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Kinematics of Base Sphere as a
Segment of Spheres Kinematical
Chain - Gravitational acceleration as
equivalent central acceleration

Assuming that the theory for differential geometry of curve is correct, this
paper introduces a spheres kinematical chain of changeable radii
positioned in such a fashion that the centre of the next sphere is firmly
attached to the previous one within the chain. The kinematical chain
consists of the base sphere and the rest of the chain which is inside the
base sphere. The paper discusses the undisturbed and disturbed motion of
the base sphere. Tha gravitational acceleration is interpreted as equivalent
central acceleration during undisturbed rotation of the base sphere. The
disturbed motion with respect to the undisturbed motion is described by
increments of corresponding kinematical quantities. The relationship with
the existing laws for translational motion in the classical mechanics is also
established. And finally, a simple experiment for verification of the exposed
theory is proposed in this paper.
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1. INTRODUCTION

Current science and technology level give us the means
to solve the most complicated technical tasks. This is
also the case for many explanations of gravity and
motion in space (enough to see the theory review on
web page http://en.wikipedia.org/wiki/Gravitation).

The problem arose when the researchers tried to
explain the functioning of living beings. One of the
main tasks of contemporary robotics is to determine the
mechanical principles upon which the dynamics,
walking control and flight of living beings, especially
two-legged ones, are based. Knowing the functioning
principles of living beings and their balance centres
would enable a proper choice of possible technical
solutions for particular purpose robots. Some consistent
approaches for solving these problems have been
adopted, out of which the most frequently used are the
ZMP method [1] and method based on the relation
a=t—g, dg/dt =wxg, where a is the net

acceleration sensed by the otoliths, t translational and
g gravitational acceleration, and w angular velocity,
e.g. [2]. All living beings possess motion detection
sensors . Information obtained by these sensors are used
for keeping balance and controlling the motions in space
of all types. These information are being gathered
during disturbed motion within the coordinate frame
firmly attached to the body. Motion sensors of living
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beings detect the increment of kinematical quantities,
not their absolute value. Positive acceleration along the
longitudinal axis of a living beings body is estimated as
acceleration which is directed from foot to head, that is,
upward [3],[4], which is in contrast with the adopted
direction of the gravitational acceleration.

The exact analysis of known mathematical results
for the differential geometry of curve gives us new
interpretation for motion of a point along a curve as
function of rotation and deformation of spheres which
are part of a kinematical chain of spheres [5]. In this
paper the kinematical chain of spheres is composed of
the base sphere and the rest of the kinematical chain of
spheres. The rest of the kinematical chain is placed in
the interior of the base sphere. The paper discusses the
motion of the base sphere and in that sense three tasks
present themselves. The first one is to present the
gravitational acceleration as equivalent central
acceleration as a consequence of undisturbed base
sphere rotation. The undisturbed rotation of the base
sphere implies that it is rotating at angular velocity of
constant direction with respect to the immobile
environment or environment rotating at a slower rate
provided that its centre is still within the environment.
As a part of this task we found a relationship that can
lead to important conclusions about the direction and
character of the gravitational acceleration. The second
task is to obtain accurate kinematical relations for
velocity and acceleration of points during disturbed
motion of the base sphere. The disturbed motion of the
base sphere implies its rotation such that there are
increments in the vector of angular velocity and sphere
radius compared to the undisturbed motion. The aim is
to obtain accurate and approximate relations for
absolute velocity and acceleration of a point in the
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kinematical chain of spheres. The third task is to
establish the relationship with the existing relations for
translational motion found in classical mechanics, based
on the results obtained by completing the previous two
tasks. Finally, the motion of objects under the influence
of gravitational acceleration as equivalent central
acceleration will be considered. It will be shown that
there is no contradiction with classical theory of
mechanics. Also, there is a suggestion for a simple
experiment that can verify existing theories about the
Earth's gravity and the theory of gravity as the central
acceleration.

2. GEOMETRICAL AND KINEMATICAL
THEORETICAL BASIS

Consider an arbitrary spatial curve F, and choose

arbitrary point F on it.
In mathematics it is known [6] that a curve element
around the point F lies wholly on the sphere of radius

R =p} +(pr’k)2 , where and p, =1/7 are the
radius of curvature and radius of torsion respectively,
pj. is the derivative of the radius of curvature with

respect to the arc length, 7 and k& are torsion and
curvature of the curve P, respectively. The center of
the sphere is located at the line which is parallel to the

binormal and passes through the center of curvature of
the curve P, .

Figure 1. Motion of point and curve parameters

Consider a sphere whose center is on the principal
normal of the curve and whose radius is equal to the
radius of curvature at E, which isp, =1/|k|. The
natural trihedron of the curve with unit vectorst,, n_,
b, lies on this sphere with origin at the point £ . The
ort n, is oriented towards the center of the sphere, and
ort t, is tangent to the curve. During the motion of the

point E along the curve, the radius of curvature and
orientation of the natural trihedron are changing. The

cruising angular velocity (Darboux vector) of the
natural trihedron is the vector wg = (T 0 k) €., [6],

T
[7], where e,, :(te n, be) . If the motion of the point F

is observed with respect to time, then angular velocity
w, of the natural trihedron is obtained as the product of
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its cruising angular velocitywy, and the speed
V =| V.| of the velocity V, =(V 0 0)e,, of the

point E',
we=V-wS=( 0 De,=0V 0 kV)e, [7],

€ —=€n
[8],- During this motion, the acceleration of the point F
is ay =d, Vo/dt+w, xV, =(d d* Oe,, =V k2 O,
where d,,, () /dt is the relative derivative of a vector in

the natural trihedron e, . If the curve is defined, using

Frenet—Serret formulas it is easy to find the curvature %
and torsion 7 of the curve and orts of the natural
trihedron. If the magnitude V is known, then the
motion of the point E is defined up to the velocity of
the point £ . It means that if the parameters of curve, the
curvature k£ and torsion 7, are known, then there are
infinitely many curves in space with these parameters.
Therefore, the mathematical analysis of motion of the
point E is based on the defined curve P, (by

parameters k£ and 7, and a position of F on the
curve), and defined speed V' along the curve.

We shall remove the path P, and consider the

motion of the sphere X that contains the point £/, while
its center is at the center of curvature S of the path P,

at point £'. .It is assumed that the sphere ¥ is firmly
attached to the natural trihedron at point £'. The motion
of the point £ and motion of the natural trihedron of
the path can be considered as a consequence of pure
deformation and pure rotation of the sphere ¥ to which
this point is firmly attached.

The center S of the sphere X travels along a curve
P, . Analogously, the motion of a sphere that presents

the motion of the center S along the path P, can be

defined. By this way, a kinematical chain of spheres of
variable radii is formed. Absolute motion of any point
E, as a point at the last sphere in the chain, can be
produced by the movement of the chain.

3. KINEMATICAL CHAIN OF SPHERES

Having in mind the previously said and the fact that the
skeleton of almost all living beings is a mechanism with
spherical joints, we introduce the kinematical chain of
spheres as kinematical model of a mechanical system
moving on the Earth’s surface. The chain is formed such
that every radius vector is considered the position vector
of a point on the sphere whose radius is equal to the
magnitude of the position vector and whose center is at
the origin of the position vector (Fig. 2).

.

Figure 2: Spheres kinematical chain

The spheres are positioned in such a fashion that the
centre of the next sphere is firmly attached to the
previous one within the chain. The centre S of the base
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sphere 3 whose radius is Rg = R is either still or it

moves along a trajectory s. The sphere X rotates with
the angular velocity w, . The centre E of the sphere ¢

with radius Ry is attached to the sphere®. The centre
H of the sphere H of radius Ry is attached to the

sphere €. The centre C of a new sphere is then attached
to the sphere H and so on. All spheres’ centres starting
with the centre H are within the sphere ¥ . The spheres
e and H  rotate at angular velocities

Aﬁee =d (ARg)/dt and w, successively with

respect to the spheres > and e. The radii of the spheres
and their angular velocities can be changeable during
the motion. Coordinate frames are introduced so that
axes =z and y determine the tangential plane of a
sphere, while the third axis is always pointed towards
the centre of the sphere.

An example of such a chain can be a human body.
The point E is contact point or ZMP, while other
points on spheres in the chain are spherical joints and
also, a last observed point of the body. For example, the
point H can be a point on hip, the point C' may be
mass center or a point on/in head. In case of an object in
hand, the point H can be a spherical joint of shoulders,
while the point C' could be a point at hand. In this case,
two spheres, whose radii are EH’ (contact point E -
spherical joint of hip H’) and H'H (spherical joint of
hip H' - spherical joint of shoulder H ), may replace
the sphere of radius FH (contact point E - spherical
joint of shoulder H ).

4. GRAVITATIONAL AS EQUIVALENT CENTRAL
ACCELERATION - UNDISTURBED MOTION

If we set an arbitrary coordinate frame at the point F,
the projections of its absolute angular velocity and
projections of the absolute linear acceleration a, will

be measured. If the coordinate frame does not rotate
with respect to the natural trihedron at £ then its
angular velocity will be the absolute angular velocity of
the natural trihedron According to the approach
presented here, acceleration exists only if the point
moves nonuniformly along a curve, that is, if there is a
deformation and/or rotation of a sphere in an inertial
coordinate system. From this we conclude that
gravitational acceleration must be result of motion of a
sphere in an inertial coordinate system (Fig. 3). In this
paper we are focused to motions of the base sphere .

While analyzing motion of bodies on the Earth’s
surface, the motion of the Earth is taken to be
approximately inertial. If it is presumed that the
gravitational acceleration is the result of motion along a
curve then the motion of the Earth is non-inertial.
Therefore, motions described in a coordinate frame
attached to the Earth are motions seen from non-inertial
coordinate frame which, in no way, can be considered
approximately inertial. Further considerations in the
paper assume this fact.

Let a point S be an immobile point. Let a point £
be a point on the Earth and let it be immobile with
respect to the Earth. Let two spheres ¥, and X of the
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same radius R be attached to the centre S (Fig. 3). Let
the sphere X, be still with respect to the immobile
environment while the sphere ¥ rotates around the
centre 5. Let Sz,y,2, be a coordinate frame with unit
T
)

vectors e, = (iy Jj; k)  immobile with respect to

the fixed sphere ¥, and FEz,y.z, a coordinate frame
)T

with unit vectors e, = (i, j, k.) attached to the

mobile sphere . Let the axes Sz, of two coordinate
frames match at the initial instant.

Figure 3: Motion around a fixed centre

Let the undisturbed motion of the sphere ¥ be the
motion when it rotates around the fixed centre S at
angular velocity wg = (0 w!, 0)e, co-linear with

the axis Sy, (Fig. 3) and let its radius R change. Let

the position, velocity and acceleration of the origin S
with respect to the point £ be defined by vectors

Ree:fsz(xee Yee Zee)@e’vee:Ree:(v; Uge ée)ge’

age = Ree = (a), al. a’,)e, For undisturbed

motion, when the axis z has the same direction as the
velocity vector, the following relations apply

=0 v?, = Ra al, = 2Ra + R
Yee =0 Uge = age = (1)
Zee = R U§e=R a;:R—RdQ

Where:a:ft whdt, & =wl,, a=w’.,, R=|R,,|.
0

The vectors of the angular velocity and acceleration of
the coordinate frame Fz,y 2, are

Wee :(0 e’ 0)_eea Wee :(0 a 0)9@ 2

A special case of the undisturbed motion of the
sphere ¥ is the motion when the point £ has constant
speed down a geodesic on the fixed sphere X, of
approximately constant radius. In that case R = const
and & = const , so equations (1) amount to

Z,, =0 ve, = Ré as, =0
Yee =0 vge =0 age =0 3)
Zee = R Vee =0 al, = —Ra?

It is known from mathematical references [9] that a
geodesic is the shortest curve connecting two points on
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a surface. Its characteristic is that its normal is parallel
to the main normal of the surface. The coordinate frame
Ezx,y.z, is therefore the natural trihedron of the

geodesic at point £, and the axis Ez, is the axis of the
normal.

From equation (3) follows that the acceleration R,
lies wholly along the axis Fz, and is oppositely

directed to it. If the term Rd/? equals the magnitude of
the gravitational acceleration the acceleration R, is
equal to the currently adopted gravitational acceleration.

However, the acceleration R, is not the absolute

ee
acceleration of the point £ but is oppositely directed to
it. The absolute acceleration of the point E is the

second absolute derivative of the vector Ry, = SE . In

this case it is the central acceleration and has the same
direction as axis FEz,. This direction is the correct

direction of the gravitational acceleration when it is
considered as equivalent central acceleration.

Such gravitational interpretation is a quite new and,
among the existing models of the Earth, the model
which is, to a certain degree, most appropriate for this
interpretation is  the  Hollow Earth  model
http://en.wikipedia.org/wiki/ Hollow_Earth.

5. DISTURBED MOTION

A mechanical system is in relative equilibrium when all
its points are at rest with respect to the undisturbed
sphere .. Its relative motion arises when at least one of
its points starts move with respect to the sphere . We
shall analyze the kinematical quantities that represent
relative motion of a point on the mechanical system
with respect to the corresponding points on the
undisturbed sphere.

Let the motion of the sphere X' represent disturbed
motion of the sphere ¥. The relative motion of the
sphere X' with respect to the sphere ¥ can be divided
into two independent parts. For that purpose let the
sphere ¥; be introduced; its radius is at all times equal

to the radius of the sphere ¥, and the angular velocity is
equal to that of the sphere >'. During disturbed motion,
the point £’ moves from point £ on the sphere X to
the point £, on the sphere ¥, and along the direction
E;S, into its final disturbed position E’ on the sphere

¥'. It is demanded that the points E;, E’ and S
belong to the same direction in order to separate the
deviations with respect to undisturbed motion into pure
rotation of the sphere and pure deformation of the
sphere (Fig. 3 and 4).

The coordinate frame Fz,y,z, will change its
orientation and move on to the sphere X' into the
coordinate frame E'rly.z, with unit vectors

e, =@, jo k e/)T . Let the disturbed motion in the

—€

coordinate frame FE'zrly.z, (from this point on, all

quantities will be expressed in this coordinate frame) be
described. The vector that determines the position of the
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point S with respect to the point E’ and the angular
velocity of the sphere X' are:

S

Figure 4: Components of the vector velocity R!e

R, =Re + AR, =(0 0 R—AR)e, (4)
wée = Lbee + A""’ee = (Aw(’r( a+ Awge Awge )(_‘36/ (5)

where:Ree = E;S=(0 0 R)e,s,AR,, = E'E; =

(0 0 —AR)e,, and wWee =(0 & 0)ey, Awee =

(Awy, Awl, Awge)ey. At increments  Awge,

coordinate frame E'r.y.z., will change orientation with

respect to the coordinate frame Fz,y,z, for angles
t t t

Aa = ft Awldt,AB = j; At dt, Ay = ft Autdt. Tt
0 0 0

is supposed that the change in orientation is small. The
vector f{ee is the component of the position vector R
whose projections to the axes of the coordinate frame
E'zlylz. are identical to the projections of the vector

R, =ES to the axes of the coordinate frame Ez,y,z, .

The same applies for the vector of angular velocity We,

"

and any other vector that is assigned " < " in the

continuation.
The velocity of the position vector E'S = R, of
the centre of rotation S is
li
4R

R., =R, +AR,, = + (Wep + Ay ) X Rl =

(6)

=R, + AR,

o DRee[Auge=0
Wee =0 AR=const.

where: de(-)/dt denotes relative derivative of a vector

with respect to coordinate frame E’r.y.z., and
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. Ro
< d /R " ~
R = edtee + Wee X Ree = gerl; 0 [,
R
RAWY,
5 2 T z
A(Ree) = Awge X Ree = €7 |[—RAWY, |,
0
—ARALY,
_ d/AR, T -
|%e:0_ o Do X AR = | ARME, |,
—-AR
—ARd&
ARgo[Aee=0 = Wgo X ARge = /| 0
A R=const. 0

The term Ree represents the velocity of the point
R

Ey which is the sum of two terms. The first term ~ €€

)M
is the velocity of the point Ei that coincides with the

point £ but belong to the sphere . The second term

Ak | o
is the velocity of the point =1 with respect to
AR,

E} Dee=0
the ~1 . The term “ee™ is a part of the

increment Ree of the velocity R, describing the

motion of the point £ " around the point E, as if the

sphere 2 does not rotate, and the sphere %' rotate at

ARee Awege=0

AR=const. .
Awee . The term “ont s a

part of the increment AR of the velocity Ree
describing the difference of peripheral velocities of the

angular velocity

points B and E' when the spheres 21 and Z' rotates

at same angular velocity Wee Figure 3 shows all the
!

components of velocity of the vector Ree in case
Awg = (0 Aw?, 0)e
when ce = e 0)e . In this case, the

/
motion of the vector Ree will be planar, and the

. . !

observed coordinate frame connected at the point £
!/

will not rotate with respect to the vector Ree .

The linear acceleration of the origin of the

SN,

. Ery.z, .
coordinate frame eYee ig

d/Ri

Rée = IA{ee +AI"{ee = Jr(“:’ee +A“"ee) ><R/ee =

(7)
+ ARee|A""ee =const.=0 + AReeTcz
AR=const.

=Ry + AR,

Wee=const.=0
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where

R R 2hH
R _ de’Ree R B de’Ree de/wee XR +
ee i ee ee pT) i ee
X &R + 2R
FWee X (Wee X 1fiee) + 2Wge X C,dtee = 961’1 0
i - Ra?
o d A ~ d /R -
A(Ree>:€d7:’%><Ree+AweeX < +A“"eeXRee‘F

+AWee X (AWge X Reg | + Wee X (Awee X R ) =
AGLR 4 Awi AwER + 2AWY, R
= e, |~ AULR + AwiAwl R — 2AwiR + Awl R
—2AWhaR — (Awk f R—(Awk) R

2
_ ARy | dyAw,

ARl .
Wee =const.=0 dt2 dt

X AR g +

ee|

d/ARg _

+ Awge X (Awge X AR ) + 2Awge X =

—AGYAR — AWZAVLAR — 2A0Y R
= e |AVLAR — AWLAWLAR + 2Awl AR
AR+ (Al AR+ (Al AR

.. d & N .
ARee Awee=const.=0 = % X ARee + Wee X (wee X ARee) =

AR=const.
_ARé
=es| 0
ARG

ARGGT&’Z = G"ee X (Awee X ARee) + Awee X (C"ee X ARee)

—2ARG
d AR
+ 2Wge X ed—tee = e, |—Awi AR
28wy, AR

The term f{ee represents the acceleration of the point

E, which is the sum of two terms. The first term R, is

the acceleration of the point Elz that coincides with the
point F, but belong to the sphere ¥. The second term

A(Ree) is the acceleration of the point FE; with

respect to the EIE The term ARg,|. 0 is a part of
Wee=

the increment AR, of the acceleration f{ee

describing the motion of the point E’ around the point
E, as if the sphere ¥ does not rotate, and the sphere

Y’ rotates at angular velocity Awe,. The term

ARgy|Awee=0 is a part of the increment AR,

AR=const.
describing the difference of accelerations of the points
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E; and E’ when the spheres 3, and X' rotate at same

angular velocity Qg . The term AReemZ is a part of

the increment AR,, describing the influence of the
relative motion of the sphere X' with respect to the

sphere > when the sphere X rotates at angular velocity

Wee -

6. RELATIONSHIP WITH TRANSLATIONAL MOTION

This section will demonstrate how translational motion
of a rigid body in the gravitational field can be
represented by three independent sphere ' motions, to

which point E’ is attached. Three independent motions
of the sphere X' are relative motions with respect to the
sphere X', (Fig. 5), which at current instant matches the

sphere X' but its angular velocity is We, and velocity

of radius R , and are made of:

* two independent relative rotations of the X' sphere
with respect to the sphere X' determined by the

increment Aw,, of the angular velocity vector W . It
will be taken that those two rotations take place with
respect to two non co-linear axes perpendicular to R,
and intersect at the point S .

* a deforming motion of the sphere X' with respect
to the sphere ¥ determined by means of increment
AR ofthe radius R of the sphereX.

Figure 5: Disturbed and undisturbed motion of the sphere

It will be shown that, at large constant radius of the
sphere > and additional assumptions about its angular
velocity and disturbed motion, translational motion of
the rigid body within Earth's gravitational field can be
presented as three independent relative sphere motions
3" with respect to the sphere .

Undisturbed motion of the sphere ¥ is given by
equations (2) with respect to the referent sphere . In

vector form, general motion of the point F is defined
by the following equations
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. d.R
Ree = % + Wee X Ree (®
2
= % +e xR +
ee dt2 ee ee
Fw, X (W, xR )+ )

ee

€ee :m‘o—%:w—% (10)

dt dt

where denotes relative derivative of a vector in

()
dt

the coordinate frame FEx,y.z,. If the mass centre of a

mass m is at the point E on the sphere ¥, then sphere
> will act on the mass centre by force in the direction
of the acceleration of the point F . Let the reaction force
of the sphere be denoted by the F, Let ap be the

acceleration of the mass centre (point F£), then,
according to the second axiom of the dynamics

mag = K (11)
and since ap = —R,, the previous equation receives
the form

MR +F, =0 (12)

Let the same mass centre be on the Earth's surface.
In the state of static balance the following equation must
be valid

mg+F, =0 (13)

where g is the acceleration of the gravity, and F, the

force of reaction of the Earth's surface that acts on the
mass centre. The force of reaction F, of the Earth's

surface is induced by Earth's gravity force mg. If
F, =F (14)

mass centre "will not be aware" if the force acting on it
is a result of the Earth's gravity or the fact that it is
situated on the sphere ¥ and revolves along with it. Let
the mass centre be on the sphere Y. If it is still with
respect to the sphere, it will be affected by the reaction
force directed towards the centre S . Therefore, the

acceleration R, must be on the same course, but in the
opposite direction. To fulfill the condition (14) the
following must be | Ry |= ¢ . These conditions within
the coordinate frame Fz,.y,z, are

Ree=(0 0 Ri)e. =(0 0 —gle, (15

Undisturbed motion of the sphere 3 can be any
motion for the observed point F where equation (15)

holds. The acceleration Ree given by relation (17) in

the general case of sphere ¥ motion in the expanded
form in the coordinate frame FEz,y,z2, is as follows
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Y
0 Eeé

I“{eezgeT 0 +§<:,F —ggg R+

R 0
(16)
Ze, & Ye
Wet Wee Wee
‘e | wiwle  |R+el2|-wit|R
T \2 Yo 2 0
_(weg) - (weg )

According to equations (15) and (16), undisturbed
motion of the sphere X is any motion of this sphere in
which the following applies

WYeR + wiwleR+2wW%R = 0

—e R+ wiwleR — 2w R = 0 (17)
, Tp\2 Yp \2
R—[(weg) +(wl) IR = —g

In the equations (17) there are four unknown

quantities wy¢, wl¢, wi¢ and R, so in order to solve

ee ee

them an additional condition is required.
The sphere motion is divided into pure deformation
and pure rotation so the change in radius R does not
depend on the change of the angular velocity wg .

From equations (17) the fact that R satisfies the
following differential equation is obtained

RR+3RR+3Rg=0 (18)
Solving it, the following relations are obtained:
.
R="5-y (19)
: C
R? = —R—g—zgR+01 (20)

where

C, = R(?(RO +9),
Cy = R + Rolig + 39k
and R, = R({y)
Among the all solutions for R and R let the
following solution be chosen:

R

0
0 Q1)

R
= R Rozconst

In that case, with additional condition w.¢ =0,
equations (17) are as follows:

Ry =0
W Ry =0 (22)
2

[(wie ) + (wle 1Ry = g

so the solution for the undisturbed motion of the point
E is
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Ye — _
wpé = C’wy = const.

wee =C,,, = const. (23)
.2 .2 2 2
O‘RO:.% & :waJerx

Let motion of the sphere X' be observed as
disturbed motion of the sphere 3. The velocity of the

point E’ on the sphere X' is given by equations (6).
Let point E”' be the intersection of the course ES and
sphere X/ . Let its position be determined by the vector

R/, = E’S. The velocity of the point E’ can be
expressed as

Rl = Rl = Rl + Awee x RY (24)
where

< d,/R” R ~ d/R
Rge = E/dt + Wee XRge = edtee +

+_€ « + G’ee X ﬁee + G',ee X ARee = (25)

d AR g

7 + Wee X AR,

The expression for the velocity R, takes the form:
. A d /AR
R:ae = Rge |AR:0 _|_ed—tee+ A““)ee X R;e (26)
The kinematical interpretation of this equation is as
follows. Observe point E. matching the point E’, but
belonging to sphere X', (Fig. 5). Then the velocity of

the point E/ is determined by vector Rye [y -

The other two elements determine relative velocity of
the point E’ with respect to point E. in three

independent directions. The general sense is not
diminished by assuming that Aw,, is always normal to

d /AR
the direction R, . Then (d—tee in expression (26)
represents the relative velocity of the point £’ with
respect to the point E along the direction SE’, and
Awg, x R, relative velocity in the tangent plain of the
sphere X'. For instance, the surface of the sphere X',

around the point E’ is equivalent to the surface of the
sea around a ship sailing on it. At the same time the ship

. d AR .
does not have velocity component ed—tee , because it

is always on the same sea level. If Aw, =0 and

AR =0 spheres ¥' and X', do not move with respect

to each other and do not change the radius with respect
to the sphere Y. The condition Awg =0 is

insufficient for the spheres X' and X', not to rotate

with respect to 2.
Let analysis of the relations of the intensities of the
quantities || Awee || and || AR, || and intensities of

other quantities be performed. Let it be said that for the
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motion (30) of the sphere ¥ its angular velocity is equal
in quantity to the angular velocity of the Earth, i.e.:

| Wee 1= @ 1= 6 |= 27T =
=2760-60-24 ~ (27)
~ 7.272205217-10 " rad / s

then the radius of the sphere ¥ will be (according to
(23)):

g 9.81-10"

R():__

> = ~1.854969425-10”m (28)
a2 7.272205217

Momentary peripheral velocity of the sphere X is:
| 6 | Ry ~1.34897 -10°[m./ 5] (29)

Quantities: sea level, velocity and acceleration of the
body with respect to the Earth's surface are more or less
within the range of O =(10"},10)* =(1072,10%)-
[corresponding measurement unit]. In this sense it
follows:

/AR,
dt
2
|| Aw,, xR, ||,9} €O
| Aw,, [le 0" [« inf(0°)]
ldle 0° [« inf(0%)]
la| R AR IR [y jp_ollE O [> sup(0?)]

IR, ||~ R, |le 0" [> sup(0°)]

{II AR, [I;

I

30

The same analysis can also be done fo(r t)he
acceleration of the point E’ . Prior to this, it is necessary
to express the acceleration of the point £’ (—I“{;e) in
the following form:

.,z dZAR .
/ " 3 "
Ree = Ree|AR:(),A}?:0 += a2 =+ Az-:ee x Ree
. d AR
+ Aw,, X (Aw,, xR ) +20 % T (31

+2Aw,, xR+ (G, xAw, ) xR

where:

S = o A N
Ree|AR=0,AR=0: R, +€, AR +w  x(W, AR )

AEee :Et,ae _éee =
32
s, (32)
dt
éee :G)ee =0

Bearing in mind relations (30), some elements of
equations (26) and (31) can be neglected, so that the
following is obtained:

. 2 d /AR .
R:ae ~ Ree + ed—tee + AU‘Jee X Rge
d%AR

R:ae ~ Ree + ETQee + AEee X Rge

(33)
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Since, during motion of the point E’, the arc E'E1

is much smaller than the radius R and since

! !
oAb .
w.¢ = Awy¢ =0, the coordinate frames FEz,y,z, and

E'zlylz, have approximately the same orientation.

Such conditions comply with the translational motion of
the coordinate frames Ex,.y,z, and E’z.y.z . Then:

lA{ee ~ Ree’ (34)
Ree ~ Ree

In concordance with (21) d AR,/ dt = d Ree/dt
holds true. Therefore, the expressions (33) can be
written in the form:

. . dR!
Réze ~ Ree + 7% + A""ee X Rée

) (35)
N . diRy, ,
Réze ~ Ree + EdT + AE:ee X Ree

In the expanded form in the coordinate frame
E'zly.z. the final equations are:

Awle(R — AR)

C.yR
R, ~ e |-C,R|+ el |—Awfe(R— AR)| (36)
0 ~AR
0 Ac¥e(R— AR)
Rl ~ el | 0 |+eh |-A%(R— AR)| (37)
-9 —~AR

The term (Auft(R—AR) —Aufe(R—AR) —AR)e,

~ (Awé’éR —Awg(éR —~AR)e,  represents  the

relative velocity of the point E around the point E’ . It
is approximately equal to the absolute velocity of the
point E with respect to the point E’, because the its
carrying velocity can be neglected. If the point E’
belongs to a rigid body, and the point F to the Earth's
surface, this element defines translational velocity of the

rigid body with respect to the Earth. Analogously, the
element

(Acle(R— AR) —Ac'¢(R—AR) —AR)

€
/ ! .
~ (AeltR —Aei¢R —AR)e, represents the relative

acceleration of the point E with respect to the point

E'. 1t is approximately equal to the absolute
acceleration of the point £ with respect to the point
E’, because the carrying and Coriolis acceleration can
be neglected. If the point £’ belongs to a rigid body
and the point £ to the Earth's surface, this element
defines translational acceleration of the rigid body with
respect to the Earth. Therefore, translational motion can
be interpreted as partial case of relative motion of the
sphere X' with respect to sphere 3.
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7. EXPERIMENT FOR VERIFICATION OF
KINEMATICAL MODEL OF EARTH MOTION

The assertion that the acceleration of the Earth can be
interpreted as a central acceleration is equivalent to the
assertion that the motion of the Earth takes place in one
of two ways. The first way is that the motion takes place
inside the sphere 3; which rotates inside immobile

sphere 3. The central acceleration at the surface of the
sphere X; is equal to the magnitude of Earth’s
acceleration g . Another way is that the motion of the
Earth is same as the motion of objects sliding inside the
immobile sphere 3. Central acceleration is the result of
the peripheral sliding velocity, and its magnitude is
equal to the magnitude of the Earth's acceleration g .
According to the contemporary theory, Earth is a
sphere. Moton of living beings takes place outside the
sphere. Motion of the Earth is a complex motion
composed of the motion of its mass center along an
elliptical orbit and the additional rotation around its
axis. On the Earth, gravity acts as an attractive force that
attracts objects towards the Earth's surface. This force is
equal to G = mg, where m is the mass of an object

and g is the Earth's acceleration. The vectors G and g

are directed towards the surface of the Earth, that is,
approximately, towards its center.
Relevant data for the Earth are: the period of motion

along an elliptical path 365,256 days, the approximate
distance to the Sun 149,600,000Km

of the Earth 0>378.14Km

, equatorial radius

and period of rotation

23.9345h | The central acceleration of the center of the
Earth due to the motion along an elliptical trajectory is
approximately:

N _ 2
Coun = Tsun 'wpath

=149.6-10° * (27 /
(365.256 - 23.9345 - 60 - 60))?
=5.96-10°[m/s°] = 5.96[mm/s°].

The relative acceleration of a point on Earth with
respect to its center is approximately
Arel = Rearth@ay = 6378140+ (27/23.9345-60-60)?
=33.9 [mm/s?]. The
approximately:

Coriolis  acceleration is

2
acor = Rearth@day @path = el /365.256=0.1[mm/s"].

it can be inferred that the

carrying acceleration of any point of the Earth is equal

Since  Rgpp, < Ry »

to the carrying acceleration a%n of the center of the

Earth. Also, the direction from any point on the Earth to
the Sun approximately coincides with the direction the
center of the Earth — the Sun. This direction will be
called the Earth — Sun direction. The vector of the

central acceleration aﬁm is approximately in this
direction, directed from the Earth to the Sun.

Choose an arbitrary point on the equator of the Earth
and attach firmly to it the origin of a right-handed

coordinate frame (Fig. 6). The axis z and y are
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horizontal. The axis z is oriented to the east, axis y is
oriented to the north, and axis z is oriented upward
(from the center of the Earth toward its surface).

We shall analyze the acceleration a, in the direction

of the axis x . The axis z is always perpendicular to the
direction of g, so the projection of ¢ to the axis z is
always zero. The projection of the central acceleration
due to the Earth’s rotation around its own axis to the
axis x is equal to zero, too. The Coriolis acceleration

a.or can be neglected.

We shall analyze the projection of the acceleration

aﬁm due to rotation of the Earth around the Sun to the

axis x . Observation starts at noon (at 12 o’clock) when
the axis z is approximately directed towards the Sun,
i.e. when the center of the Earth, the origin and the Sun
are approximately at the same line. The axis z is
perpendicular to the Earth - Sun direction at 12 o’clock,
so the projection of the acceleration aﬁfm to the axis x
is equal to zero, i.e.a, = 0. At 18 o’clock, Earth turns

a quarter of a circle. The axis = becomes approximately
collinear with the Earth — Sun direction. The axis z is

and, the
projection of the acceleration to the axis x is equal to

directed oppositely to the acceleration aé\[m s

a, =—| aﬁn |. At 24 o’clock, Earth turns another

quarter of a circle. The axis z is again perpendicular to
the Earth — Sun direction, i.e. a, =0. At 6 o’clock

Earth turns the 3/4 of a circle. The axis z again

becomes approximately collinear with the Earth — Sun
direction. The direction of the axis z and direction of

the acceleration aﬁfm is the same, so the projection of
N

sun |-
Earth turns entire circle at 12 o’clock and Earth is in the
initial position. The acceleration along the z axis has

the acceleration to the axis z is equal to a, =|a

sinusoidal  character  with the amplitude of
la, |=|a®  |=5.96[mm/s*] and with the period of
Tyay = 23.9345~24. hour, ie. a, =—|al, |-
$I(Wiayt) » Wiay = 27/ Tyay -

6h 12h

x ‘ n

sin(@,, 1)

1A

12 18 24 6 12

N
]

Figure 6: The model of movement of the Earth according to
the contemporary science

The difference in the interpretation of gravitational
acceleration is reflected primarily in the projection of
the acceleration to the direction of the axisz. This
difference is simplest to verify experimentally by direct
measuring the acceleration along the axisz .
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Acceleration of 5.96-10°[m/s?] = 5.96[mm/s*] is a
measurable using accelerometers with a small
measurement range. The accelerometer with a range of
+0.1g and an accuracy 0.03% of full range output
(0.2g ) can be used [10].

Since 0.2¢-0.03% = 0.2-9.81-1000*0.0003 =

0.5886[mm/s?] < 5.96[mm/s*], the character of the

acceleration along the axis z can be determined with
sufficient accuracy. The experiment would assume
measuring of acceleration during 24h along horizontal
axis z directed to the east. If the projection of the
acceleration in the direction of the axis x is equal to
zero, then the Earth does not revolve around its axis,
and, contemporary theory about its motion is not
correct. If the projection of the acceleration in the
direction of the axis z has a sinusoidal character with

amplitude 5.96-103[m/s?] = 5.96[mm/s*], then the
Earth rotates around its axis, so interpretation of the

gravitational acceleration as a central acceleration
developed in this paper is not correct.

8. CONCLUSION

On the basis of exact analysis of known mathematical
results for differential geometry of curves, it has been
shown that arbitrary motion of a point along a curve can
be completely interpreted only by rotation and
deformation of a sphere in a kinematical chain of
spheres. Spheres of changeable radii in the kinematical
chain are positioned in such a fashion that the centre of
the next sphere is firmly attached to the previous one
within the chain. The kinematical chain of spheres is
formed such that the rest of the chain is placed inside
the base sphere. The motion of the base sphere has been
discussed and in that sense three tasks have presented
themselves. The first one is to present the gravitational
acceleration as equivalent central acceleration as a
consequence of undisturbed base sphere rotation. The
undisturbed rotation of the base sphere implies that it is
rotating at angular velocity of constant direction with
respect to the immobile environment or an environment
rotating at a slow rate. The gravitational acceleration,
interpreted as a central acceleration, is not directed
towards the Earth’s surface, but from the Earth’s
surface. In the second task, the exact and approximate
relations for the velocity and acceleration of a point on
the base sphere during its disturbed motion have been
obtained. The disturbed motion of the base sphere
implies rotation and deformation such that there are
increments of angular velocity and increments of
sphere’s radius with respect to angular velocity and
sphere’s radius during the undisturbed motion. The
relations have been presented in the form of the sum of
velocity and acceleration of a point on the base sphere
during the undisturbed movement and their increments
during disturbed motion. Thus, the velocity and
acceleration have been expressed as the sum of velocity
and acceleration of a pole on the base sphere and
rotating velocity and acceleration of the final point in
the chain relative to the pole. In the case when the
motion takes place at a short distance from the base
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sphere which is much less than its radius, and when the
angular velocity of rotation of the base sphere is
negligible, rotating velocity and acceleration can be
expressed as function of increments of kinematical
quantities that describe disturbed compared to
undisturbed motion only. In the third task it has been
shown that translational motion in the gravitational field
can be treated as a special case of relative motion of
disturbed sphere compared to the undisturbed motion of
the base sphere. And finally, a model of Earth's motion
inside the base sphere has been shown for the case that
the gravitational acceleration is equivalent to central
acceleration. It has been shown that under such
acceleration, objects move towards the base area (i.e
towards the surface of the Earth). It has been suggested
that the horizontal component of the Earth’s
acceleration along the axis directed to the east is
measured during 24 hours with the precise
accelerometers. If the measured acceleration has
oscillatory character with a period of 24 hours with
amplitude 5.96-10°[m/s’] = 5.96[mm/s’] then the
existing theory of motion of the Earth is correct. If the
measured acceleration is constant (equal zero) then the
acceleration due to gravity can be interpreted as a
central acceleration.
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KNHEMATHUKA BA3HE CO®EPE KAO
CEI'MEHTA KHUHEMATCKOTI JIAHIIA CDEPA -
I'PABUTAIIUOHO YBP3AIBE KAO
EKBHUBAJIEHTHO HEHTPAJIHO YBP3AIBE

Mujosan JI. ’Kupanosuh, Muiom M. ’KusanoBuh
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[onazehn on mnpermocraBke Ja je Teopuja audepe-
HIMjaJIHe TEeOMETpHje TauHa, Y Pajy je yBEeJICH KHuHeMa-
TCKH JIaHall cepa MPOMEHJBUBOT PajiHjyca MOCTaBJbe-
HHUX TaKo [a je IIeHTap CBake cycemHe cdepe YBpCTO
Be3aH 3a mperxomHy cdepy y unaniy. Kunemarcku
JaHal, ce cacroju ox 0Oa3He cdepe M oOcTaTkKa
KHHEMaTHYKOT JIaH[[a CMELITEHOr YHyTap 0a3He cdepe.
VY pany ce pasmarpa HemopemeheHo um mopemeheno
Kpetambe Oa3He cdepe. ['paBuTanmono yOp3ame ce
HHTEPIPETHPa Ka0 SKBUBAJICHTHO LEHTPAHO yOp3ama
HacTano HemopemeheHoM poramujoM 06a3He cdepe.
[Topemeheno xperame y oxHocy Ha HemopemeheHo
KpeTame ce Oomucyje momohy mpupaiiraja oarosapa-
jyhux kuHemarckux BenuuuHa. Takohe je ycrmocTaBibe-
Ha Be3a ca BakehMM 3aKOHHTOCTHMA 3a TPAHCIATOPHO
KpeTame Yy KIacu4yHoj Mexanuid. Ha kpajy je
MPEUIOKEH M IMPOCT EKCIEPUMEHT 3a BepH(DHUKALM]Y
TEOopHje MPEAJIOKEHE Y OBOM pasy.
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