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In this paper, finite-time stability and practical stability problems 
for a class of linear continuous time-delay systems are studied. Based 
on the Lyapunov-like functions, that do not have to be positive definite in 
the whole state space and not need to have negative definite derivatives 
along the system trajectories, the new sufficient finite-time stability 
conditions are obtained. To obtain the conditions for attractive practical 
stability, the mentioned approach is combined with classical Lyapunov 
technique to guarantee attractivity properties of system behavior, and new 
delay dependent sufficient condition has been derived. The described 
approach was compared with some previous methods and it has been 
showed that the results derived are commonly adequate but easier for 
numerical treatment. 
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1. INTRODUCTION 
 

Classical stability concepts (e.g. Lyapunov stability, 
BIBO stability) deal with systems operating over an 
infinite interval of time. These concepts require that 
system variables be bounded, whereby the values of the 
bounds are not prescribed. However, often asymptotic 
stability is not sufficient for practical applications, 
because there are some cases where large values of the 
state are not acceptable. In these cases, we need to 
check that these unacceptable values are not attained by 
the state. For this purposes, the concepts of the finite-
time stability (FTS) and practical stability could be 
used. A system is said to be FTS if, once a time interval 
is fixed, its state does not exceed some bounds during 
this time interval. 

Some early results on FTS problems date back to the 
sixties of the 20th century [1-4]. Recently, the concept of 
FTS has been revisited in the light of linear matrix 
inequality theory, which has allowed to find less 
conservative conditions guaranteeing FTS and finite-
time stabilization linear continuous time systems. Many 
valuable results have been obtained for this type of 
stability; see, for instance [5-15]. 

Time delays often occur in many continuous 
industrial systems (chemical process, biological 
systems, population dynamics, neural networks, large-
scale systems, …). It has been shown that the 
existence of delay is the sources of instability and poor 
performance of control systems. To the best of 
authors’ knowledge, a little work has been done for the 
finite-time stability and stabilization of continuous 
time-delay systems. Some early results on finite time 

stability of time-delay systems can be found in [16-
22]. In [19] and [22] some basic results from the area 
of finite time stability were extended to the particular 
class of linear continuous time delay systems using 
fundamental system matrix. However, these results are 
not practically applicable, since it requires determining 
the fundamental system matrix. Matrix measure 
approach has been, for the first time applied in [17-18, 
20] for the analysis of finite time stability of linear 
time delayed systems. Another approach, based on 
very well known Bellman-Gronwall Lemma, was 
applied in [17, 21]. Finally, modified Bellman-
Gronwall principle, has been extended to the particular 
class of continuous non-autonomous time delay 
systems operating over the finite time interval [16]. 
The above methods give conservative results because 
they use boundedness properties of the system 
response, i.e. of the solution of system models. 

Recently, based on linear matrix inequality (LMI) 
theory, some results have been obtained for FTS and 
finite-time boundedness (FTB) for some particular class 
of time-delay systems [23-29]. The papers [23-26] 
consider the problem of finite-time boundedness (FTB) 
of the delayed neural networks. The FTS and FTSz of 
retarded-type functional differential equations are 
developed in [27]. Papers [28-29] investigate the FTSz 
problem for networked control systems with time-
varying delay. In [29] a particular linear transformation 
is introduced to convert the original time-delay system 
into a delay-free form.  

The aim of our paper is to present new sufficient 
conditions of the finite-time stability and attractive 
practical stability for a class of linear continuous time-
delay systems (LCTDS). To solve the problem of FTS 
we used the Lyapunov-like method. The sufficient delay 
independent and delay dependent conditions are 
expressed in the form of algebraic inequality.  

Numerical example is used to illustrate the 
applicability of the developed results 
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2. NOTATION AND PRELIMINARIES 
 
    Real vector space   
   Complex vector space  
I   Identity matrix   

n nF   Real matrix 
TF  Transpose of matrix F  

0F   Positive definite matrix 

0F   Positive semi definite matrix 

 F   Eigenvalue of matrix F  

F  Euclidean matrix norm of F 

 F  matrix measure of matrix F  

   
0

1 1
lim

F
F








 
  

The mathematical formulation of the nonlinear 
differential control systems with time delay can be 
written:  

 
        

   
, , , , 0

, 0

t t t t t t

t t t





  

   

x f x x u

x φ


  (1) 

where   nt x   is a state vector,   mt u   is a 

control vector,   , 0 , n  φ    is an 

admissible initial state function,   , 0 , n     is 

the Banach space of continuous functions mapping the 

interval  , 0  into n  with property of the uniform 

convergence. The vector function satisfies:  

   : n n m n   f       (2) 

and is assumed to be smooth enough to assure the 
existence and uniqueness of solutions over a time 
interval 

  0 0,t t T          (3) 

as well as the continuous dependence of the solutions 
denoted as  0 0, ,t tx x  with respect to t  and the initial 

data. Quantity T  is either a positive real number or 
symbol  , so that finite time stability and practical 

stability can be treated in the same time, respectively.  
Under such circumstances, it is not required that  

  , ,t f 0 0 0   (4) 

for an autonomous system, which means that the origin 
of the state space is not necessarily required to be an 
equilibrium system state. 

Let n  denote the state space of system (1) and 

   Euclidean norm.  

Let : nV    , be the tentative aggregate 

function, so that   ,V t tx  is bounded for and for 

which  tx  is also bounded.  

The Eulerian derivative of   ,V t tx along the 

trajectory of system (1), is defined as 

 
     

    

,
,

,
T

V t t
V t t

t

grad V t t






   

x
x

x f


  (5) 

For time-invariant sets it is assumed that:  S  is a 

bounded, open set.  
Let S  be a given set of all allowable states of the 

system for t  .  
Set S ,  S S  denotes the set of all allowable 

initial states.  
Sets S , S  are connected and a priori 

known.    denotes the eigenvalues of a matrix   .  

max  and min  are the maximum and minimum 

eigenvalues, respectively. 

Let    x  be any vector norm (e.g.,  = 1, 2, ) 

and    the matrix norm induced by this vector.  

Here, we use       1/2

2
Tt t t


x x x  and 

2
  1/2 *

max A A .  

Upper indices * and T denote transpose conjugate 
and transpose, respectively.  

Matrix measure has been widely used in the 
literature when dealing with stability of time delay 
systems.  
 
3. MOTIVATION 
 
In our paper we present two quite different approaches 
to this problem and continue our investigation in a usual 
way. 

Namely, our first result is directly expressed in terms 
of eigenvalues of basic system matrices 0A  and 1A  

naturally occurring in the system model and avoid the 
need to introduce any canonical form, or transformation 
into the statement of the theorem. 

In the second case the geometric theory of 
consistency leads to the natural class of positive definite 
quadratic forms on the subspace containing all 
solutions.  

This fact makes possible the construction of 
Lyapunov and Non - Lyapunov stability theory even for 
the LCTDS in that sense that attractive property is 
equivalent to the existence of symmetric, positive 
definite solutions to a general form of Lyapunov matrix 
equation incorporating condition which refer to 
boundedness of solutions.  

First method is based on a classical approach mostly 
used in deriving sufficient delay independent conditions 
for finite time stability. 

In the second case a new definition is introduced, 
based on the attractivity properties of thesystem 
solution, which can be treated as something analogous 
to quasy – contractive stability, [3,4].  
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Moreover, a quite new delay dependent sufficient 
condition, has been derived, and it guarantees that the 
system under consideration will be practically stable 
with attractive property of its solution, which can be 
treated as a new concept of so - called non- Lyapunov 
stability. 
 
4. NECESSARY DEFINITIONS 
 
Let us analyzed a linear continuous stationary system 
with state delay, described with the following 
expression: 

      0 1t A t A t   x x x   (6) 

with a known vector valued function of the initial 
conditions: 

     , 0t t t   x φ   (7) 

where 0A  and 1A  are constant matrices having the 

appropriate dimensions and   is constant time delay. 
For the stationary system (6) we have: 0 0t  , 

[0, ]T   and { ( ) : ( ) ( ) }Tt t t  x x xS . 
In view of this, we introduce the following 

definition for finite-time stability and attractive practical 
stability of time-delay system (6). 

Definition 1. System (6) satisfying given initial 
condition (7) is finite time stable w.r.t. to  , , T  , 

where 0    , if  

 
   

, 0
sup T T

t
t t




 
φ φ  

implies  

    , [0, ]T t t t T x x . 

Definition 2. System (6) with initial function (7), is 
attractive practically stable w.r.t.  , , T  , if 

 
   

, 0
sup T

x x
t

t t



 

φ φ , 

implies 

    , [0, ]T t t t T x x , 

with property that:    lim 0T

t
t t


x x . 

 
5. FINITE TIME STABILITY 
 
Delay dependent stability conditions 

Theorem 1. The autonomous system (6) with the 
initial function (7) is finite time stable w.r.t.  , , T  , 

if the following condition is satisfied:  

    
2 2

1 01 , [0, ]A t t T



      (8) 

where  0 t  is the fundamental matrix of the system 

without time delay, see [19]. 

When 0   or 1 0A  , the problem is reduced to 

the case of the ordinary linear systems [1]. 
Theorem 2. The autonomous system (6) with initial 

function (7) is finite time stable with respect to 

 , , T   if the following condition is satisfied: 

    2 2 2 0
11 , [0, ]

A t
A e t T

 


     (9) 

where    denotes the Euclidean norm, [20]. 

Theorem 3. Time delayed system (6), is finite time 
stable with respect to , , T  ,   , if the following 

condition is satisfied: 

 max , [0, ]
t

e t T



 
    (10) 

where: 

 max 1max 2 max       (11) 

and: 

 

 
 

1max 1max 0 0 1 1

1 0 0 1 1 1 1 1

2max 2 max
2

T T

T T T T

A A A A

A A A A A A A A

q
I





    

   
  
   

  (12) 

with: 0 and 1q  , [30]. 

Theorem 4. The autonomous system (6) with initial 
function (7) is finite time stable with respect to 

 , , T   if there exist a nonnegative scalar   and 

positive definite symmetric matrices P and Q  such that 

the following conditions hold: 

 0 0 1

1

0
T

T

A P PA Q P PA

A P Q

   
   
  

  (13) 

 
      max max

min

1
P Q

P

  
 

     (14) 

[31]. 

In the [31] paper a contemporary procedure,  
based on linear matrix inequalities (LMI) and Lyapunov 
- like functions was used to generate sufficient 
conditions under which the linear time delay system  
is finite time stable. 
 
Delay independent stability conditions 

Theorem 5. System (6) with initial function (7) is 
finite time stable with respect to.  , , T  , if the 

following condition is satisfied: 

  2 2 max
max1 , [0, ]tt e t T




      (15) 
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where [17]: 

    max max 0 max 1A A    .  (16) 

Main results 

Theorem 6. System (6) with initial function (7)  
is finite time stable with respect to  , , T  ,   ,  

if there exist a positive scalar max  such that the 

following condition hold: 

   max1 , [0, ]te t T



      (17) 

where  

 
 max max

0 0 1 1

,

T TA A A A I

  

    
  (18) 

with   being symmetric matrix with all eigenvalues 
defined over the set of real numbers. 

Proof: Let us consider the following Lyapunov-like, 
aggregation function: 

  

      

   

T

t
T

t

V t t t

d


  


 

 

x x x

x x
  (19) 

Denote by   V tx  time derivative of   V tx  

along the trajectory of system (6), so one can obtain. 

          

   

    

   

       

0 0

12

T T

t
T

t

T T

T

T T

V t t t t t

d
d

dt

t A A t

t A t

t t t t



  



 



 



  

  

   



x x x x x

x x

x x

x x

x x x x

  

     (20) 

Based on well-known inequality:  

 

   
   
   

1

2

, 0

T

T

T

t t

t t

t t



 



 

  

     

u v

u u

v v

 (21) 

and with the particular choice I  , we get: 

 

  
    

   
   

0 0 1 1

max

T T T

T

T

V t

t A A A A I t

t t

t



   

  

 

x

x x

x x

x x



  (22) 

Moreover, if we suppose that  max 0    it is 

easy to see: 

 

      

     

       

    

max

max

max

max

T

t
T

t

t
T T

t

V t t

d

t d

V t







   

   







 

 

 
   
 
 

 





x x x

x x

x x x x

x



 (23) 

since     0
t

T

t

d


  


 x x . 

Multiplying (23) with 
 max t

e
  

, we can obtain: 

 
    max 0

td
e V t

dt

     
 

x   (24) 

Integrating (24) from 0 to t, with [0, ]t T , we have: 

       max 0
t

V t e V
  

 x   (25) 

From (19) it can be seen: 

 

         

 

0

0

0 0 0

1

T TV d

d





  

  

    





 

 

    





x x φ φ

  (26) 

in the light of Definition 1. 
Combining (25) and (26) leads to: 

      max1 tV t e     x   (27) 

On the other hand: 

 
           

     max1

t
T T T

t

t

t t t t d

V t e



  

 


 

 

   

x x x x x x

x

  (28) 

Condition (17) and the above inequality imply: 

       max1 , [0, ]tT t t e t T       x x   (29) 

what have to be proved. 
In the case of non-delay system, e.g., when 0   

or 1 0A  , result given (17) is reduced to [1]. 

Theorem 7. System (6) with initial function (7)  
is finite time stable with respect to  , , T  ,   ,  

if there exists a positive real number , 1q q  , such that:  

 
 

 
   

,0
sup ,

[0, ], 1,

t t q t

t T q

 
 

 
   

 

x x x
 (30) 

and if the following condition is satisfied: 
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 max , [0, ]te t T



     (31) 

where: 

 
         max

2
0 0 1 1

max : 1T T

T T

t t t t

A A A A q

   

    

x x x x
 (32) 

Proof. Define tentative aggregation function as: 

           
t

T T

t

V t t t d


  


  x x x x x  (33) 

The total derivative   V tx along the trajectories  

of the system, yields: 

           

       

0 0

12

T T T

T T

V t t A A t t t

t A t t t

 



    

  

x x x x x

x x x x


(34) 

and based on well-known inequality (21) and with the 
particular choice I  , from (34), one can get: 

 
         

       

0 0

1 1

T T T

T T T

d
t t t A A t

dt

t A A t t I t 

  

   

x x x x

x x x x

 (35) 

Based on (30), it is clear that (35) reduces to: 

         T Td
t t t t

dt
 x x x x  (36) 

where matrix   is defined by (32). 
From (19) one can get: 

 

    
   

   
   

   
   

         
max

max

max : 1

T T

T T

T

T

T T

d t t t t

t t t t

t t

t t

t t t t




    
  

  

 

x x x x

x x x x

x x

x x

x x x x

 (37) 

or: 

 
    
    max

0 0

Tt t

T

d t t
d t

t t
  

x x

x x
 (38) 

and: 

         max0 0 tT Tt t e x x x x  (39) 

Finally, if one use the first condition of Definition 3, 
then: 

     max tT t t e   x x  (40) 

and finally by (31) yields to: 

     , [0, ]T t t t T
 


   x x  (41) 

what have to be proved.  
 

6. PRACTICAL STABILITY 
 

Delay dependent stability conditions 

In this part, the delay dependent stability conditions 
were analyzed.  

Before presenting our crucial result, we need some 
discussion and explanations as well as some additional 
results. For the sake of completeness, the following 
results are presented, as in [32]. 

Theorem 8. Let the system be described by (6).  
If for any given positive definite Hermitian matrix Q  

there exists a positive definite Hermitian matrix 0P , 

such that: 

      0 0 1 0 1 00 0P A P A P P Q


      (42) 

where for  0,  ,  1P  satisfies: 

       1 0 1 10P A P P    (43) 

with boundary condition  1 1P A   and 

 1 0P   elsewhere, then the system is asymptotically 

stable, [32]. 

In paper [33] it is emphasized that the key approach 
in the construction of the Lyapunov function 
corresponding to system (6) is the existence of at least 
one solution  1P t  of (43) with the boundary 

condition  1 1P A  . In other words, it is required that 

the nonlinear algebraic matrix equation 

 
    00 1

1 10
A P

e P A


  (44) 

has at least one solution for  1 0P .  

Based on Theorem 7, the asymptotic stability of the 
system can be determined knowing only one, instead of 
all solutions of the particular nonlinear matrix equation.  

Using counterexample, in [33] is shown that the 
above theorem is incorrect because it does not take into 
account all possible solutions of (43), i.e. (44). 

Remark 1. If we introduce a new matrix: 

  0 1 0R A P  (45) 

then condition (42) reads: 

 *
0 0P R R P Q    (46) 

which presents a well-known Lyapunov’s equation for 
the system without time delay. 

This condition will be fulfilled if and only if R is a 
stable matrix i.e. if  

  Re 0Ri   (47) 

holds, [33].  
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Remark 2. Equation (44) expressed through matrix 
R can be written in a different form as follows: 

 0 1 0RR A e A    (48) 

and there follows: 

  0 1det 0RR A e A    (49) 

[33]. 

Substituting a matrix variable R by scalar variable s 
in (47), the characteristic equation of system (6) is 
obtained as: 

    0 1det 0sf s sI A e A     (50) 

Let us denote 

   | 0s f s    (51) 

a set of all characteristic roots of system (6), [33].  
The necessity for the correctness of the desired 

results forced us to propose new formulations of 
Theorem 8. 

Theorem 9. Suppose that there exist(s) the 
solution(s)  1 0P of (44). Then, the system (6) is 

asymptotically stable if and only if any of the two 
following statements holds: 

a) For any matrix * 0Q Q   there exists matrix 
*

0 0 0P P   such that (42) holds for all 

solutions  1 0P  of (44). 

b) The condition  Re 0i R  holds for all 

solutions R of (48), [33]. 

Remark 3. Statements of Theorem 9 require that the 
corresponding conditions are fulfilled for any solution 

 1 0P  of (44) or R of (48). 

Remark 4. From the preceding theorems, the 
following practical question is imposed: how all 
possible solutions  1 0P of (44) or R of (48) can be 

numerically computed? This problem cannot be directly 
numerically solved because the number of solutions 

 1 0P  or R is not known beforehand, and can be very 

large (infinite). However, to more efficiently examine 
the stability of the system, the above-mentioned 
numerical problem can be replaced by using maximal 
solvent of (48) [33]. 

Definition 3. Each root m  of the characteristic 

equation (50) of the system (6) which satisfies the 
following condition: Re max Re ,m s s    will be 

referred to as maximal root (eigenvalue) of the system 
(6) [33]. 

Definition 4. Each solvent maxR  of (48), whose 

spectrum contains maximal eigenvalue m  of the 

system (6), is referred to as maximal solvent of (48)[33].  

On the basis of Remark 4 and Definition 3 and 4, it 
is possible to reformulate Theorem 9 in the following 
way.  

Theorem 10. Suppose that there exists the maximal 
solvent maxR  of (48). Then, system (6) is 

asymptotically stable if and only if any of the two 
following equivalent statements holds: 

a) For any matrix * 0Q Q   there exists matrix 
*

0 0 0P P   such that (46) holds for the solvent maxR . 

b)  maxRe 0i R  ,  

[33] and [34].  

Main result 

Now, we are in the position to present our main 
result concerning the practical stability of system (6). 

Theorem 11. Autonomous system (6) with initial 
function (7), is attractive practically stable with respect 
to , , T  ,   , if the following condition are 

satisfied: 

a)   max1 , [0, ]te t T



    , (52) 

where 

 
 max max

0 0 1 1

,

T TA A A A I

  

    
  (53) 

with   being symmetric matrix with all eigenvalues 
defined over the set of real numbers. 

b) there exists maximal solvent maxR  of 

 0 1 0RR A e A     (54) 

c)  maxRe 0i R  .  (55) 

Proof. The conditions b) and c) guarantee the 
asymptotic stability of the system (6). Moreover the 
finite time stability is provided by (52), what ends the 
proof. 

 
7. NUMERICAL EXAMPLE 
 
Our main contribution is exposed throughout results of 
Theorem 6. 

Example 1. Given a system of the form: 

   

 

1 3

2 3

0.7 1.4
1

1.8 1.5

t t

t

  
   

 
    

x x

x


 

One should investigate finite time stability w.r.t. 

 , , T  , with particular choice of: 5.10  , 6.0   

and    2 1 Tt  φ , 0t   .  

For this purpose, it is suitable to use results of 
Theorem 6. 

Note that     5.0T t t  φ φ . 
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Based on (22) the following data can be obtained: 

 0 0 1 1
1.45 0.16

0
0.16 0.49

T TA A A A I
 

        
 

   1 20.464, 1.476       

 max 1.476 0     

       1.476 0.15max1 1 1

6.0
 1.1659   1.1765

5.1

te e



    

   
 

so: 
 0.15estt T s   

Time dependent square norm of systems motion,  
is shown on Fig. 1. 

Overall square norm of systems state trajectory and 
with more details on Fig. 2, confirming and supporting 
theoretically results that have been derived. ■ 

In comparison to real finite time interval 

  6.0
0, 0.20    it can be concluded that determined 

estimation is quite good enough, Fig.2 
So one can conclude that all conditions of Theorem 

6 are fulfilled, so system under consideration is finite 
time stable. 

To compare our result, let us see check this example 
by Theorem 7. 

0 1 2 3 4 5
1

2

3

4

5

6

7

time [sec]

xT (t
)x

(t
)

 
Fig. 1 Time dependent square norm of systems motion. 

 
Fig. 2 Detailed square norm of systems state trajectory. 

According to (32), matrix   is calculated in the 
following way: 

  2
0 0 1 1

1.1

T T

q
A A A A q I


       

 
1.6600 0.1600

0.1600 0.7000

 
   

  

with: 

   1 2 1 2 max, 0.6740, 1.6860          . 

Testing (31): 

  max 1.1639 1.1765, 0.09Test
este T s




      (56) 

it can be shown that system is finite time stable over 
time interval    0, 0, 0.09estT   with respect to the 

given data. 

It should be pointed out that (31) is independent 
delay criteria, while (17) is delay-dependent criteria, 
which is a certain advantage in any case. Even less 
restrictive results are derived in our case. 

 
8. CONCLUSION 

 
Generally, this paper extends some of the basic results 
in the area of the non-Lyapunov stability to linear 
continuous invariant time-delay systems. Under some 
certain assumptions the new sufficient, very simple, 
delay-dependent criteria for the finite time stability of 
such systems have been presented. 

Moreover, a new condition for attractive practical 
stability is derived combining Lyapunov and non-
Lyapunov approach under some circumstances. 

Numerical example has been worked out to 
demonstrate the advantage and efficiency of the 
methods proposed. 
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НОВИ РЕЗУЛТАТИ У ИЗУЧАВАЊУ 
СТАБИЛНОСТИ НА КОНАЧНОМ 

ВРЕМЕНСКОМ ИНТЕРВАЛУ И ПРАКТИЧНЕ 
СТАБИЛНОСТИ ВРЕМЕНСКИ 

НЕПРЕКИДНИХ ЛИНЕАРНИХСИСТЕМА СА 
КАШЊЕЊМ 

 

Драгутин Љ. Дебељковић, Сретен Б. Стојановић, 
Александра М. Јовановић 

 
У раду су разматрани проблеми стабилности на 
коначном временском интервалу и практичне 
стабилности линеарних временски непрекидних 
система са кашњењем. Базирајући извођења на 
квази-Љапуновњевим функцијама, од којих се не 
захтева позитивна одређеност у целом простору 
стања, нити негативна одређеност њихових извода 
дуж кретања система, изведени су нови довољни 
услови стабилности на коначном временском 
интервалу. Да би се добили одговарајући услови за 
атрактивну практичну стабилност, комбинован је 
претходно поменути прилаз са класичном 
љаупуновском техником, како би се обезбедила 
особина привлачења кретања система и у том 
смислу изведени су нови 
довољни услови зависни од износа чисто времнског 
кашњања. Описани поступак поређен је са неким 
раније постојећим методама и показано је да су 
добијају сагласни резултати али далеко 
једноставнији са становишта нумеричког третмана.

 


