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This paper presents methodology for development of software application
for integration of process planning, scheduling, and the mobile robot
navigation in manufacturing environment. Proposed methodology is based
on the Russian Theory of Inventive Problem Solving (TRIZ) and multi-
agent system (MAS). Contradiction matrix and inventive principles are
proved as effective TRIZ tool to solve contradictions during conceptual
phase of software development. The proposed MAS architecture consists of
six intelligent agents: job agent, machine agent, optimization agent, path
planning agent, machine learning agent and mobile robot agent. All agents
work together to perform process plans optimization, schedule plans
optimization, optimal path that mobile robot follows and classification of
objects in a manufacturing environment. Experimental results show that
developed software can be used for proposed integration in order to

improve performance of intelligent manufacturing systems.
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1. INTRODUCTION

The advanced manufacturing paradigms like computer
integrated manufacturing (CIM) and intelligent
manufacturing systems (IMS) may provide more
integrated manufacturing environments developed on
the basis of modern software architectures and
information technologies [1]. Some of the components
that participate in integration of various phases of
manufacturing are computer-aided process planning
(CAPP), scheduling, material transport system
(conveyers, automatic guided vehicles (AGV),
intelligent mobile robots), etc.

The CAPP, as an important interface between
computer-aided design (CAD) and computer-aided
manufacturing (CAM), is an essential component of
CIM system. The purpose of CAPP is to determine and
optimize process plans for part to be manufactured
economically. Scheduling problem is defined as
allocation of operation on machines in time and the
output of scheduling is a sequence of operations on
machines. In traditional approaches, process planning
and scheduling were carried out sequentially. Because
of the fact that process planning and scheduling are
complementary functions, many researchers proposed
their integration to achieve global optimization of
product development and manufacturing. In [2] is
proposed particle swarm optimization (PSO) approach;
in [3] a simulated annealing (SA) based approach; in [4]
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improved genetic algorithm (GA); in [5] symbiotic
evolutionary algorithm; in [6] modified genetic
algorithm; in [7,8] agent-based approach to integrate
these functions.

The intelligent material transport, within integrated
manufacturing environment, implies solving a path
generation problem and controlling the movement of an
intelligent agent - a mobile robot. The path that a mobile
robot tracks directly depends on process planning and
scheduling and can be generated and optimized in many
ways, for example, using algorithms such as Dijkstra,
A*, D* E*, or optimization algorithms like PSO and
GA [9].

While executing transportation task, the intelligent
mobile robot must be capable of sensing its
environment. Using sensor readings and artificial
intelligence, the objects in manufacturing environment
(machines and obstacles) can be classified and
according to classification appropriate mobile robot
actions can be made [10].

In this paper, methodology for development of
software application for integrating all aforementioned
components is presented. The first part of paper focuses
on TRIZ methodology as an effective tool for
conceptual design of software application and the
second part of the paper focuses on development and
implementation of multi-agent system in order to obtain
optimal process plans, optimal scheduling plans,
optimal path and classified objects in a manufacturing
environment.

The reminder of this paper is organized as follows.
Section 2 gives introduction of TRIZ methodology used
for software development. In Section 3 is presented
multi-agent methodology. In Section 4 are reported
experimental results obtained by using own developed
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software named Skynet. Section 5 provides concluding
remarks.

2. TRIZ METHODOLOGY FOR SOFTWARE
DEVELOPMENT

The Theory of Inventive Problem Solving (Russian
acronym: TRIZ) has been widely used as effective tool
to define, analyse and solve problems, especially at the
conceptual design phase. The TRIZ method was
developed by Genrich Altshuller in 1946 and it is a
systematic approach for generating innovative solutions
based on the extensive study of more than two million
worldwide patents and other inventions. The TRIZ
approach to innovative problem solving is given in
Figure 1. The first step of TRIZ problem solving is
identification of specific problem and then follows its
classification into generic problem in terms of technical
or physical contradictions. The next step is formulating
problem using TRIZ language and searching for
analogous solutions. At the end, by using engineering
knowledge, generic solution can be transformed into
desired specific solution.

- TRIZ - -
Generic Problem »| Generic Solution
1 Engineering
Contradicti
ontradictions & irvelen o
Specific Problem Specific Solution

Figure 1. TRIZ way of innovative problem solving

The most commonly used TRIZ tool is the
contradiction matrix, which is composed of 39
engineering parameters and 40 inventive principles [11].
There is a dependency relationship between the
mentioned engineering parameters and while improving
some parameters with positive effects, some of the other
parameters might have negative effects. This results in a
contradiction. Altshuller asserts that conflict resolving
occurs when a contradiction between parameters is
solved using 40 contradiction principles. In that way,
the ideality of the design increases while a parameter is
improved without worsening the other parameter. The
39 engineering parameters and 40 inventive
contradiction principles are given in Table 1.

In terms of TRIZ for software, in literature [12,13]
are presented analogies of TRIZ inventive principles in
the context of software development. For example,
principle “#1-Segmentation” means “dividing an object
into independent parts” and can be interpreted as
“divide a system into autonomous components-agents
that can operate independently of each other, achieving
a common goal” [12]. The other inventive principles
that are applied to solve contradictions in this software
development are 7, 10, 15, 16 and 35 (Table 2). When
“#38-Level of automation” is selected as an improving
feature and “#36-Complexity of a device” as a
worsening feature, respectively, the corresponding
matrix obtains suggested inventive principles as 15, 7,
and 10. Using inventive principle “#15-Dynamicity”,
we optimize work of all agents without increasing “#36-
Complexity of a device”. Also, using principle “#7-
Nesting” we improve “#38-Level of automation” by
setting more sub-functions in each main function of the
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software application code without increasing “#36-
Complexity of a device”.

Table 1. List of 39 parameters and 40 inventive principles

. . Inventive
No. | Engineering parameters D
principles
1 Weight of mobile object Segmentation
2 | Weight of stationary object Extraction
3 | Length of mobile object Local quality
4 | Length of a stationary object Asymmetry
5 | Area of a mobile object Consolidation
6 | Area of a stationary object Universality
7 | Volume of a mobile object Nesting
8 | Volume of a stationary object Counterweight
9 | Speed Prior counteraction
10 | Force Prior action
11 | Tension/Pressure Cushion in advance
12 | Shape Equipotentiality
13 | Stability of composition Do it in reverse
14 | Strength Spheroidality
Time of action of a moving ..
15 object Dynamicity
16 Time of action of a stationary Partial or
object excessive actions
17 | Temperature A.nothe.r
dimension
18 | Brightness Mechz}mcal
vibration
19 En_e rgy spent by a moving Periodic action
object
Energy spent by a stationary Continuity of
20 . 4
object useful action
21 | Power Rushing through
Convert harm into
22 | Loss of energy benefit
23 | Loss of substance Feedback
24 | Loss of information Mediator
25 | Loss of time Self-service
26 | Amount of substance Copying
27 | Reliability Dispose
Mechanics
28 | Accuracy of measurement substitution
Pneumatics or
29 | Accuracy of manufacturing hydraulic
construction
30 Ha.rmful factors gctmg on an Thin and flexible
object from outside
31 Harmful factor developed by Porous materials
an object
32 | Manufacturability Changing the colour
33 | Convenience of use Homogeneity
L Rejecting and
34 | Repairability regenerating parts
- Transformation
35 | Adaptability properties
36 | Complexity of a device Phase transitions
37 | Complexity of control Thermal expansion
38 | Level of automation Ac.celejrated
oxidation
39 | Capacity/Productivity Inert environment
40 Engineering Composite
parameters materials
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Table 2. Contradiction matrix and corresponding TRIZ principles

No. Feature to improve Conflicting feature TRIZ principles
1 Level of automation (38) Complexity of a device (36) 15 Dynamicity
7 Nesting
10 Prior action
2 Adaptability (35) Convenience of use (33) 1 Segmentation
15 Dynamicity
16 Partial or excessive actions
3 Reliability (27) Productivity (39) 1 Segmentation
35 Transformation properties

3. MULTI-AGENT INTEGRATION METHODOLOGY

The concept of agent comes from artificial intelligence
[14]. In the manufacturing domain, it is possible to
define an agent as an intelligent entity that may
represent physical manufacturing entity (machine,
robot, AGV, tool, cell, etc.) or computational entity
(algorithm, soft-computing technique, etc. that can be
implemented in a manufacturing system such as
learning agent, optimization agent, path planning agent).

A multi-agent system (MAS) is an artificial
intelligence system composed of a population of
autonomous agents that are able to cooperate in order to
reach an overall goal, while simultaneously pursuing
individual objectives. In this research, we applied
following six agents to make MAS and integrate
manufacturing functions: job agent, machine agent,
optimization agent, path planning agent, machine
learning agent and mobile robot agent. The job agent
and machine agent are used to represent jobs and
machines. The optimization agent is used to generate
the alternative process plans and optimize scheduling
plans. Path planning agent is used to generate optimal
path that mobile agent follows and machine learning
agent is used for classifying object (machines and
obstacles)  during robot movement through
manufacturing environment.

3.1 Job agent

Jobs agents represent the jobs (parts) that are
manufactured in the manufacturing system. Each job
agent contains information of a particular job, which
includes job ID, job name, job operations and
information about alternative process plans.

In order to adopt representation for alternative
process plans, many types of flexibilities in process
planning are considered: operation, sequencing, and
processing flexibility [6]. Petri-net, AND/OR graphs
and networks are some of the numerous methods used
to describe these types of flexibilities. In this paper, a
network representation method is adopted. Generally,
there are three node types in the network representation:
the starting node, the intermediate node and the ending
node. The starting and the ending node indicate the
beginning and the end of the manufacturing process of a
job and an intermediate node represents an operation.
The intermediate node contains a set of alternative
machines that are used to perform the operation and the
processing time for the operation according to the
machines. All nodes are connected with arrows that
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represent the precedence between them. For each job,
every alternative path in the network starts with an OR-
connector and ends with a join-connector. OR-links are
used for making decisions as to which of the alternative
manufacturing process procedures will be selected. All
links that are not connected by OR-connectors must be
visited. Figure 2 shows alternative process plan
networks for two jobs, job 1 and job 2.

In this research, the optimization objective of the
flexible process planning problem is to minimize the
production time which consists of processing time and
transportation time. The notations used to explain
mathematical model of operation sequencing problem is
described as follows [6]:

n — total number of jobs;
Gi — total number of process plans of the
i-th job;
t - 1,2,3,.., M generations;
Oji — j-th operation in the I-th process
plan of the i-th job;
Py — number of operations in the I-th
process plan of the i-th job;
k — Alternative machine corresponding
to Ojji;
TW(i,j,I,k) — processing time of operation 0;; on

the k-th alternative machine;
TP(i,f) - production time of i-th job in the t-
th generation;

TT(,0,G,k),(  — the transportation time between the
j+1.ky) ki-th and the k,-th alternative
machine

The production time TP is calculated as shown in
(D.
al
TPGi,) = > TW(, j.k,1)+
j=l
Ri-1
2 TTGL Gk, (4 L)), (1)
j=1
i E[Ln]aj E[L |:)||]s| e[lsG|]

The first constraint used here is that each machine
can handle only one job (operation) at the time and the
second is that the operations of one job cannot be
processed simultaneously. The objective function is
given as follows:

1

max f(l,t) = m,

@)
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Figure 2. Alternative process plan network for two parts and nine machines

and it defines the alternative process plan with the
minimum production time TP.

3.2 Machine agent

Each machine represented by machine agent contains
the information about: machine ID, machine name, the
manufacturing features which machines can process, the
processing times and transportation times between
machines. For each machine agent, status is available:
idle or in use for manufacturing operation. Based on
constraint that each machine can handle only one job at
the time, each machine agent negotiate with job and
optimization agents to get necessary information.

3.3 Optimization agent

Optimization agent is a part of the proposed MAS. It
can optimize the process plans and scheduling plans
using GA approach. The major steps of the GA

approach for process plans optimization are described as
follows:

Step 1: Generate the individuals for an initial
population and initialize the parameters of the GA for
the process plans optimization. Chromosome encoding
and decoding is conducted as described in [6].

Step 2: Evaluate the fitness of the individuals as
described by (1) and (2).

Step 3: Selection. We adopted the fitness-proportional,
roulette wheel selection, where the probability of
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selection is proportional to an individual’s fitness.

Step 4: Crossover. According to the defined crossover
probability p., some individuals are picked out for
crossover. For each pair of selected parent
chromosomes, a single crossover point is randomly
generated and applied for the recombination of process
planning individuals.

Step 5: Mutation. According to the defined mutation
probability pm, some individuals are randomly selected
to be mutated and for each selected chromosome a
mutation point is randomly chosen.

Step 6: Repeat steps 2-5 for number of generations set
in the step 1.

Step 7: Save s optimal or near optimal alternative
process plans.

The scheduling optimization agent uses optimal or
near optimal process plans and generates optimal
scheduling plans. The major steps of the GA approach
for generating optimal scheduling plans are described as
follows:

Step 8: Select the alternative process plan generated in
the process plans optimization phase.

Step 9: Generate the individuals for an initial
population and initialize the parameters of the GA for
the optimization of scheduling plans. Chromosome
encoding and decoding is conducted as described in [6].
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Step 10: Evaluate the fitness of the individuals and
initialize the parameters of the GA for scheduling. The
fitness function for each individual is calculated by
using these equations:

objectl = max(Cij )(Cij € Td (Sij ,Cij )), (3)
m

object2 = objectl+ )’ |z i —avgmt|(oij eMy), @)
a=l1

where Cjj is the earliest completion time of operation 0jj,
sjj the earliest starting time of operation 0j;, Z p; is the

total processing time for a machine and avgmt is the
average processing time of all machines.

Step 11: Selection: use the same selection operator as
used in step 3.

Step 12: Crossover. According to the defined crossover
probability p., some individuals are picked out for
crossover. The crossover procedure for scheduling
string is described in [6].

Step 13: Mutation. According to the defined mutation
probability pn,, some individuals are randomly selected
to be mutated. In this paper, two types of mutation
operators are used: two point swapping mutation and
mutation for changing one job’s alternative process
plan.

Step 14: Repeat steps 8-13 for number of generations
set in the step 9.

Step 15: Output the optimal scheduling plan as
sequence of operations on machines.

After applying previous steps 1-7, the optimization
agent generates optimal or near optimal process plans of
each job according to minimum production time and
applying steps 8-15 the optimal scheduling plan is
obtained according to object 1 or object 2.

3.4 Path planning agent

Path planning agent has a task to select paths with the
assigned task before movement commences. For the
applications in the known static environment, path
planning is usually solved in two steps: (1) building a
graph to represent the geometric structure of the
environment and (2) perform a graph search to find path
between the start and goal points based on certain
criteria. Path planning agent can use algorithms such as
Dijkstra, A*, D*, E*, or optimization algorithms like
PSO and GA [9].

For purposes of the mobile robot path planning task,
the A* search algorithm is used for finding the shortest
path between the start and goal points. Description of
A¥* path planning algorithm and its implementation is
given in [15].

3.5 Machine learning agent
The intelligent mobile robot must be capable of sensing
its environment while executing transportation task.

Using sensing devices, mobile robot first gets
perception of its environment and then moves through
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environment. It is very important to mobile robot
classify objects in the environment based on
measurements of the distance to an object in
environment. Machine learning agent based on artificial
neural networks [16] is used for classification of
characteristic objects (machines and obstacles) in
laboratory model of manufacturing environment.
Detailed description of  development and
implementation of this algorithm is given in [10].

3.6 Mobile robot agent

Mobile robot agent represents mobile robot with
appropriate sensors that are used for getting sensor
readings as well as testing paths obtained by
optimization and path planning agents. LEGO
Mindstorms NXT configuration with one intelligent
control unit, two servo motors and one ultrasonic sensor
is used. For controlling the mobile robot, RWTH
Mindstorms NXT Toolbox is utilized.

4. EXPERIMENTAL RESULTS

In order to illustrate the effectiveness and performance
of the proposed TRIZ methodology in terms of software
development and multi-agent approach in integration
task, developed software application named Skynet is
used. The platform for software development is Matlab
software package, Java Development Kit and Microsoft
Visual C++.

Each agent in the software application described in
previous section can operate in two ways: independently
and in cooperation with other agents. For example,
when agent operates independently, we can use only
optimisation agent to get optimal process plans without
using path planning or machine learning agents. Also,
we can use only path planning agent and get optimal
trajectory from start to goal point without using any
other agent. On the other hand, we can use agents all
together in  generating integrated intelligent
manufacturing system. How agents are organised
together and how they solve problems by working
together is shown by MAS architecture in Figure 3.
Communication between agents is done by using agent
platform with host PC. Data about machines, jobs and
sensor readings are stored in Matlab database and
communication between the Lego NXT mobile robot
and PC are also achieved with Matlab via USB or
Wireless protocol.

Figure 4 shows the procedure of creating alternative
process plan network for job 2 using job agent. On the
left part of Figure 4 are places where user can enter job
name, operation number, alternative machines for each
operation, time for each operation, and OR links if it is
necessary for that job. Also, here is button for join
connector used to end links of alternative process plans
and button for the end node used after the last job
operation to indicate end of the manufacturing process
of a job. The maximum number of jobs that Skynet
software supports is 10, the maximum number of
operations for one job is 16 and the maximum number
of OR links for one job is 5. In this experiment, we use
four representative jobs and each job consists of §
operations and two OR connectors.
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Figure 4. Job agent: Generation process plan network for job 2

Machine agent is presented in Figure 5. Using this
agent, user can enter number of machines in considered
manufacturing environment as well as machine ID,
machine name, the manufacturing features which
machines can process, the processing time and
transportation times between machines. The maximum
number of machines in this software is 15.

Using optimization agent for process plans
optimization, firstly, user can set following GA
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parameters: the size of population is 40, the probability
of crossover is 0.60, the probability of mutation is 0.10
and the number of generations is 30. After setting
parameters, this agent generates desired entered number
of alternative process plans for all jobs. For each job
three alternative process plans with production time and
fitness function are given in Figure 6. According to the
results of process planning, optimization agent
generates optimal scheduling plans. User can set GA
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Figure 5. Machine agent: Setting transportation times between machines
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Figure 6. Optimization agent: Experimental results of process planning

parameters for scheduling as follows: the size of
population is 500, the probability of crossover is 0.80,
the probability of mutation is 0.10 and the number of
generations is 100 (left part of Figure 7). Scheduling
results for four jobs and 9 machines are given in a form
of Gantt chart (right part of Figure 7) and convergence
curves of the scheduling algorithm is given in Figure 8.

In learning agent module, it is possible to collect
data from ultrasonic sensor while mobile robot moves

126 = VOL. 41, No 2, 2013

through manufacturing environment and train neural
networks to classify objects (machines and obstacles) in
manufacturing environment. On the left part of Figure 9
is shown how we can set parameters for neural network
learning process. The name of neural network is net, the
neural network architecture is [10-20-10]3, the
activation function is tangent sigmoid and learning
algorithm is Levenberg-Marquardt. On the right side of
Figure 9 we can see convergence of neural network.
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In path planning agent, A* search algorithm is used
for generating optimal path between the machines. If we
want to use path planning agent independently from
other agents, on the left part of Figure 10 in part
“custom path” we can choose machines for optimization
as well as Euclidean or Manhattan norm. On the other
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hand, we can utilize a sequence of machines generated
by optimization agent and use A* algorithm to optimize
the path between machines. Results for optimal path
from machine 1 to machine 6, generated using
Euclidean distance norm, are shown on the right part of
Figure 10.
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5. CONCLUSION

In this paper was presented methodology for own
software application development for integration of
process planning, scheduling, and mobile robot
navigation in a manufacturing environment. The
proposed methodology is based on the Theory of
Inventive Problem Solving (TRIZ) and multi-agent
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system (MAS) methodology. It is shown that TRIZ
tools such as contradiction matrix and inventive
principles can be used for solving contradictions in
software application development. Using MAS based
methodology integration of manufacturing functions
was facilitated. Six agents that present proposed MAS
are: job agent, machine agent, optimization agent, path
planning agent, machine learning agent and mobile
robot agent. An optimization agent is based on GA, path
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planning agent uses A* algorithm, learning agent is
based on neural networks and mobile robot agent
belongs to LEGO Mindstorms NXT technology.
Although experimental verification was done in one
manufacturing environment, the developed software
application Skynet can also be used for Lego mobile
robot  navigation in  different manufacturing
environments, which implies other layouts, jobs,
machines and technological processes.
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HNHTEI'PAIIMJA TIPOJEKTOBAIBA
TEXHOJIOIIKOI MPOHECA, TEPMUHUPAIBA
MMPOU3BOABE N YIIPABJbAIBbA MOBUJIHOTI!
POBOTA BASUPAHA HA TPU3 N
MYJTUATEHTCKOJ METOJ0JIOI'JA

Muauna IlerpoBuh, 3opan MusbkoBuh, bojan
Baouh

Y paay je mnpeacraBjbeHa METOJOJIOTHja 3a PasBoj
co(TBEpCKE aIIMKalje 32 HHTErpalnjy IpojeKTOBaba
TEXHOJIOIIKOT TPOolleca, TePMUHUpPAba MPOU3BOAKE U
HaBUTranyje MOOMJIHOT po0OTa Yy  TEXHOJIOIIKOM
OoKpyxemy. [IpemnokeHa MeTo0I0THja je Oa3upaHa Ha
NPUMEHH TEOpHje MHBEHTUBHOI pelllaBarba mpodieMa u
MYJITHAr€HTCKE METOJIOJIOTHjE. Marpuna
KOHTpaJUKL{jeé ¥ WHBEHTHBHM NPHHIMIM Cy Ce
NoKa3anu Kao e(peKTHBaH anaT 3a OTKJIAmbambe
KOHTPAJMKTOPHOCTH Yy KOHIICMIMjCKO] (a3 pa3Boja
coprBepa. [Ipeanoxkena MyNTHAareHTCKa apXUTEKTypa
caupXH LIECT areHaTa: areHT 3a JeJioBe, areHT 3a
MalllHe, areHT 3a ONTHMH3alHjy, areHT 3a IUIaHuPabe
MyTamke, areHT 32 MAIIMHCKO YY€Hhe W arcHT MOOHJIHU
poboT. CBM areHTH 3ajelHO YYECTBYjY y ONTHMHU3ALN]H
TEXHOJIOIIKOT ~ IIpOlleca,  ONTHMH3AlMjH  IUIAHOBA
TEepMUHHpAa, TEHEPHCAky ONTUMAIHHX NyTamba Koje
MOOWIHH poOOT mpaTh M Kiacuukanuju objekara y
TEXHOJIOILIKOM OKPYXKEHY. ExcniepumenTanuu
pe3ysiTatu 1Mokasyjy Ja ce pasBHjeHH co(TBep MoiKe
KOPHCTHTH 3a NPEIJIOKEHY MHTErpaLyjy, a CBe y LUIbY
noboJpIIama nepdopmancu WHTEJIUTEHTHUX
TEXHOJIOIIKUX CUCTEMA.
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