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Modeling of the Matrix Porosity 
Influence on the Elastic Properties of 
Particulate Biocomposites 
 
For a wide range of engineering structures such as ceramics, porous shape 
memory alloys, foam-like structures and thermal spray deposits, porous 
materials have been used. Recently, porous biocomposites for the 
applications to bone implants and hard tissue engineering have become 
increasingly important. The effect of matrix porosity on the elastic 
properties of particulate biocomposite was studied by two-and three-phase 
unit cell finite element models. A 3D FCC unit cell model of particulate 
composite with included matrix porosity is developed and compared with 
the simple theoretical models. It is found that the matrix porosity has 
noticeable influence on the composite elastic properties. The two-phase 
predictions overestimate the three-phase ones because of the physical 
threshold for three-phase model determined by the particle content. 
 
Keywords: Particulate reinforced composites, Biomaterials, Elastic 
constants, Finite element analysis, Porosity. 

 
 

1. INTRODUCTION 
 

The development and application of porous materials is 
enforced by the continuous demand for lightweight 
constructions with enhanced mechanical properties. 
Porous materials have a wide range of applications in 
various engineering structures such as ceramics, porous 
shape memory alloys, foam-like structures and thermal 
spray deposits. As regards biomaterial implants, besides 
the desired porosity in porous metallic implants or 
temporary scaffolds for the regeneration of bone tissue 
[1], in major load-bearing biocomposite implants initial 
mechanical properties are degraded by the presence of 
matrix porosity [2].  

Recently, the development of hydroxy-apatite 
related porous biocomposite structure for the 
applications to bone implants and tissue engineering has 
become increasingly important, because interconnected 
porosity with a diameter of at least 100 μm in the 
structure allows cell penetration and proper 
vascularization of the ingrown tissue [3]. The rate of 
integration and the volume of newly regenerated bone 
have been shown to be very dependent on porosity, pore 
size and shape. Previous analysis shown that porous 
HAP with sphere-like pores has better strenght 
properties compared to non-spherical pore shapes, wich 
was also confirmed by FEM the results [4]. 

In particulate composites, porosities can appear in a 
form of particle-matrix debonding, cluster induced and 
matrix pores. The effects of clustering and interfacial 
debonding of particles on the mechanical properties of 
composites were the topic of the majority of prior 
studies.  

Several predictive models have been developed to 
correlate porosity and the effective elastic constants by 
assuming the porous material as a special case of a two-
phase composite in which the second phase consists of 
pores. A detailed summary of these methods can be 
found in Herrmann and Oshmyan [5] and Wang and 
Tseng [6]. The unit cell approach requires relatively 
little computational efforts in comparison to simulations 
of real structures and allows to study the effect of the 
mutual arrangement of phases in composite [7,8] or 
cellular materials [9].  

In this work, the influence of the isolated porosities 
in the matrix phase on the elastic properties of 
particulate biocomposites is investigated. A face-
centered-cubic (FCC) finite element (FE) unit cell 
model was designed to evaluate the compressive elastic 
constants of the composite for a range of porosity 
volume fractions in ceramic particle reinforced polymer 
composites. The matrix was chosen to be poly-L-lactide 
(PLLA) polymer and the reinforcement were taken to be 
hydroxyapatite (HAp) particles. Simple semi-emphirical 
models for predicting elastic constants of porous 
particulate composites are proposed for comparison 
purposes. 

 
2. MODELING PROCEDURE 

 
The present work aims at carrying out a comparative 
evaluation of two-versus three-phase unit cell 
descriptions of composite consisting of elastic 
reinforcing particles embedded in an elastic porous 
matrix. To fully simulate such a microstructure, a three-
dimensional (3D) model of a random distribution of 
particles and pores is required. Although, attempts at FE 
analysis of 3D multiparticle periodic unit cells have 
been made (see, for example, [10]), a model of this size 
is still not computationally feasible for most demands. 
In this study, random distribution is idealized by 
periodicaly distributed particles and pores represented 



82 ▪ VOL. 40, No 2, 2012 FME Transactions
 

here by a periodic repeating cell. The irregular shape of 
porosity and particles appearing in real microstructure, 
[4], is idealized to be spherical, as shown in Fig. 1.  

In the two-phase (composite-porosity) FCC porosity 
cell, there is one spherical porosity at each corner and 
one spherical porosity in each face of the cube cell. The 
three-phase (particle-matrix-porosity) model differs 
from previous by the fact that spherical particles are 
introduced at the corners of the reduced cell opposite 
from the porosity location. Due to the symmetry of the 
unit cell and the applied loads, as well as isotropic 
material properties, the models were reduced to one 
eighth of the unit cell, as shown in Figs. 2(a) and (b). 
The models are considered by introducing boundary 
conditions, which constrains the unit cell to remain in its 
original shape (cube). After loading, the sides remain 
parallel and orthogonal, but changes in length. The unit 
cell is loaded in compression along the y direction with 
adequate displacement steps. The local coordinate 
system aligns with the global one. Dimensions of these 
reduced unit cells are 0.5 × 0.5 × 0.5 μm. 

 
Figure 1. Idealization of the random pore distribution, 
shape and size by arranging the pores on a FCC paking 
array 

The assumptions for both models are: (1) the elastic 
property of composite, particle and matrix is linear; (2) 
the particle and matrix phases as well as the whole 
composite are isotropic; (3) all spherical particles are of 
the same size; (4) all spherical porosities are of the same 
size; (5) the adhesion between the constituents is perfect 
and (6) the composite, particle and matrix phases will 
not fail at the prescribed loads. 

 

 
Figure 2. FE grid of unit cell model with 0.262 particle 
volume fraction (Vf) and 0.0565 porosity volume fraction 
(Vp): (a) two-phase model; (b) three-phase model. 

All 3D FE models were produced using ANSYS 5.4, 
a general purpose finite element software package. The 
elements used are 10-node tetrahedral structural solid 
elements (an option of 20-node solid brick elements). A 
representative FE grid for evaluation of compressive 
modulus for a two-phase model, shown in Fig. 2a, 
consists of 22,582 elements and 32,916 nodes. A 
representative FE grid for evaluation of compressive 
modulus for a three-phase model, shown in Fig. 2b, 
consists of 21,423 elements and 30,773 nodes. Each 
node has three degrees of freedom corresponding to the 
three degrees of translation. The simulations were 
performed for the two values of HAp volume fractions, 
Vf, namely 0.262 and 0.4524, while the porosity volume 
fractions, Vp, were in the range of 0-0.262. 

For the two-phase model the material properties 
were taken to be: ELC = 10.63 GPa, νLC = 0.435, EHC = 
16.04 GPa and νHC = 0.421, where E is Young’s 
modulus, and ν is a Poisson’s ratio. The subscripts LC 
and HC represent the composite model with Vf equal to 
0.262 and 0.4524, respectively. It should be mentioned 
that the input properties for the two-phase model were 
determined by setting values of Vp in three-phase model 
equal to zero. For the three-phase model the material 
properties were adopted on the basis of literature data 
[11,12]: E1 = 117 GPa, ν1 = 0.28, E2 = 6.50 GPa, ν2 = 
0.45. The subscripts 1 and 2 represent HAp and PLLA, 
respectively. 

Due to the assumption that the overall composite 
material is isotropic, values of shear modulus, G, can be 
calculated from the predicted values of Young’s 
modulus and Poisson's ratio using the well-known 
relationship 
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The Halpin-Tsai model (HT) [13] is applied here to 
predict the compressive elasticity and shear moduli of 
the composite, which are dependent on the porosity 
content. These semi-empirical equations propose that 
compressive Young’s modulus and shear modulus can 
be calculated from: 
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where M is the corresponding composite constant (E or 
G), Mm is the corresponding matrix constant (Em or Gm), 
ξ is a measure of particle filler that depends on particle 
geometry, packing geometry and loading conditions and 
η is an additional parameter defined as: 
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where Mf is the corresponding particle constant (Ef or 
Gf). The values of ξ are obtained by comparing (2) and 
(3) with 3D FE solutions and assessing a value of ξ by 
curve fitting technique. When porosity is considered it 
is obvious that particle becomes pore (Vf → Vp), Mf = 0 
and Mm becomes Mc, which leads to 
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On the other hand, we propose that the 
corresponding composite constant M for porous material 
can be obtained by modifying Hashin-Shtrikman, HS 
[14] equation to 
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where the values of γ are obtained in a similar manner 
as values of ξ. It could be instructive to compare the 
results of the numerical approach with the prediction of 
semi-empirical equations proposed to describe the 
variation of elastic constants with porosity. 

 

 
Figure 3. Von Mises stress distribution (stress values are in 
daN/mm2 = 101 MPa): (a) in the porous composite, for the 
two-phase unit cell model with the composite that contains 
0.262 Vf and 0.0565 Vp; (b) in the PLLA matrix, for the three-
phase unit cell model with 0.262 Vf and 0.0565 Vp. 

3. RESULTS AND DISCUSSION 
 
The stress distributions of the deformed matrix, shown 
in Figs. 3(a) and (b), were achieved by loading the grid 

shown in Figs. 2(a) and (b) by a prescribed 
displacement in the ydirection of the nodes positioned 
at the upper surface of the cube (y = 0.5 μm). In order to 
extend the uniaxial stress information to the multiaxial 
stress state, the Von Mises equivalent stress was used. 
The nominal stress was determined by summing the 
reactions on the constrained surface opposite the loaded 
surface and dividing by the area. The side surfaces 
remain parallel to their original directions arising from 
the equal and opposite forces of the neighbouring 
material, while the resultant force acting on these 
surfaces is equal to zero. The stress values, shown in 
Figs. 3(a) and (b), are a result of loading which 
corresponds to applied compressive strain of 1% and 
nominal stresses of 94.7 MPa and 85.5 MPa, 
respectively. A common feature for both modeling cases 
is that the maximum Von Mises stress values are found 
in the equatorial region of the matrix in the vicinity of 
the pore. The particle/matrix interface is free from high 
stress spikes. In both model cases, the maximum value 
of stress concentration factors slightly increases with the 
higher pore content. The composite with lower particle 
content exhibits higher stresses in the matrix. The 
region of the matrix where the maximum stress occurs 
is usually the place of the initiation of the local plastic 
deformation. The stresses considered are those within 
the PLLA matrix, because failure of the HAp particles 
had not been reported in the experiments so far. 

The compressive Young’s modulus of elasticity was 
calculated from the applied strain and the average 
applied stress. The overall modulus results versus 
porosity content, obtained for two Vf and modeling 
procedures under uniaxial compressive loading, are 
shown in Fig. 4. The numerical solutions are 
additionally compared with the HT and modified HS 
predictions and the results provided by the two 
approaches to computing the elastic constants of a 
monolith material with spherical porosities, namely 
Ramakrishnan and Arunachalam (RA) and Hasselman 
and Fulrath (HF) [15,16]. The former one has been 
successfully used for the description of an oral implant 
coating consisting of a bioactive glass matrix containing 
spherical porosity [17]. The expressions for the elastic 
constants can be found in the cited references, and are 
not given here for sake of brevity. 

As expected, compressive modulus of the composite 
increases with the higher particle content and decreases 
with the increase in porosity content. For instance, an 
increase in porosity of 13.4 % leads to a modulus 
decrease of approximately 25 and 30 %, as estimated by 
two- and three-phase model, respectively. It is 
interesting that modulus decrease is similar for both 
particle volume fractions. The FE simulations were 
restricted to an upper level of Vp of 0.262. 
Exceptionally, for the three-phase model with higher Vf, 
the calculations were terminated at the Vp of 0.134 
because at higher particle and porosity content, matrix 
phase becomes geometrically disconnected, which 
certainly leads to unconvincing results. The two-phase 
FE predictions overestimate the three-phase ones, by as 
much as to 15 %, over the whole porosity range because 
of the physical threshold for three-phase model that is 
determined by the Vp, and the fact that the two-phase 
model neglects the interactions between matrix, 
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particles and porosities. Maximum Vp for three-phase 
model is equal to (1  Vf), opposite to the two-phase that 
allows hypothetically the Vp to be equal to 1. This 
demonstrates that microstructure (the geometrical nature 
of the composite constituents) is an important factor 
besides the porosity content and the overall composite 
properties. Semi-empirical HT and modified HS results 
(dotted lines) approach more closely to the FE results 
than RA and HF models, but since the fitting of 
coefficients to FE curves is required, their usefulness as 
a quick tool for the estimation of elastic properties of 
porous particulate composites is limited. The good 
correlation between theoretical and two-phase 
simulations is a consequence of the similarity between 
the assumptions of the theory and the definition of the 
model. 

As regards shear modulus (Fig. 5), the two-phase 
model results seem to overestimate the three-phase over 
the whole Vp range. Fig. 5 gives the apparent Poisson's 
ratio, , calculations by present numerical model. 

In previous work we have compared our modeling 
results with several sets of previously published 
experimental data [12,18]. In cases where the 
microstructure of the composite roughly matched that of 
the models, as in the cold forge processed HAp/PLLA 
[11], the agreement was very good. High pressures and 
low temperatures during processing would not cause 
significant decrease of matrix molecular weight or pore 
formation. The residual porosity developed in the matrix 
during hot pressing procedure, and an insufficiently 
intimate bond between the phases, could cause a 
discrepancy between experimental and numerically 
predicted values [4,19]. For the composite system 
investigated in this study, the assumption of perfect 
bonding is reasonable because the surface microporosity 
of the HAp particle enabled a potentially existing liquid 
phase to penetrate into its structure, which is one of the 
phenomena on which the mechanical theory of phase 
adhesion is based [20]. In general, the PLLA polymer 
matrix has a net-like shape with spherical pores and 
during compacting by hot pressing, the system porosity 
could decrease, providing a more intimate contact of the 
two components. Conversely, thermal degradation could 
lead to the formation of new matrix porosities from 
solvents such as chloroform, methanol and water. 
Therefore, in order to utilize particulate biocomposites 
effectively, it is desired to know their mechanical 
behavior as a function of matrix porosity. 
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calculations and theoretical models. HT and modified HS 
predictions are represented by dotted lines . 
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Figure 5. Poisson’s ratio and shear modulus versus 
porosity for FE calculations and theoretical models. HT 

 
4. CONCLUSIONS  
 
A 3D FCC unit cell model of particulate composite with 
included matrix porosity is developed and compared 
with the simple theoretical models. The low-level 
matrix porosity has noticeable influence on the 
composite elastic properties. Two-phase FE modeling 
results as well as the calculations from theoretical 
equations overestimate the three-phase FE calculations 
as a result of neglecting the physical threshold and 
possible interactions between particle, matrix and 
porosities existing in real particulate composite 
microstructure. The two-phase modeling results match 
the theoretical ones, because of the similarity between 
the assumptions of the theory and the definition of the 
model. 

In the future it would be useful to extend this work 
to describe particle/matrix debonding and by using 
information obtained from micrographs, to generate 
models that actually mimic physical microstructures. 
Besides predicting the properties of particulate 
composites with low-level porosity, proposed procedure 
could be effective for designing the challenging 
materials with desired controlled porosity (pore shape, 
size and volume fraction). 
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МОДЕЛИРАЊЕ УТИЦАЈА МАТРИЧНЕ 

ПОРОЗНОСТИ НА ЕЛАСТИЧНЕ ОСОБИНЕ 
ПОРОЗНИХ БИОКОМПОЗИТА 

 
Игор Балаћ, Катарина Чолић, Милорад 

Милованчевић, Петар Ускоковић, Милорад 
Зрилић 

 
Порозни материјали се користе за широки спектар 
инжењерских структура направљених на бази 
керамике, порозних легура са меморијским ефектом, 
пенастих структура, термички заштитних филмова. 
У скорије време примена порозних биокомпозита у 
инжењерству тврдих ткива као и импланата код 
коштаних дефеката привлачи посебну пажњу. 
Утицај матричне порозности на карактеристике 
еластичности честичних биокомпозита анализиран 
је применом методе коначних елемената употребом 
двофазног и трофазног модела направљеног на бази 
репрезентативног запреминског елемента - РЗЕ. 
Развијен је трофазни модел РЗЕ са честичним 
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ојачањем распоређеним у површински центрирано 
кубном распореду са матричном порозношћу облика 
сфере, чији су резултати упоређени са једноставним 
аналитичком моделима. Примећено је да матрична 
порозност значајно утиче на карактеристике 
еластичности ових врста композита. Резултати 

добијени на основу двофазног модела имају више 
вредности од оних добијених на основу трофазног 
модела у скоро целом анализираном опсегу услед 
физичке границе за запремински удео порозитета 
код трофазног модела која је очигледно одређена 
вредношћу запреминског удела честице ојачања.  

 


