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Kinematics of Base Sphere as a 
Segment of Spheres Kinematical 
Chain - Gravitational acceleration as 
equivalent central acceleration 
 
Assuming that the theory for differential geometry of curve is correct, this 
paper introduces a spheres kinematical chain of changeable radii 
positioned in such a fashion that the centre of the next sphere is firmly 
attached to the previous one within the chain. The kinematical chain 
consists of the base sphere and the rest of the chain which is inside the 
base sphere. The paper discusses the undisturbed and disturbed motion of 
the base sphere. Tha gravitational acceleration is interpreted as equivalent 
central acceleration during undisturbed rotation of the base sphere. The 
disturbed motion with respect to the undisturbed motion is described by 
increments of corresponding kinematical quantities. The relationship with 
the existing laws for translational motion in the classical mechanics is also 
established. And finally, a simple experiment for verification of the exposed 
theory is proposed in this paper. 
 
Keywords: kinematical chain, sphere of changeable radius, spheres 
rotation, gravitational acceleration as equivalent central acceleration, 
increments of velocity and acceleration of relative disturbed motion, 
translational motion. 

 
 
1. INTRODUCTION  
 
Current science and technology level give us the means 
to solve the most complicated technical tasks. This is 
also the case for many explanations of gravity and 
motion in space (enough to see the theory review on 
web page http://en.wikipedia.org/wiki/Gravitation).  

The problem arose when the researchers tried to 
explain the functioning of living beings. One of the 
main tasks of contemporary robotics is to determine the 
mechanical principles upon which the dynamics, 
walking control and flight of living beings, especially 
two-legged ones, are based. Knowing the functioning 
principles of living beings and their balance centres 
would enable a proper choice of possible technical 
solutions for particular purpose robots. Some consistent 
approaches for solving these problems have been 
adopted, out of which the most frequently used are the 
ZMP method [1] and method based on the relation 
= -a t g , / =d d ´g t gw , where a  is the net 

acceleration sensed by the otoliths, t translational and 
g  gravitational acceleration, and w  angular velocity, 
e.g. [2]. All living beings possess motion detection 
sensors . Information obtained by these sensors are used 
for keeping balance and controlling the motions in space 
of all types. These information are being gathered 
during disturbed motion within the coordinate frame 
firmly attached to the body. Motion sensors of living 

beings detect the increment of kinematical quantities, 
not their absolute value. Positive acceleration along the 
longitudinal axis of a living beings body is estimated as 
acceleration which is directed from foot to head, that is, 
upward [3],[4], which is in contrast with the adopted 
direction of the gravitational acceleration. 

The exact analysis of known mathematical results 
for the differential geometry of curve gives us new 
interpretation for motion of a point along a curve as 
function of rotation and deformation of spheres which 
are part of a kinematical chain of spheres [5]. In this 
paper the kinematical chain of spheres is composed of 
the base sphere and the rest of the kinematical chain of 
spheres. The rest of the kinematical chain is placed in 
the interior of the base sphere. The paper discusses the 
motion of the base sphere and in that sense three tasks 
present themselves. The first one is to present the 
gravitational acceleration as equivalent central 
acceleration as a consequence of undisturbed base 
sphere rotation. The undisturbed rotation of the base 
sphere implies that it is rotating at angular velocity of 
constant direction with respect to the immobile 
environment or environment rotating at a slower rate 
provided that its centre is still within the environment. 
As a part of this task we found a relationship that can 
lead to important conclusions about the direction and 
character of the gravitational acceleration. The second 
task is to obtain accurate kinematical relations for 
velocity and acceleration of points during disturbed 
motion of the base sphere. The disturbed motion of the 
base sphere implies its rotation such that there are 
increments in the vector of angular velocity and sphere 
radius compared to the undisturbed motion. The aim is 
to obtain accurate and approximate relations for 
absolute velocity and acceleration of a point in the 
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kinematical chain of spheres. The third task is to 
establish the relationship with the existing relations for 
translational motion found in classical mechanics, based 
on the results obtained by completing the previous two 
tasks. Finally, the motion of objects under the influence 
of gravitational acceleration as equivalent central 
acceleration will be considered. It will be shown that 
there is no contradiction with classical theory of 
mechanics. Also, there is a suggestion for a simple 
experiment that can verify existing theories about the 
Earth's gravity and the theory of gravity as the central 
acceleration. 
 
2. GEOMETRICAL AND KINEMATICAL 

THEORETICAL BASIS 
 
Consider an arbitrary spatial curve eP  and choose 

arbitrary point E  on it. 
In mathematics it is known [6] that a curve element 

around the point E  lies wholly on the sphere of radius 
2 2= ( )k kR tr r r¢+ , where and = 1/tr t  are the 

radius of curvature and radius of torsion respectively, 

kr ¢  is the derivative of the radius of curvature with 

respect to the arc length, t  and k  are torsion and 
curvature of the curve eP  respectively. The center of 

the sphere is located at the line which is parallel to the 
binormal and passes through the center of curvature of 
the curve eP . 

 
Figure 1. Motion of point and curve parameters 

Consider a sphere whose center is on the principal 
normal of the curve and whose radius is equal to the 
radius of curvature at E , which is = 1/ | |k kr . The 

natural trihedron of the curve with unit vectors et , en , 

eb  lies on this sphere with origin at the point E . The 

ort en  is oriented towards the center of the sphere, and 

ort et  is tangent to the curve. During the motion of the 

point E  along the curve, the radius of curvature and 
orientation of the natural trihedron are changing. The 
cruising angular velocity (Darboux vector) of the 

natural trihedron is the vector ( )= 0 enkts
e ew  [6], 

[7], where ( )Ten e e e=e t n b . If the motion of the point E  

is observed with respect to time, then angular velocity 

ew  of the natural trihedron is obtained as the product of 

its cruising angular velocity s
ew , and the speed 

=| |V eV  of the velocity = ( 0 0) enVeV e  of the 

pointE , 

=V ⋅ s
e ew w = ( 0 )t b

e e enw w e =( 0 ) enV kVt e  [7], 

[8],. During this motion, the acceleration of the point E  

is = /end dt+ ´e e e ea V Vw 2=( 0) ( 0)t n
e e en ena a V kV=e e  

where ( )end dt⋅  is the relative derivative of a vector in 

the natural trihedron ene . If the curve is defined, using 

Frenet–Serret formulas it is easy to find the curvature k  
and torsion t  of the curve and orts of the natural 
trihedron. If the magnitude V  is known, then the 
motion of the point E  is defined up to the velocity of 
the pointE . It means that if the parameters of curve, the 
curvature k  and torsion t , are known, then there are 
infinitely many curves in space with these parameters. 
Therefore, the mathematical analysis of motion of the 
point E  is based on the defined curve eP  (by 

parameters k  and t , and a position of E  on the 
curve), and defined speed V  along the curve. 

We shall remove the path eP  and consider the 

motion of the sphere S  that contains the pointE , while 
its center is at the center of curvature S  of the path eP  

at pointE . .It is assumed that the sphere S  is firmly 
attached to the natural trihedron at pointE . The motion 
of the point E  and motion of the natural trihedron of 
the path can be considered as a consequence of pure 
deformation and pure rotation of the sphere S  to which 
this point is firmly attached.  

The center S  of the sphere S  travels along a curve 

sP . Analogously, the motion of a sphere that presents 

the motion of the center S  along the path sP  can be 

defined. By this way, a kinematical chain of spheres of 
variable radii is formed. Absolute motion of any point 
E , as a point at the last sphere in the chain, can be 
produced by the movement of the chain. 
 
3. KINEMATICAL CHAIN OF SPHERES 
 
Having in mind the previously said and the fact that the 
skeleton of almost all living beings is a mechanism with 
spherical joints, we introduce the kinematical chain of 
spheres as kinematical model of a mechanical system 
moving on the Earth’s surface. The chain is formed such 
that every radius vector is considered the position vector 
of a point on the sphere whose radius is equal to the 
magnitude of the position vector and whose center is at 
the origin of the position vector (Fig. 2). 

 
Figure 2: Spheres kinematical chain  

The spheres are positioned in such a fashion that the 
centre of the next sphere is firmly attached to the 
previous one within the chain. The centre S  of the base 
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sphere S  whose radius is =SR R  is either still or it 

moves along a trajectory s . The sphere S  rotates with 
the angular velocity ew . The centre E  of the sphere e  

with radius ER  is attached to the sphereS . The centre 

H  of the sphere   of radius HR  is attached to the 

sphere e . The centre C of a new sphere is then attached 
to the sphere   and so on. All spheres’ centres starting 
with the centre H  are within the sphere S . The spheres 
e  and   rotate at angular velocities 

= ( )/rd dtD Dee eeR R   and cw  successively with 

respect to the spheres S  and e . The radii of the spheres 
and their angular velocities can be changeable during 
the motion. Coordinate frames are introduced so that 
axes x  and y  determine the tangential plane of a 
sphere, while the third axis is always pointed towards 
the centre of the sphere. 

An example of such a chain can be a human body. 
The point E  is contact point or ZMP, while other 
points on spheres in the chain are spherical joints and 
also, a last observed point of the body. For example, the 
point H  can be a point on hip, the point C  may be 
mass center or a point on/in head. In case of an object in 
hand, the point H  can be a spherical joint of shoulders, 
while the point C  could be a point at hand. In this case, 
two spheres, whose radii are EH ¢  (contact point E  - 
spherical joint of hip H ¢ ) and H H¢  (spherical joint of 
hip H ¢  - spherical joint of shoulderH ), may replace 
the sphere of radius EH  (contact point E  - spherical 
joint of shoulder H ). 
 
4. GRAVITATIONAL AS EQUIVALENT CENTRAL 

ACCELERATION - UNDISTURBED MOTION 
 
If we set an arbitrary coordinate frame at the point E , 
the projections of its absolute angular velocity and 
projections of the absolute linear acceleration ea  will 

be measured. If the coordinate frame does not rotate 
with respect to the natural trihedron at E  then its 
angular velocity will be the absolute angular velocity of 
the natural trihedron According to the approach 
presented here, acceleration exists only if the point 
moves nonuniformly along a curve, that is, if there is a 
deformation and/or rotation of a sphere in an inertial 
coordinate system. From this we conclude that 
gravitational acceleration must be result of motion of a 
sphere in an inertial coordinate system (Fig. 3). In this 
paper we are focused to motions of the base sphere S . 

While analyzing motion of bodies on the Earth’s 
surface, the motion of the Earth is taken to be 
approximately inertial. If it is presumed that the 
gravitational acceleration is the result of motion along a 
curve then the motion of the Earth is non-inertial. 
Therefore, motions described in a coordinate frame 
attached to the Earth are motions seen from non-inertial 
coordinate frame which, in no way, can be considered 
approximately inertial. Further considerations in the 
paper assume this fact. 

Let a point S  be an immobile point. Let a point E  
be a point on the Earth and let it be immobile with 
respect to the Earth. Let two spheres 0S  and S  of the 

same radius R  be attached to the centre S  (Fig. 3). Let 
the sphere 0S  be still with respect to the immobile 

environment while the sphere S  rotates around the 
centre S . Let s s sSx y z  be a coordinate frame with unit 

vectors T( )s s s s=e i j k  immobile with respect to 

the fixed sphere 0S  and e e eEx y z  a coordinate frame 

with unit vectors T( )e e e e=e i j k  attached to the 

mobile sphere S . Let the axes sSz  of two coordinate 

frames match at the initial instant. 

 
Figure 3: Motion around a fixed centre  

Let the undisturbed motion of the sphere S  be the 
motion when it rotates around the fixed centre S  at 
angular velocity = (0 0)y

se swse ew  co-linear with 

the axis sSy  (Fig. 3) and let its radius R  change. Let 

the position, velocity and acceleration of the origin S  
with respect to the point E  be defined by vectors 

=eeR ES

=( )ee ee ee ex y z e , =ee eeV R ( )x y z

ee ee ee ev v v= e , 

=ee eea R = ( )x y z
ee ee ee ea a a e  For undisturbed 

motion, when the axis x  has the same direction as the 
velocity vector, the following relations apply 
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where:
0

= y
set
dta wò , = y

sea w , = y
sea w , =| |eeR R . 

The vectors of the angular velocity and acceleration of 
the coordinate frame e e eEx y z  are 
 

(0 0) , (0 0)e ea a= =ee eee ew w   (2) 
 

A special case of the undisturbed motion of the 
sphere S  is the motion when the point E  has constant 
speed down a geodesic on the fixed sphere 0S  of 

approximately constant radius. In that case R const=  
and = consta , so equations (1) amount to  
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 (3) 

 

It is known from mathematical references [9] that a 
geodesic is the shortest curve connecting two points on 



FME Transactions VOL. 41, No 3, 2013 ▪ 233
 

a surface. Its characteristic is that its normal is parallel 
to the main normal of the surface. The coordinate frame 

e e eEx y z  is therefore the natural trihedron of the 

geodesic at point E , and the axis eEz  is the axis of the 

normal.  

From equation (3) follows that the acceleration eeR  

lies wholly along the axis eEz  and is oppositely 

directed to it. If the term 2Ra  equals the magnitude of 

the gravitational acceleration the acceleration eeR  is 

equal to the currently adopted gravitational acceleration. 

However, the acceleration eeR  is not the absolute 

acceleration of the point E  but is oppositely directed to 
it. The absolute acceleration of the point E  is the 

second absolute derivative of the vector =seR SE


. In 

this case it is the central acceleration and has the same 
direction as axis eEz . This direction is the correct 

direction of the gravitational acceleration when it is 
considered as equivalent central acceleration. 

Such gravitational interpretation is a quite new and, 
among the existing models of the Earth, the model 
which is, to a certain degree, most appropriate for this 
interpretation is the Hollow Earth model 
http://en.wikipedia.org/wiki/ Hollow_Earth. 
 
5. DISTURBED MOTION 
 
A mechanical system is in relative equilibrium when all 
its points are at rest with respect to the undisturbed 
sphere S . Its relative motion arises when at least one of 
its points starts move with respect to the sphere S . We 
shall analyze the kinematical quantities that represent 
relative motion of a point on the mechanical system 
with respect to the corresponding points on the 
undisturbed sphere. 

Let the motion of the sphere 'S  represent disturbed 
motion of the sphere S . The relative motion of the 
sphere 'S  with respect to the sphere S  can be divided 
into two independent parts. For that purpose let the 
sphere 1S  be introduced; its radius is at all times equal 

to the radius of the sphere S , and the angular velocity is 
equal to that of the sphere 'S . During disturbed motion, 
the point E ¢  moves from point E  on the sphere S  to 
the point 1E  on the sphere 1S  and along the direction 

1E S , into its final disturbed position E ¢  on the sphere 

'S . It is demanded that the points 1E , E ¢  and S  

belong to the same direction in order to separate the 
deviations with respect to undisturbed motion into pure 
rotation of the sphere and pure deformation of the 
sphere (Fig. 3 and 4).  

The coordinate frame e e eEx y z  will change its 

orientation and move on to the sphere 'S  into the 
coordinate frame e e eE x y z¢ ¢ ¢ ¢  with unit vectors 

T( )e e e e¢ ¢ ¢ ¢=e i j k . Let the disturbed motion in the 

coordinate frame e e eE x y z¢ ¢ ¢ ¢  (from this point on, all 

quantities will be expressed in this coordinate frame) be 
described. The vector that determines the position of the 

point S  with respect to the point E ¢  and the angular 
velocity of the sphere 'S  are: 

 

Figure 4: Components of the vector velocity eeR¢  

ˆ= = (0 0 ) eR R ¢¢ + D -Dee ee eeR R R e  (4) 

ˆ= =( )x y z
ee ee ee ew a w w ¢¢ +D D +D Dee ee ee ew w w  (5) 

 

where: ˆ = = (0 0 ) eR ¢ee 1R E S e


, = =¢D ee 1R E E


 

(0 0 ) eR ¢-D e , and ˆ = (0 0) ea ¢ee ew  , D eew =  

( )x y
ee ee ew w w ¢D D D z

ee e . At increments D eew , 

coordinate frame e e eE x y z¢ ¢ ¢ ¢  will change orientation with 

respect to the coordinate frame e e eEx y z  for angles 

0

=
t x

eet
dta wD Dò ,

0

=
t y
eet
dtb wD Dò ,

0

=
t z
eet
dtg wD Dò . It 

is supposed that the change in orientation is small. The 

vector ˆeeR  is the component of the position vector ¢eeR  

whose projections to the axes of the coordinate frame 

e e eE x y z¢ ¢ ¢ ¢  are identical to the projections of the vector 

=eeR ES


 to the axes of the coordinate frame e e eEx y z . 

The same applies for the vector of angular velocity êew , 

and any other vector that is assigned " .̂  " in the 
continuation. 

The velocity of the position vector =¢ ¢eeE S R


 of 

the centre of rotation S  is 
 

0
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ˆ | |
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= D =
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ee ee ee ee ee ee
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(6) 

 

where: ( )ed dt⋅ denotes relative derivative of a vector 

with respect to coordinate frame e e eE x y z¢ ¢ ¢ ¢  and 
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The term 
ˆ
eeR


 represents the velocity of the point 

1E  which is the sum of two terms. The first term 
ˆ
eeR  

is the velocity of the point 1E
S

 that coincides with the 

point 1E  but belong to the sphere S . The second term 

( )ˆD eeR
 is the velocity of the point 1E  with respect to 

the 1E
S

. The term ˆ 0|w 
 ee

ee
R

 is a part of the 

increment D eeR  of the velocity 
ˆ
eeR


 describing the 

motion of the point E ¢  around the point 1E  as if the 

sphere S  does not rotate, and the sphere ¢S  rotate at 

angular velocity D eew . The term 

0
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D eeeeR w

 is a 

part of the increment D eeR  of the velocity 
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describing the difference of peripheral velocities of the 

points 1E  and E ¢  when the spheres 1S  and 'S  rotates 

at same angular velocity ˆ eew . Figure 3 shows all the 

components of velocity of the vector 
¢eeR  in case 

when
= (0 0)y

ee ew ¢D Dee ew
. In this case, the 

motion of the vector 
¢eeR  will be planar, and the 

observed coordinate frame connected at the point E ¢  

will not rotate with respect to the vector
¢eeR . 

The linear acceleration of the origin of the 

coordinate frame e e eE x y z¢ ¢ ¢ ¢
 is 
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The term ˆ eeR


 represents the acceleration of the point 

1E  which is the sum of two terms. The first term ˆ eeR  is 

the acceleration of the point 1E
S  that coincides with the 

point 1E  but belong to the sphere S . The second term 

( )ˆD eeR  is the acceleration of the point 1E  with 

respect to the 1E
S . The term 

ˆ 0|w 
 ee

ee
R  is a part of 

the increment D eeR  of the acceleration ˆ eeR


 

describing the motion of the point E ¢  around the point 

1E  as if the sphere S  does not rotate, and the sphere 

¢S  rotates at angular velocityD eew . The term 

0
.

|
R const

D =
D =

D eeeeR w  is a part of the increment D eeR  

describing the difference of accelerations of the points 
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1E  and E ¢  when the spheres 1S  and 'S  rotate at same 

angular velocity ˆ eew . The term rezD eeR  is a part of 

the increment D eeR  describing the influence of the 

relative motion of the sphere ¢S  with respect to the 
sphere S  when the sphere S  rotates at angular velocity 
ˆ eew . 

 
6. RELATIONSHIP WITH TRANSLATIONAL MOTION  
 
This section will demonstrate how translational motion 
of a rigid body in the gravitational field can be 
represented by three independent sphere 'S  motions, to 
which point E ¢  is attached. Three independent motions 
of the sphere 'S  are relative motions with respect to the 
sphere 'sS  (Fig. 5), which at current instant matches the 

sphere 'S  but its angular velocity is ˆ eew  and velocity 

of radius R , and are made of: 
 

• two independent relative rotations of the 'S  sphere 
with respect to the sphere 'sS  determined by the 

increment D eew  of the angular velocity vector ˆ eeeew . It 

will be taken that those two rotations take place with 
respect to two non co-linear axes perpendicular to ¢eeR  

and intersect at the point S . 
 

• a deforming motion of the sphere 'S  with respect 
to the sphere S  determined by means of increment 
RD  of the radius R  of the sphereS .  

 
Figure 5: Disturbed and undisturbed motion of the sphere 

It will be shown that, at large constant radius of the 
sphere S  and additional assumptions about its angular 
velocity and disturbed motion, translational motion of 
the rigid body within Earth's gravitational field can be 
presented as three independent relative sphere motions 
'S  with respect to the sphere S . 

Undisturbed motion of the sphere S  is given by 
equations (2) with respect to the referent sphere 0S . In 

vector form, general motion of the point E  is defined 
by the following equations 

 

 ed

dt
= + ´ee

ee ee ee
R

R Rw  (8) 
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e

e

d

dt

d
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ee ee ee

ee ee ee
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 = ed d

dt dt
= ee ee

ee
w we  (10) 

where 
( )ed

dt

⋅
 denotes relative derivative of a vector in 

the coordinate frame e e eEx y z . If the mass centre of a 

mass m  is at the point E  on the sphere S , then sphere 
S  will act on the mass centre by force in the direction 
of the acceleration of the point E . Let the reaction force 
of the sphere be denoted by the sF  Let Ea  be the 

acceleration of the mass centre (point E ), then, 
according to the second axiom of the dynamics 

 =m E sa F  (11) 

and since = -E eea R  the previous equation receives 

the form 

 = 0m +ee sR F  (12) 

Let the same mass centre be on the Earth's surface. 
In the state of static balance the following equation must 
be valid 

 = 0m + zg F  (13) 

where g  is the acceleration of the gravity, and zF  the 

force of reaction of the Earth's surface that acts on the 
mass centre. The force of reaction zF  of the Earth's 

surface is induced by Earth's gravity force mg . If  

 =z sF F  (14) 

mass centre "will not be aware" if the force acting on it 
is a result of the Earth's gravity or the fact that it is 
situated on the sphere S  and revolves along with it. Let 
the mass centre be on the sphere S . If it is still with 
respect to the sphere, it will be affected by the reaction 
force directed towards the centre S . Therefore, the 

acceleration eeR  must be on the same course, but in the 

opposite direction. To fulfill the condition (14) the 

following must be | |= geeR . These conditions within 

the coordinate frame e e eEx y z  are 

 = (0 0 ) (0 0 )z
ee e eR g= -eeR e e   (15) 

Undisturbed motion of the sphere S  can be any 
motion for the observed point E  where equation (15) 

holds. The acceleration eeR  given by relation (17) in 

the general case of sphere S  motion in the expanded 
form in the coordinate frame e e eEx y z  is as follows  
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According to equations (15) and (16), undisturbed 
motion of the sphere S  is any motion of this sphere in 
which the following applies 

 

2 2
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 (17) 

In the equations (17) there are four unknown 
quantities xe

eew , ye
eew , ze

eew  and R , so in order to solve 

them an additional condition is required.  
The sphere motion is divided into pure deformation 

and pure rotation so the change in radius R  does not 
depend on the change of the angular velocity eew . 

From equations (17) the fact that R  satisfies the 
following differential equation is obtained 

 
...

3 3 = 0RR RR Rg+ +    (18) 

Solving it, the following relations are obtained: 

 3= oCR g
R

-  (19) 

 2
12= 2oCR gR C

R
- - +  (20) 

where 

 3
0= ( )o oC R R g+ ,  

 2
1 0 0 0 0= 3C R R R gR+ +    

 and 0= ( )oR R t   

Among the all solutions for R  and R  let the 
following solution be chosen: 
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R R const


  (21) 

In that case, with additional condition = 0ze
eew , 

equations (17) are as follows: 

 

0

0

2 2
0

= 0

= 0

[( ) ( ) ] =

ye
ee

xe
ee

x ye e
ee ee

R

R

R g

w

w

w w+



  (22) 

so the solution for the undisturbed motion of the point 
E  is 
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Let motion of the sphere 'S  be observed as 
disturbed motion of the sphere S . The velocity of the 
point E ¢  on the sphere 'S  is given by equations (6). 
Let point E ¢¢  be the intersection of the course ES  and 
sphere s¢S . Let its position be determined by the vector 

=¢¢ ¢¢eeR E S


. The velocity of the point E ¢  can be 

expressed as 

 ˆˆ ˆ¢ ¢¢ ¢¢ ¢¢= = +D ´ee ee ee ee eeR R R R
  w  (24) 

where 

 

ˆ ˆˆ ˆˆ

ˆˆ ˆ

ˆ ˆ

e e

e

e

d d

dt dt
d

dt
d

dt

¢ ¢

¢

¢

¢¢
¢¢ ¢¢= + ´ = +

D
+ + ´ + ´D =

D
= + + ´D

ee ee
ee ee ee

ee
ee ee ee ee

ee
ee ee ee

R R
R R

R
R R

R
R R





w

w w

w

 (25) 

The expression for the velocity ¢eeR  takes the form: 

=0
ˆ= | e

R
d

dt
¢

D
D¢ ¢¢ ¢+ +D ´ee

ee ee ee ee
R

R R R  w  (26) 

 

The kinematical interpretation of this equation is as 
follows. Observe point sE ¢  matching the point E ¢ , but 

belonging to sphere 'sS  (Fig. 5). Then the velocity of 

the point sE ¢  is determined by vector =0
ˆ | RD¢¢eeR  . 

The other two elements determine relative velocity of 
the point E ¢  with respect to point sE ¢  in three 

independent directions. The general sense is not 
diminished by assuming that D eew  is always normal to 

the direction ¢eeR . Then e
d

dt
¢D eeR  in expression (26) 

represents the relative velocity of the point E ¢  with 
respect to the point sE ¢  along the direction SE ¢ , and 

¢D ´ee eeRw  relative velocity in the tangent plain of the 

sphere 'S . For instance, the surface of the sphere 'sS  

around the point E ¢  is equivalent to the surface of the 
sea around a ship sailing on it. At the same time the ship 

does not have velocity component e
d

dt
¢D eeR , because it 

is always on the same sea level. If = 0D eew  and 

= 0RD   spheres 'S  and 'sS  do not move with respect 

to each other and do not change the radius with respect 
to the sphere S . The condition = 0D eew  is 

insufficient for the spheres 'S  and 'sS  not to rotate 

with respect to S . 
Let analysis of the relations of the intensities of the 

quantities || ||D eew  and || ||D eeR  and intensities of 

other quantities be performed. Let it be said that for the 
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motion (30) of the sphere S  its angular velocity is equal 
in quantity to the angular velocity of the Earth, i.e.: 
 

 
5

ˆ|| ||=|| ||=| |= 2 =

2 60 60 24

7.272205217 10 /

T

rad s

a p
p

-

= ⋅ ⋅ »

» ⋅

ee ee w w
 (27) 

 

then the radius of the sphere S  will be (according to 
(23)): 
 

10
9

0 2
9.81 10

= = 1.854969425 10
7.272205217

g
R m

a
⋅

» ⋅


 (28) 

 

Momentary peripheral velocity of the sphere S  is: 

 5
0| | 1.34897 10 [ / ]R m sa » ⋅  (29) 

Quantities: sea level, velocity and acceleration of the 
body with respect to the Earth's surface are more or less 

within the range of 2 1 2 2 2=(10 ,10) =(10 ,10 )O - - ⋅  
[corresponding measurement unit]. In this sense it 
follows: 
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(30) 
The same analysis can also be done for the 

acceleration of the point E ¢ . Prior to this, it is necessary 

to express the acceleration of the point E ¢  ( ¢- eeR ) in 

the following form: 
2
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where: 
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Bearing in mind relations (30), some elements of 
equations (26) and (31) can be neglected, so that the 
following is obtained: 
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Since, during motion of the point E ¢ , the arc 1EE


 

is much smaller than the radius R  and since 

ˆ = = 0z ze e
ee eew w¢ ¢D , the coordinate frames e e eEx y z  and 

e e eE x y z¢ ¢ ¢ ¢  have approximately the same orientation. 

Such conditions comply with the translational motion of 
the coordinate frames e e eEx y z  and e e eE x y z¢ ¢ ¢ ¢ . Then: 

 
ˆ ,
ˆ

»

»
ee ee

ee ee

R R

R R

 

 
 (34) 

In concordance with (21) / = /e ed dt d dt¢ ¢ ¢D ee eeR R  

holds true. Therefore, the expressions (33) can be 
written in the form: 
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In the expanded form in the coordinate frame 

e e eE x y z¢ ¢ ¢ ¢  the final equations are: 
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The term ( ( ) ( )y xe e
ee eeR R R Rw w¢ ¢D -D -D -D ) eR ¢-D e  

» ( )y xe e
ee ee eR R Rw w¢ ¢

¢D -D -D e  represents the 

relative velocity of the point E  around the point E ¢ . It 
is approximately equal to the absolute velocity of the 
point E  with respect to the point E ¢ , because the its 
carrying velocity can be neglected. If the point E ¢  
belongs to a rigid body, and the point E  to the Earth's 
surface, this element defines translational velocity of the 
rigid body with respect to the Earth. Analogously, the 
element 

( ( ) ( ) )y xe e
ee ee eR R R R Re e¢ ¢

¢D -D -D -D -D e  

( )y xe e
ee ee eR R Re e¢ ¢

¢» D -D -D e  represents the relative 

acceleration of the point E  with respect to the point 
E ¢ . It is approximately equal to the absolute 
acceleration of the point E  with respect to the point 
E ¢ , because the carrying and Coriolis acceleration can 
be neglected. If the point E ¢  belongs to a rigid body 
and the point E  to the Earth's surface, this element 
defines translational acceleration of the rigid body with 
respect to the Earth. Therefore, translational motion can 
be interpreted as partial case of relative motion of the 
sphere 'S  with respect to sphere S . 
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7. EXPERIMENT FOR VERIFICATION OF 
KINEMATICAL MODEL OF EARTH MOTION 

 
The assertion that the acceleration of the Earth can be 
interpreted as a central acceleration is equivalent to the 
assertion that the motion of the Earth takes place in one 
of two ways. The first way is that the motion takes place 
inside the sphere 1S  which rotates inside immobile 

sphere S . The central acceleration at the surface of the 
sphere 1S  is equal to the magnitude of Earth’s 

acceleration g . Another way is that the motion of the 
Earth is same as the motion of objects sliding inside the 
immobile sphere S . Central acceleration is the result of 
the peripheral sliding velocity, and its magnitude is 
equal to the magnitude of the Earth's acceleration g . 

According to the contemporary theory, Earth is a 
sphere. Moton of living beings takes place outside the 
sphere. Motion of the Earth is a complex motion 
composed of the motion of its mass center along an 
elliptical orbit and the additional rotation around its 
axis. On the Earth, gravity acts as an attractive force that 
attracts objects towards the Earth's surface. This force is 
equal to =mG g , where m  is the mass of an object 
and g  is the Earth's acceleration. The vectors G  and g  
are directed towards the surface of the Earth, that is, 
approximately, towards its center. 

Relevant data for the Earth are: the period of motion 

along an elliptical path 365,256  days, the approximate 

distance to the Sun 149,600,000Km , equatorial radius 

of the Earth 6,378.14Km  and period of rotation 
23.9345h . The central acceleration of the center of the 
Earth due to the motion along an elliptical trajectory is 
approximately: 

 2 9= = 149.6 10 * (2 /N
sun sun patha R w p⋅ ⋅   

  2(365.256 23.9345 60 60))⋅ ⋅ ⋅   

 3 2= 5.96 10 [ / ] =m s-⋅  25.96[ / ]mm s .   

The relative acceleration of a point on Earth with 
respect to its center is approximately 

2
rel earth daya R   6378140  2(2p/23.9345 60 60) 

=33.9 2/[ ]mm s . The Coriolis acceleration is 

approximately: 

 cor earth day patha R    2/ /365.256 0.1[ ]rela mm s .  

Since earth sunR R , it can be inferred that the 

carrying acceleration of any point of the Earth is equal 

to the carrying acceleration N
suna  of the center of the 

Earth. Also, the direction from any point on the Earth to 
the Sun approximately coincides with the direction the 
center of the Earth – the Sun. This direction will be 
called the Earth – Sun direction. The vector of the 

central acceleration N
suna  is approximately in this 

direction, directed from the Earth to the Sun. 
Choose an arbitrary point on the equator of the Earth 

and attach firmly to it the origin of a right-handed 
coordinate frame (Fig. 6). The axis x  and y  are 

horizontal. The axis x  is oriented to the east, axis y  is 
oriented to the north, and axis z  is oriented upward 
(from the center of the Earth toward its surface). 

We shall analyze the acceleration xa  in the direction 

of the axis x . The axis x  is always perpendicular to the 
direction of g , so the projection of g  to the axis x  is 
always zero. The projection of the central acceleration 
due to the Earth’s rotation around its own axis to the 
axis x  is equal to zero, too. The Coriolis acceleration 

cora  can be neglected. 

We shall analyze the projection of the acceleration 
N
suna  due to rotation of the Earth around the Sun to the 

axisx . Observation starts at noon (at 12 o’clock) when 
the axis z  is approximately directed towards the Sun, 
i.e. when the center of the Earth, the origin and the Sun 
are approximately at the same line. The axis x  is 
perpendicular to the Earth - Sun direction at 12 o’clock, 

so the projection of the acceleration Nsuna  to the axis x  

is equal to zero, i.e. = 0xa . At 18  o’clock, Earth turns 

a quarter of a circle. The axis x  becomes approximately 
collinear with the Earth – Sun direction. The axis x  is 

directed oppositely to the acceleration N
suna , and, the 

projection of the acceleration to the axis x  is equal to 

= | |N
x suna a- . At 24  o’clock, Earth turns another 

quarter of a circle. The axis x  is again perpendicular to 
the Earth – Sun direction, i.e. = 0xa . At 6 o’clock 

Earth turns the 3/4  of a circle. The axis x  again 

becomes approximately collinear with the Earth – Sun 
direction. The direction of the axis x  and direction of 

the acceleration Nsuna  is the same, so the projection of 

the acceleration to the axis x  is equal to =| |N
x suna a . 

Earth turns entire circle at 12 o’clock and Earth is in the 
initial position. The acceleration along the x  axis has 
sinusoidal character with the amplitude of 

2| |=| |= 5.96[ / ]N
x suna a mm s  and with the period of 

= 23.9345 24.dayT »  hour, i.e. = | |N
x suna a- ⋅  

( )daysin tw , = 2 /day dayTw p .  

 
Figure 6: The model of movement of the Earth according to 
the contemporary science 

The difference in the interpretation of gravitational 
acceleration is reflected primarily in the projection of 
the acceleration to the direction of the axisx . This 
difference is simplest to verify experimentally by direct 
measuring the acceleration along the axisx . 
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Acceleration of 3 2 25.96 10 [ / ] = 5.96[ / ]m s mm s-⋅  is a 

measurable using accelerometers with a small 
measurement range. The accelerometer with a range of 
0.1g  and an accuracy 0.03%  of full range output 

( 0.2g ) can be used [10]. 

Since 0.2 0.03%g ⋅  =  0.2 9.81 1000 * 0.0003⋅ ⋅  =  
20.5886[ / ]mm s  < 25.96[ / ]mm s , the character of the 

acceleration along the axis x  can be determined with 
sufficient accuracy. The experiment would assume 
measuring of acceleration during 24h  along horizontal 
axis x  directed to the east. If the projection of the 
acceleration in the direction of the axis x  is equal to 
zero, then the Earth does not revolve around its axis, 
and, contemporary theory about its motion is not 
correct. If the projection of the acceleration in the 
direction of the axis x  has a sinusoidal character with 

amplitude 3 2 25.96 10 [ / ] = 5.96[ / ]m s mm s-⋅ , then the 

Earth rotates around its axis, so interpretation of the 
gravitational acceleration as a central acceleration 
developed in this paper is not correct.  
 
8. CONCLUSION 
 
On the basis of exact analysis of known mathematical 
results for differential geometry of curves, it has been 
shown that arbitrary motion of a point along a curve can 
be completely interpreted only by rotation and 
deformation of a sphere in a kinematical chain of 
spheres. Spheres of changeable radii in the kinematical 
chain are positioned in such a fashion that the centre of 
the next sphere is firmly attached to the previous one 
within the chain. The kinematical chain of spheres is 
formed such that the rest of the chain is placed inside 
the base sphere. The motion of the base sphere has been 
discussed and in that sense three tasks have presented 
themselves. The first one is to present the gravitational 
acceleration as equivalent central acceleration as a 
consequence of undisturbed base sphere rotation. The 
undisturbed rotation of the base sphere implies that it is 
rotating at angular velocity of constant direction with 
respect to the immobile environment or an environment 
rotating at a slow rate. The gravitational acceleration, 
interpreted as a central acceleration, is not directed 
towards the Earth’s surface, but from the Earth’s 
surface. In the second task, the exact and approximate 
relations for the velocity and acceleration of a point on 
the base sphere during its disturbed motion have been 
obtained. The disturbed motion of the base sphere 
implies rotation and deformation such that there are 
increments of angular velocity and increments of 
sphere’s radius with respect to angular velocity and 
sphere’s radius during the undisturbed motion. The 
relations have been presented in the form of the sum of 
velocity and acceleration of a point on the base sphere 
during the undisturbed movement and their increments 
during disturbed motion. Thus, the velocity and 
acceleration have been expressed as the sum of velocity 
and acceleration of a pole on the base sphere and 
rotating velocity and acceleration of the final point in 
the chain relative to the pole. In the case when the 
motion takes place at a short distance from the base 

sphere which is much less than its radius, and when the 
angular velocity of rotation of the base sphere is 
negligible, rotating velocity and acceleration can be 
expressed as function of increments of kinematical 
quantities that describe disturbed compared to 
undisturbed motion only. In the third task it has been 
shown that translational motion in the gravitational field 
can be treated as a special case of relative motion of 
disturbed sphere compared to the undisturbed motion of 
the base sphere. And finally, a model of Earth's motion 
inside the base sphere has been shown for the case that 
the gravitational acceleration is equivalent to central 
acceleration. It has been shown that under such 
acceleration, objects move towards the base area (i.e 
towards the surface of the Earth). It has been suggested 
that the horizontal component of the Earth’s 
acceleration along the axis directed to the east is 
measured during 24 hours with the precise 
accelerometers. If the measured acceleration has 
oscillatory character with a period of 24 hours with 
amplitude 3 2 25.96 10 [ / ] = 5.96[ / ]m s mm s-⋅  then the 

existing theory of motion of the Earth is correct. If the 
measured acceleration is constant (equal zero) then the 
acceleration due to gravity can be interpreted as a 
central acceleration. 
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КИНЕМАТИКА БАЗНЕ СФЕРЕ КАО 

СЕГМЕНТА КИНЕМАТСКОГ ЛАНЦА СФЕРА - 
ГРАВИТАЦИОНО УБРЗАЊЕ КАО 

ЕКВИВАЛЕНТНО ЦЕНТРАЛНО УБРЗАЊЕ 
 

Милован Д. Живановић, Милош М. Живановић 
 

Полазећи од претпоставке да је теорија дифере-
нцијалне геометрије тачна, у раду је уведен кинема-
тски ланац сфера променљивог радијуса поставље-
них тако да је центар сваке суседне сфере чврсто 
везан за претходну сферу у ланцу. Кинематски 
ланац се састоји од базне сфере и остатка 
кинематичког ланца смештеног унутар базне сфере. 
У раду се разматра непоремећено и поремећено 
кретање базне сфере. Гравитационо убрзање се 
интерпретира као еквивалентно централно убрзања 
настало непоремећеном ротацијом базне сфере. 
Поремећено кретање у односу на непоремећено 
кретање се описује помоћу прираштаја одговара-
јућих кинематских величина. Такође је успоставље-
на веза са важећим законитостима за транслаторно 
кретање у класичној механици. На крају је 
предложен и прост експеримент за верификацију 
теорије предложене у овом раду. 

 


