, the 
corresponding parameters of non dimensional time τ and 
parameter ξμ are defined in the form:  
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Combined boundary conditions for the left and right 
side are presented at the points of inlet and outlet 
hydraulic servo-valve, inlet and outlet of the actuator 
chamber and piston position. This case can be 
formulated for the fixed and movable boundaries. 

For the fixed boundaries the corresponding 
conditions of characteristics can be solved as non- 
dimensional time co-ordinates of generalized points B 
and E: 
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With additional following system of two linear 
algebraic equations: 
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The corresponding two boundary conditions have to 
be added to previous equations (19), because the 
generalized points B and E have different non- 
dimensional time co-ordinates. They must be 
interpolated by introducing the following relations: 
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Interpolation point can be assumed by the following 
relation: 
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By changing the presented relations we can give the 
following algebraic equations: 
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If the boundaries are in motion along the streamline 
with the corresponding non-dimensional velocity uuk(t), 
then we can write the following algebraic relations: 
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Where index 0 denotes previous position of the movable 
boundary. By changing the relations (23) into the 
relations (18) we can give: 

 

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0 0 0

0 0

( ) ( 1)

1 ( )

( )
,

1 ( )

( ) ( 1)

1 ( )

( )
.

1 ( )

A A
x xk M N u u A

B A
u u uk M N

uk M N M N

A
u u uk M N

E D
x xk M N u u D

E D
u u uk M N

uk M N M N

D
u u uk M N

k

k

k

k

k

k

    


  

  

  

    


  

  

  





 







 



   
 

 




 

   
 

 




 
 (24) 

In other piston position procedure is the same as for 
the fixed boundaries. To these equations have to be 
added boundary conditions which exist at points M=N. 
Previous relations (6) in non dimensional form can be 
written as: 
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By changing cM and cN from relations (22), we can 
give: 
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In non-dimensional form follows from relations (8):  
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From the previous relations we can give the 
following solution:  
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By introducing the equivalent piston position co-
ordinate previous relations (9) becomes in the following 
form:  
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Where the corresponding coefficients are:  
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The piston position can be calculated from the 
following relation in non dimensional form:  

 ( ).M G G
x x u u M Gk        (32) 

If non dimensional piston acceleration is assumed 
as: 
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Then there follows the final form of the previous 
equations (9) written as:  
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4. SIMULATION MODEL PERFORMANCES  

 
Actual hydraulic actuators have the frequency range 
upon 100 Hz in correlation with the conventional one, 
whose frequency is limited to 10 - 20 Hz. The presented 
results of computer simulation prove that wave effects 
are of influence for the faster types of actuators [4]. 

For compact actuators, whose frequency range is 
significantly greater than 100 Hz, we must include wave 
effects with its full influence. The main difference is the 
fact that wave reflection and corresponding velocity and 
pressure gradients are of the same order as the 
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frequency range of the actuator input servo-valve 
control throttle. In that case, wave propagation effect 
takes the main role in system behavior. Inclusion of 
wave effects makes actuator mathematical model more 
complicated. Boundary conditions change its relatively 
simplified formulation for the conventional models into 
a very difficult procedure, commonly presented in 
iterative form including the interaction of two-
connected boundaries with coupled parameters on its 
both sides, which can be also movable with arbitrary 
velocity and position. 

In the paper [2] is presented simplified one-sided 
actuator approximation whose outlet servo-valve part 
and reverse actuator chamber were neglected. This 
approximation enables simplified problem formulation 
because the effects of characteristics delay between inlet 
and outlet actuator servo-valve parts are not present. 
This approximation can be of interest, but the given 
results are not too qualitative. This fact is compensated 
with a relatively simplified procedure of feedback 
analysis and corresponding active control synthesis. In a 
complete system model formulation, we must solve 
efficiently the problem of reverse fluid flow in the 
return actuator part. The inversion of fluid flow between 
direct and reverse actuator modes is assumed as 
inversion of the points of inlet and outlet servo-valve 
parts. Compensation of characteristics time-delay needs 
an iterative procedure for calculation the corresponding 
parameters in the domain of characteristics time-delay 
between the points of inlet and outlet servo-valve zero 
throttles. 

The density of nodal point distribution along the 
stream-line and simulation time is dependant of 
maximal velocity and pressure gradients. For usual 
actuator geometry, 200 points along the stream-line 
produce about 130.000 iterations for one second, or the 
total of 26 millions nodal points. Each step of 
computations has the same number of medium nodal 
points. The method of accuracy is very high because the 
maximal errors of velocity and pressure distribution are 
small. The corresponding differences between the 
results of one or two-step iterative procedure for the 
case of 10.000 Hz actuator is less than 1x10-5 of its 
maximal values. In accordance the assumed units ratio 
of total streamline length and the corresponding time 
step ratio of simulation loop, the problem of numeric 
stability and convergence is of interest. If time and 
coordinate discretization step equals 0,005, for 
simulation of one second of the actuator activity 
approximately 1.3x105 time steps and loop iterations are 
needed. For that number of iterations numerical 
accuracy of calculation, spatially on the fixed and 
movable boundaries, is critical. For solving this 
problem, the corresponding procedure is established, 
expressed by relation (21), in order to reduce 
computational oscillations around the ‘exact’ solution.  

In Figure 2 are presented diagrams of velocity and 
static pressure ratio distribution along streamline and 
during 52 units of time (2a and 2b), for 2.3 units of time 
(2c and 2d) and for 7.2 units of time (2e and 2f) by 
using the same steps of numerical integration. In 
Figures 2c and 2d the propagation of waves is visible in 
the starting period of the actuator function. In Figures 2e 

and 2f the effects of waves propagation are less visible, 
and in Figures 2a and 2b the effects are practically 
invisible. This is the proof that same computational 
procedure with equal step parameters can be used for 
actuator simulation during short or long time period 
without arbitrarily increasing the cumulative numerical 
integration errors. 

 
Figure 2a. Velocity distribution ratio 

 
Figure 2b. Static pressure distribution ratio  

 
Figure 2c. Velocity distribution ratio  

 
Figure 2d. Static pressure distribution ratio  

 
Figure 2e. Velocity distribution ratio  
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Figure 2f. Static pressure distribution ratio 

 
5. CONCLUSION  
 
Computer simulation of generalized fast hydraulic 
servo-actuator including effects of fluid compressibility 
introduces the additional wave propagation problem, 
which can be solved by some numerical methods. For 
the simulation purposes, is the method of characteristics 
is recommended for system modeling. The presented 
results of actuator simulation prove that the exposed 
system model and the corresponding computer package 
enables its simulation for arbitrary actuator 
configuration and states of function.  
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МОДЕЛ УПРАВЉАЊА ХИДРАУЛИЧКИМ 

АКТУАТОРОМ СА ЕФЕКТИМА 
СТИШЉИВОСТИ 

 
Јован Јанковић, Небојша Петровић, Часлав 

Митровић 
 
У раду су третиране Риманове парцијалне 
диференцијалне једначине у облику израза (1) где је 
променљива μ дефинисана релацијом (2). 
Одговарајући гранични услови дефинисани су у 
различитим облицима, као што су гранични услови 
притиска и протока и то на фиксним и на покретним 
границама. Проблем је формулисан са циљем да 
опише комплетну динамику хидрауличког 
актуатора, укључујући његов стварни проток и 
геометријске карактеристике. У ту сврху направљен 
је посебан алгоритам и одговарајући рачунарски 
пакет за симулацију комплетне динамике 
хидрауличког актуатора, укључујући и присутне 
ефекте таласа. За решење проблема коришћена је 
метода карактеристика. Резултати рачунарске 
симулације динамике хидрауличког актуатора 
представљени су 3-Д дијаграмима.  

 


