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The sound which is generated from the aircraft during the take-off and 
landing is one of the main problems for the people who live in the areas 
near the airport. It is very important to allocate and accurately calculate 
acoustic sources generated from turbulent flow produced by the 
aerodynamics components of the aircraft. This is done in order to calculate 
inhomogeneous term of Helmholtz equation which serves as a prediction 
tool of sound propagation in the domain. It is used subgrid-scale stabilized 
(SGS) finite element method for solving incompressible Navier-Stokes 
equation which simulate turbulent flow. Afterwards is done double 
divergence of Litghill’s tensor in order to calculate acoustics sources. 
Further, the transformation from time domain to frequency domain is used 
with Direct Fourier Transform which leads to smaller memory usage and 
computational cost. The aim of the article is to show that previously 
mention method lead to better and richer representation of the spectrum of 
frequencies obtained from turbulent flow. Good representation of spectrum 
will give better inhomogeneous term of Helmholtz equation. Better 
prediction and calculation of acoustics sources will lead to reduction of 
sound generation through design of aerodynamics components on the 
aircraft. 
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1. INTRODUCTION  

 
With the constant need to travel faster, better and safer 
through the air, the industry of aeronautics has become 
one of industries with the highest progression in the last 
century. As always progression lead to some problems 
that has to be overcome. One of the biggest problem for 
civil aviation and for people who live near the airports is 
sound generated from aircrafts. In one period of aviation 
history scientists and engineers thought that sound is 
coming from aircraft engine, but during 1960 Lighthill 
noticed that flow around aircrafts (aerodynamics) 
produces significant part of sound. In this period 
emerged a new field: Aeroacoustics. This field 
investigates sound generated by unsteady and/or 
turbulent flow and also by their interaction with solid 
boundaries [1]. With constant growth of capabilities of 
personal computers also new field of computational 
mechanics also emerged: Computational Aeroacoustics 
(CAA). The aim of this field is to simulate and predict 
aerodynamically generated noise. Nowadays, CAA has 
become an active area of research field due to its 
applications in the aeronautics, railway, automotive and 
underwater industry. 

The objective of this work is to present stabilized 
finite element method for the approximation of 

incompressible Navier-Stokes equation and calculation 
of Lighthill’s tensor which arises in Aeroacoustics for 
calculation of low speed CAA predictions acoustics 
sources. These sources are the source for the 
inhomogeneous Helmholtz equation which calculates 
distribution of pressure field in order to predict sound in 
domain. This work will show how different methods of 
stabilization for the Navier-Stokes equation gives 
different solution of calculation of Lighthill’s tensor. 
The natural way to predict turbulent flow is LES (Large 
Eddy Simulation) [2] which would be presented in brief 
and compared with the proposed method of Orthogonal 
Subgrid-scale method (Variational multiscale method) 
proposed by Hughes [3]. The goal is to show how the 
small scales eddies have to be modelled and how they 
affect simulation of turbulent flow and latter calculation 
of aeroacoustics sources.  

 
2. PROPOSED METHODOLOGY TO CALCULATE 

AEROACOUSTIC SOURCES 
 
The first step is computational fluid dynamics (CFD) of 
the proposed problem. The aim of CFD is to obtain flow 
velocity vector u, from the solution of the time evolving 
incompressible Navier-Stokes equation. The 
mathematical problem consists in solving down 

equation in a given computational domain Ω d  , 
with the boundary Γ Ω   and prescribed initial and 
boundary condition. 

 Δ      Ω,  0,           
t

p in t      u u u u f  (1) 
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 0,   Ω,         0,           in t   u   (2) 

    
0

, 0 ,   Ω, 0,           x x in t u u  (3) 

    ,  ,     Γ , 0,  
D D

x t x t on t u u  (4) 

    ,  ,   Γ , 0,    
N N

x t x t on t  n t  (5) 

With υ representing the kinematic flow viscosity, f 
the external force and tN the reaction on the boundary. 
In the case of high Reynolds number problems we will 
be faced with the difficulty to simulate turbulent flows. 
There exist mainly three options [4], namely the RANS 
(Reynolds Averaged Navier-Stokes equation) approach, 
the DNS (Direct Numerical solution) approach and the 
LES (Large Eddy Simulation) approach. In general, the 
RANS model turns to be unappropriate for 
aeroacoustics simulation because it cannot properly 
capture time fluctuations. On the other hand, DNS 
computational cost scales Re

9/4, which makes it not 
feasible for typical high Reynolds number problems 
found in aeronautics. Hence, the right option is LES 
model and later it would be shown that proposed SGS 
method is even more appropriate. The second step of the 
simulation consists in obtaining the acoustic source term 

or Lighthill’s tensor  
0

: ( )   u u  from the flow 

velocity vector u which has already been computed in 
the solution of the Navier-Stokes equation.  

 
     

    
0

0

: :

u u u u





      

        

T u u
  

 
  

     
0

:
T

u u

u u u u



 

      

         
  

    
0

: ( , )
T

u u s x t       (6) 

This approximation allows the direct visualization of 
the source term while keeping the advantages of using 
C0 –class finite elements. The second step of simulation 
finishes with performing the time Fourier transform 
using DFT (Direct Fourier Transform) which saves a lot 
of memory storage.  

 
2.1 LES: Large Eddy Simulation 

 
The key idea of standard LES is to decompose the 
velocity and pressure fields at the continuum level, so 

that    '
, , [ , ]p p p  '

u u u and the  , pu representing 
the large scales of the flow that can be computed, 

whereas '
[ , ]p

'
u  counts for the non-resolvable small 

scales. The key point in LES [5] consist in properly 
modelling the effects of the non-computable small scale 
into the large ones. The scale decomposition between 
large and small scales has been done traditionally by 
means of a filtering process [4]. Without detailing the 
possible low-pass filter operations and assuming that the 
filter commutes with the differential operators, we can 
filter the Navier-Stokes equation (1)-(5) to obtain the 
system  

Δ     Ω (0, )  
t

p in x T         u u u u f  (7) 

 0,   Ω (0, ),  in x T  u   (8) 

    0
, 0 ,     Ω  x x inu u  (9) 

In (7) the tensor     u u u u  is known as 
residual stress tensor, subscale tensor or subgrid scale 
tensor. In order for (7)-(9) to be a closed system of 

equations for  , pu . is need to express   in terms of 

u The various choices for  give place to different 
LES models. Here is chosen Helmhotz filter that obtain 
u from the solution of the Helmholtz equation 

2

 u u u . It follows that 2 1
( )I

  u u  with ϵ > 0 
standing for the cut-off scale [6]. Inserting these 
relations into the subgrid scale tensor we obtain 

  2 2
( )    

i j j
u u u

ij i i j
u u u    

 2 4
2     

i j i j
u u u u   (10) 

The expression effectively allows to write   in 

terms of u without making any approximation or 
adding some hypothesis. As we will see later LES 
model has some drawbacks. It is not fully clear what 
should be characteristic of a good LES model [7] (apart 
from the obvious fact that it should properly reproduce 
experimental data). Another important question con-
cerns the relation/interaction between arising from the 
physical LES model [8] and from numerical methods 
used to solve the discretized problem. It is also not clear 
what should be the relation between the filter support ϵ 
and the characteristic mesh element size h [9]. 
 
2.2 Subgrid scale stabilised finite element method 

with quasi static and dynamical subscales 
 
To apply the SGS stabilised finite element method we 
will decompose the velocity and velocity test 

function u  
h

u u , v  
h

v v which correspond to the 

space splitting 
0 ,0 0

VVV d d d

h
. The velocity time 

derivative can be split as u     
t t h t
u u . The first term 

in previous equation would be the only one kept if the 
time derivative of the subscales is neglected. In this 
situation the subscales are termed as quasi-static [10]. If 
the second term is kept, the subgrid scales are termed as 
dynamical subsales. We will decompose the pressure 

and the pressure test function as p p p  
h

,
h

q q q    

corresponding to the space splitting 
0 ,0 0

QQQ  
h

. 

where
h

u , p
h
belong to the finite element space and 

u and p are what we will call the subgrid scale. For 
simplicity, we will not consider pressure subscales, thus 

we consider u  
* h

u u , 
h

p p . Inserting this 

splitting in Galerkin formulation (multiplying with test 
function and integrating over hole domain) yields to: 
 

     , , , ( ) ( ), ,h h h hp qv u        v
t h h * h h h h
u v u u v u

  , ,
K

h K
u u q        

t h * h h
v u v υ v  

 , )( ,nu q


    
h h hk

K

υ n v f v  (11) 
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 , , ,
K

v uu u u u v v            
t *

K K

υ n  

 ,p v        
h * h h ht

K

u u u υ u   

 ,p v   
h h

K

n u n  (12) 

Where equation (11) corresponds to the large scales and 
equation (12) corresponds to the small scales. Assuming 
that the velocity subscales will be zero at the element 
boundaries as well as on ∂Ω, this allows to understand 
the velocity subscales as bubble function vanishing on 
inter element boundaries. Applying these assumptions 
in equation (11) leads to equation for large scales 

 
( , ) , ( , )

( , ) ( , )

t h h h h h h h

h h h h

u v u u v u v

p v q u

      

   
  

 ,
e

e

h h h h
u v u v q




         

 ( , ) ,
t h h h
u v u u v    ( )

h
u v l v    (13) 

The first line contains the Galerkin terms. The 
second line corresponds to terms that are already 
obtained in stabilization of the linearized and stationary 
version of the Navier-Stokes equation. It is well known 
that the inclusion of these terms in the formulation 
allow to circumvent the convection instabilities and to 
use equal interpolation for the velocity and the pressure 
fields. The third and fourth lines contain terms arising 
from the effects of the velocity subscales u n the 
material derivative of the equation. The first term in the 
third accounts for the time derivatives of the subscales 
and the appearance of this term will distinguish method 
with dynamical subscales from method with quasi-static 
subscales, while we will justify that the second term 
provides global momentum conservation which is not 
satisfied in Galerkin finite element approach. The fourth 
line corresponds to a Reynolds stress for subscales. It 
would be explained that this term may be identified with 
the direct effects of the subscale turbulence onto the 
large scales. The key point of formulation in (13) that 
distinguish it from the standard SGS approach that 
resulted in the appearance of the additional third and 
fourth lines in (13) has been to keep all terms associated 
to the effects of the velocity subscales u in the material 
derivative of the exact velocity field. 

 
 

h

h t h h h h

D D
u u u

Dt Dt

u u u u u u u u u u

  

              



    

 (14) 

Note that 
t h
u and 

h h
u u  once discretized in time 

appear in the Galerkin formulation and the last term in 
(14), contributes to the standard SGS stabilisation in 

(13). The remaining terms 
t
u 

h
u u and uu   are the 

new terms respectively accounting for the time 
dependence of the velocity subscales, momentum 
conservation and the subscale Reynolds stresses. Our 

aim is to find now the solution in (13). Obviously to do 

so we first need a value for the subscales u hat has to be 
obtained from the solution of the small subgrid scales 
equation of the problem. This equation can be written in 
differential form as 

  
,t h u h

u uu u u p r             (15) 

with 
,u h

r  representing residual of the finite element 

components 
h

u given by 

  
,

[ ]
u h t h

r u u u u pu f               (16) 

It would refer to the case    (entity) [4] as the 
Algebraic Subgrid Scale (ASGS) method, whereas 

h h
     , standing for the L2 projection onto the 

appropriate velocity or pressure finite element space 
leads to the Orthogonal Subscale Stabilisation (OSS) 
approach. Using arguments based on a Fourier analysis 
for the subscale [11], the system of equation (15)-(16) 
can be approximated as  

 
,

1

1
t u h

ru u


    (17) 

where the stabilisation parameter 
1
 have the expression 

 1

1 1 22
( )h

u u
c c

h h


 

 


 (18) 

c1 and c2 in (18) are algorithmic parameters with 
recommended values of c1=4 and c2=2 for linear 
elements, while h stands for a characteristic mesh 
element size. From a physical point of view, the 
approximation (17) to problem (15) ensures that the 
kinetic energy of the modelled subscales resembles the 
kinetic energy of the exact subscales. Before we write 
the final equation, we will obtain essential 
approximation which states: 

 1

1*
, ,

K K

K K

u u u v u v           (19) 

The approximations described allow us to formulate 
a method that can be effectively implemented and that is 
the formulation we propose. It consists in finding	

2 (0, ; )
h h

u L T V  and (0, ; )
h h

p D T Q  such that 

 
     , , ,

( ) ( ), ,
h h h h

p qv u

     

 

 

   

v
t h h * h h h h
u v u u v υ u

  

 
* Ω

), ( ,
e

h h h h
u v v p f vu         (21) 

 1

Ω
( , ) ,

e
t K

u vu v         

 
*

, ( , )
h h h

u uu p v f v         (22) 

 
2.3 Conservation of momentum 
 

Let’s start analysing the effect of ,
h h

u u v , let Vh
d 

be the velocity finite element space without imposing 
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Dirichlet boundary conditions, that is with degrees of 
freedom also associated to the boundary nodes. Let t be 
the stress vector (traction) on the boundary Γ and 
consider the following augmented problem instead of 
(13) 

    , , ,
t h h h h h h h
u v u v u u v        

 ( , ) ( , ) ( , ) ,
h h h h h h

p v q u u f v t


         

 ( , ) , ,
t h h h
u v u v u u v           

 , 0
h h h h K

u v u q

K

vuD +  + ⋅ =-å   (23) 

where now d

h h
v V not just 

,0

d

h
V . Considering d=3 and 

taking for example 
h

v 1,0,0) and qh, this equation yields 

   ,1 1 ,1 ,1

Ω Ω

Ω  Ω
t h h h h

u u u u d u u d            

 
,1 1 1

Γ Γ Γ

Γ Γ Γ
h n

u u nd f d t d      (24) 

where now the zero Dirichlet conditions for the velocity 
is not explicitly required. This statement provides global 
momentum conservation if 

 
,1 ,1

Ω Ω

Ω Ω 0
h h h

u u d u u d       . (25) 

This is implied by the continuity equation obtained by 
taking  

  , , 0
h h h K

K

q u u q      . (26) 

provided 
,0

 /  
h h

V R  that is to say, the velocity 

component uh,1 belongs to the pressure space (uh,1 can 
be considered modulo constants) This holds for natural 

choice 
,0

 /  
h h

V R  , that is to say, equal velocity-

pressure interpolations. For the standard Galerkin 
method, this condition is impossible to be satisfied, 
since equal interpolation does not satisfy the inf-sup 

condition. As a conclusion the term ,
h

u v  provides 

global momentum conservation, since without it in 
discrete momentum equation, we would have obtained  

 
,1

Ω

Ω 0
h h

u u d    .   

instead of (25), which is not implied by (26). 
 
2.4 Door to turbulece 
 
Let us make some speculative comments on the 
possibility to simulate turbulent flows using the 
formulation in (44) and on the role of the remaining 

term ,
h

u u v   . In standard LES approach the 

tensor  s often decomposed into the so-called 
Reynolds, Cross and Leonard stresses to keep the 

Galiean invariance of the original Navier-Stokes 
equation. This invariance is automatically inherited by 
the formulation presented above and we observe that 
analogous term so the various stress types are recovered 
in a natural way from our pure numerical approach  

 , ,
h h

u u v u u v         (Reynolds stress) (27) 

while the addition of the other three terms becomes, 
after integration by parts. 

 , , ,
h h h h h h h

u u v u u v u u v           

 ,
h h h

u u v    (Convection of large scales)  

 ,
h h h

u u u u v      (Cross stress) (28) 

If we now pay attention to the convective term of the 
residual in the subscale equation (17) and take for 
simplicity the Algebraic subscale projection, we observe 
that  

 ( ) ,
h h

u u u v       

, ,
h h h

u u v u u v        (Leonard stress)(29) 

Hence, we can effectively conclude that the 
modifications introduced by the presence of the 
divergence of . In the LES approach are somehow 
automatically included in our subgrid scale stabilized 
finite element approach. In the present formulation the 
remaining Reynolds stress term (27), is then considered 
to account for the direct subscale turbulent effects onto 
the large, resolvable, scales. However, all terms 
involving the subscales are indirectly affected by the 
turbulence effects because the subscales are obtained 
from the non-linear equation (17) that involves (29). 
 
2.5 Energy balance equation for Navier-Stokes 

problem 
 
Navier-Stokes equations have been stated in (1)-(5). It 
can be rewritten in conservative form using strain tensor 

  1
( )

2

T
S u u u    we could formulate the weak form 

as: find 2 1 1 2

0
[ , ] (0, ; (Ω)) (0, ; (Ω) / )p L T H xL T L Ru  such 

that 

           ,, 2 , , ,
t

S S p f v      u v u v u u v v   

  , 0q   u  (30) 

From which we obtain the energy balance equation 

 2 21
2 ( ) ,

2

d
S f u

dt
    

 
u u  (31) 

Equation (28) states that the time variation of the 
flow kinetic energy depends on two factors, namely, the 
molecular dissipation due to viscosity (clearly negative) 
and the power exerted by the external force that can be 
either positive or negative. Previous equation could be 
rewritten as 
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Ω Ω Ω

Ω Ω Ω
mol f

dk
d d P d

dt
      (32) 

According to the Kolmogorov description of the 
energy cascade in turbulent flows, the flow can be 
viewed as driven by the external forces acting at the 
large scales (high wave numbers) by non-linear 
processes. When the Kolmogorov length is reached, the 

viscous dissipation 
mol
  in the r.h.s of (32) takes part 

transforming the flow kinetic energy into internal 
energy (heat released). 
 
2.6 Energy balance equation for Large Eddy 

simulation model 
 
Considering the same assumptions used to derive (7)-
(9), we get the weak form of filtered incompressible 
Navier-Stokes equation in a conservative form:  

         , 2 , ( , )
t
u v S u S v u u v        

      , , ,p v v v     f   (33) 

  , 0q u    (34) 

Taking in to account that   is symmetric, we can 
rewrite the second term in the r.h.s of (33). 

As  , ( , ( ))v S v   we will consider   deviatoric, 

where its volumetric part being absorbed in the pressure 
term it could be written energy balance equation for 
filtered Navier-Stokes equation: 

 2 2
1

2 ( ) , ( ) ,
2

d
S u S u f u

dt
     

 
u   (35) 

where we could rewrite this equation assuming that the 
rate of production of residual kinetic energy 	

: ( )
r

P S u  .  

 
r

Ω Ω Ω Ω

Ω Ω PdΩ Ω
mol f

dk
d d P d

dt
        (36) 

For a fully developed turbulent flow with the filter 
width in the inertial sub range, the filtered fields account 
for almost all the kinetic energy of the flow 

thus
Ω Ω

Ω Ω
dk dk

d d
dt dt

  . If the external force acts 

mainly on the large scales of the flow, it would also 
happen that third term on r.h.s of (35) is equal to third 
term of r.h.s of (36). On the other hand, the energy 

dissipated by the filtered field 
mol
 is relatively small and 

can be neglected. Consequently, comparing equation 
(32) with (36) we observe that in order for the LES 
model to behave correctly it should happen that  

Ω Ω

Ω Ω
r mol

Pd d  , that is, the rate of production of 

residual kinetic energy should be equal to (in the mean) 
the energy dissipated by viscous processes at the very 
small scales (Kolmogorov length) which is point of 
view expressed by Liily [8]. In the case of some 

celebrated LES models, such as Smagorinsky model 
r

P , 

is always positive and there is no backscatter, i.e, the 
energy is always transferred from the filtered scales to 
the residual ones, but not vice versa.  
 
2.7 Energy balance equation for SGS method with 

static and dynamical subscales 
 
We will use here the orthogonal subgrid scale (OSS) 
approach and also quasi static subscales, because of that 

equation (17) and could be written as 
1 ,u h

u r , where 

,u h
r  represents the orthogonal projection of the residuals 

of the finite element component 
h

u and in the end 

equation (16) has a new form 

    
,

[ 2 ]
u h h h h h h

r S u p           u u  (37) 

and stabilisation parameter 
1
 s defined as  
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u
c c

h h





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 

 (38) 

When everything is defined we could write the 
energy balance equation as  

 
21 2

2
2

)(
h

d
uh

dt
Su      

  , 2 ( ) ,
h h h h

e

u S u u u f u        (39) 

The summations with index e are assumed to be 
extended over all elements. If we consider the subscale 
approximation, we obtain 
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dt
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1
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e
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   Ω
2 ( ))

e
h h h

S u u u        (40) 

Since we are interested in high Reynolds numbers, 
all the stabilisation terms multiplied by the viscosity 
will be neglected, from where we obtain the following 
energy balance equation for the OSS stabilised finite 
element approach to the Navier-Stokes equations.  

 
2 21
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h h hh
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We could rewrite as before in the form  

 hτ

r

Ω Ω Ω Ω

Ω Ω P dΩ Ω

h

h h

mol f

dk
d d P d

dt
        (42) 

where 
hτ

r
P

is defined in second line of equation (38). 
It is clear that kh will account for nearly the whole point-
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wise kinetic energy of the flow so that 
Ω Ω

Ω Ω

h
dk dk

d d
dt dt

  . 

On the other hand, it will also occur that 
Ω Ω

Ω Ω
h

f f
P d P d   

even that the force only acts at the large scales. In 
addition the numerical molecular dissipation of the large 

scales will be negligible, so that: 
Ω

Ω 0
mol

h
d  . The next, 

crucial question is if it should happen that 

e
Ω Ω

Ω Ω
h

r mol

e

P d d
    for the OSS formulation to be good 

numerical approach for the Navier-Stokes equations, in 
case of fully developed turbulence. Actually, this should 

not be necessarily the case for all the terms in 
h

r
P 

given 
that they have arisen in the equation motivated by pure 
numerical stabilisation necessities. However, it is clear 
that at least some of these terms should account for the 
appropriate physical behaviour and their domain 
integration should approximate the mean molecular 
dissipation in (31). It would be one of the main outcome 
of this article to show, by means of heuristic reasoning, 

that actually the whole h

r
P  satisfies this assumption. 

 
2.8 Discrete Fourier Transform 
 
Natural choice for implementing Fourier transform on 
the computer is Fast Fourier transform (FFT) because of 
less time to compute the transformation. In our 
implementation we won’t use FFT, Discrete Fourier 
Transform (DFT) would be used. 
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As it is known FFT uses some subroutines for 
rearranging some instance in vector numeration in order 
to achieve faster calculation. That means that there is 
need to store all velocity vectors in every time step, 
what is very memory space consuming in order to apply 
FFT. This problem will be overcome with DFT which 
will be implemented inside of transient loop in Navier 
stokes equation achieving less computational time and 
there is not need to store velocity vectors, they are going 
immediately in time numeration of DFT. 
 
2.9 CFD simulation of generic landing gear struts 

with horizontal angle α=0° and rectangular cross 
section using LES model and SGS method with 
dynamical Subscales 

 
Here, it would be presented the practical part of the 
article, where it would be shown CFD simulation of 
generic landing gear struts shown in figure 1.  

For the sake of simplicity it would be simulated 2D 
version of simple 3D model shown in figure 2. It is 
assumes as two struts are of infinite third dimension and 
emerged in an infinite uniform flow. It is used simple 

model which is used for experimental investigation as a 
part of the project Valiant. 

  
Figure 1. Landing gear      Figure 2. Simple 3D model of

       two struts  

We will concentrate here on the case where the flow 
loses its steadiness as well as its up-and-down symmetry 
and a wake of altering vortices are formed behind the 
struts. The set of these shed vortices is known as the von 
Karman vortex street. Vortex shedding induces lift 
fluctuations on the body, which leads to the radiation of 
sound having dipole pattern.  

The configuration of struts consists of two in line 
square struts at the centre-to-centre distance S=0.16m. 
Both struts have width D=0.04m, the distributed flow 
speed is U0=70m/s which is imposed on the left side of 
the rectangle domain and the fluid is air at atmospheric 
pressure and ambient temperature (say 20 °C).  

The mesh used to perform computation is shown in 
figure 3. 

 
Figure 3. Mesh used for simulation 
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Figure 4. Velocity and pressure field using LES model 

 
 

 
 
Figure 5. Velocity tracking (x and y component) in point 
between struts and spectral diagram of velocity obtained 
with LES model 

 
 
 
 
 
 
 
 
 
Figure 6. Velocity and pressure field using SGS with 
dynamical subscales 
 

In figure 4-5 is shown velocity and pressure field 
using LES model. As it is clear from figure 5 that LES 
model has a poor spectrum diagram of frequencies 
which means that this model is simulating only large 

scales and only small amount of small scales. Also what 
is obvious that this model is very dissipative because in 
this case the LES cannot capture real turbulent 
behaviour for this velocity and Reynolds number. 

In figure 6-7 is shown velocity and pressure field 
and also velocity tracking in point between struts.  

From the figure 7 Is obvious that SGS method with 
dynamical subscales is giving better representation of 
turbulent flow and also giving the richer spectral 
diagram recovering small fluctuations who are coming 
from small scales.  

In the end is shown figure 8 where is shown 
acoustics sources for some particular frequency. 
Aeroacousitcs source is imaginary number and because 
of that is shown real and imaginary part. In the figure is 
recognized dipole pattern of aeroacoustics sources 
which is recognizable for von Karmen vortex sheding 
behaviour of turbulent flow. 
 

 
 

 
 
Figure 7. Velocity tracking (x and y component) in point 
between struts and spectral diagram of velocity obtained 
with SGS with dynamical subscales model 
 
 
 
 
 
 
 
 
 
Figure 8. Dipole pattern of acoustics sources obtained from 
turbulent flow ( real and imaginary part) using SGS with 
dynamical subscales  
 
 
2.10  CFD simulation of generic landing gear struts 

with circular cross section using SGS model 
with dynamical subscales 

 
In previous section are shown the struts with rectangular 
cross section because of easiest way to show the main 
thing of the new method of SGS. Also it is done because 
of the connection with VALIANT project where the 
same thing was performed aero tunnel in order to collect 
experimental data. Of course the rectangular cross 
section is not something that would be found on aircraft 
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landing gear and because of that here is shown the CFD 
simulation of two circular cross section emerged in 
infinite flow field where the characteristics of the flow 
are the same as in previous example. In figure 9. Is 
shown the mesh of the model. 

 
 

Figure 9. Mesh used for simulation 
 

In figure 10. is shown the velocity field of two 
struts of circular cross section. It could be clearly 
noticed the vortex shedding which is important for the 
generation of aeroacoustics sources. 

In the end in figure 11 is shown aeroacousitcs 
source field on the frequency of 100Hz. The picture is 
zoomed for one cylinder in order to show dipole pattern 
which is the characteristic for vortex shedding.  

 

 
Figure 10. Velocity field for different time steps 

 
Figure 11. Aeroacoustic source on frequency f=100Hz 

 
3. CONCLUSION 
 
The main objective of this article was to show the 
advantage of using a new method of SGS with 
dynamical subscales. The advantage is in better 
representation of turbulent flow which is clearly shown 
in above figures. This method gives a good 
representation of small scales which are somehow lost 
in LES modelling. 

Comparison is shown in previous figures what 
clearly shows the power of presented method. 

Good approximation of small scales give richer 
presentation of frequencies spectrum. This frequency 
spectrum is a direct indicator of behaviour of turbulent 
flow. Better presentation of turbulent flow immediately 
give more accurate approximation of aeroacoustics 
sources. Also the improvement is madden through usage 
of DFT method for transition from time domain to 
frequency domain. DFT is implemented inside of time 

loop of transient Navier-Stokes equation where this 
approach leads to reducing the memory usage and 
computational cost. The aim of future work is to show 
that this better approximation of aeroacoustics sources 
will lead to better prediction of sound propagation. This 
would be done through inhomogeneous Helmholtz 
equation. Also the idea is to use the same stabilisation 
method for Helmholtz equation in order to overcome the 
problem of pollution error for large wave numbers. 
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Звук који се генерише са делова авиона 
приликом слетања и полетања је један од главних 
проблема за људе који живе у областима поред 
аеродрома. Веома је битно да се лоцирају и 
прецизно израчунају акустични извори који се 
генеришу из турбулентног струјања око 
аеродинамичких компоненти авиона. Израчунати 
извори су нехомогени део Хелмхолцове једначине 
која се користи за предвиђање пропагације звука у 
прорачунском домену. Коришћен је “Subgrid-scale” 
стабилициони метод коначних елемената за 
решавање некомпресибилне Навије-Стокс-ове 
једначине за симулацију турбулентног струјања и 

дупла дивергенција Litghill-овог тензора у циљу 
прорачуна акустичних извора. У следећем кораку 
прелазак из временског домена у фреквентни домен 
је урађен кроз директну Фуриеову трансформацију 
која доводи до мањег прорачунског времена и 
заузимања меморије. У раду је показано да 
споменути метод срачунава бољи и богатији спектар 
фреквенција које ће дати бољи и тачнији 
нехомогени члан Хелмхолцове једначине. Боље 
предвиђање и прорачун акустичних извора ће 
довести до редуковања генерисања звука кроз 
редизајн аеродинамичких компоннети на авиону.

 


