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This paper presents a novel vibration control technique for a pendulum via 
cable length manipulation. To control the sway angle by using the reeling 
and unreeling of the hositing cable, we develop a non-linear feedback 
control scheme by utilising parametric resonance, in which the control 
input is defined as the acceleration of the cable. Because the governing 
equation and the control law are non-linear, it is very difficult to 
analytically solve the feedback gains for the stabilization of the system. 
Hence, the feedback gains are determined by the use of particle swarm 
optimization (PSO), which is an evolutionary computation technique, to 
reduce the sway angle to the maximum extent possible. The validity of the 
proposed control technique is confirmed by numerical simulations. To 
verify the feasibility of the present approach, experiments are also 
performed. From the experimental results, we demonstrate that the 
application of the PSO algorithm for tuning the feedback gains is valid and 
that the proposed non-linear feedback control scheme is effective for the 
vibration control of a pendulum with variable length. 
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control, particle swarm optimization, experimental validation. 

 
 

1. INTRODUCTION 
 

Crane systems have been extensively used as transport 
systems in many industrial fields. For the efficient and 
safe operation of crane systems, their sway motion must 
be suppressed. A considerable number of papers are 
therefore available on vibration control problems of 
crane systems. Abdel-Rahman et al. [1] published an 
exhaustive literature review on the modelling and 
control of cranes in which a number of papers on 
gantry, rotary, and boom cranes were reviewed. 
Usually, the load sway of a crane is suppressed by 
control forces exerted from a boom or trolley. On the 
other hand, when the boom or trolley is not allowed to 
move because of some restrictions, an effective 
approach for controlling the sway motion is obtained by 
using a hoisting mechanism that lifts a load up or down. 

Abdel-Rahman and Nayfeh [2] developed an 
approach that used the reeling and unreeling of a 
hoisting cable to reduce payload pendulations due to 
near-resonance excitations. Significant reductions were 
obtained via an appropriate choice of the 
reeling/unreeling speed. Stilling and Szyszkowski [3] 
considered the planar motion of a simple, variable 
length pendulum consisting of an inextensible cable of 
negligible mass and a point mass and then attempted to 

control the angular oscillation by sliding the point mass 
toward and away from a pivot. They reported that 
simple rules for generating either attenuation or 
amplification of the oscillations by sliding a point mass 
can be derived by analysing the energy balance or the 
Coriolis forces. As for studies on stabilization control of 
a pendulum whose centre of gravity is variable, a 
control law based on Lyapunov’s method was proposed 
by Yoshida et al. [4]. Okanouchi et al. [5] also 
addressed the problem of suppressing the oscillation of 
a plane pendulum using three actuated variables (i.e., 
the horizontal and vertical positions of the pivot and the 
length of the pendulum) under amplitude constraints. In 
references [4,5], the effectiveness of the proposed 
control techniques was verified using simulations and 
experimental results. Szyszkowski and Stilling [6] 
investigated the damping properties of a frictionless 
oscillating physical pendulum with a moving mass and 
pointed out that the attenuation rule required the mass to 
move with a frequency that was double the pendulum 
frequency. A proportional derivative control law with 
additional gravity compensation was developed by 
Gutiérrez-Frias et al. [7] for active vibration damping in 
a frictionless physical pendulum with moving mass. 
However, reports published so far indicate that 
engineers find it difficult to construct controllers 
because of complex methodologies. 

In this study, we develop a novel control method for 
a pendulum via cable length manipulation; in this 
method, a metaheuristic algorithm is used to easily 
construct the control scheme. As is well known, when 
the length of a pendulum changes periodically and the 
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frequency is close to twice the natural frequency, 
parametric resonance can occur (e.g., [8]). Thus, to 
control the sway angle by using the reeling and 
unreeling of the hoisting cable, we adopt non-linear 
feedback control by utilising the parametric resonance 
phenomenon, in which the control input is defined as 
the acceleration of the cable. The feedback gains are 
determined using particle swarm optimization (PSO) [9], 
which is an evolutionary computation technique, to 
reduce the sway angle to the maximum extent possible. 
An important feature of the proposed method is that the 
controller can be easily constructed using the PSO 
technique. The effectiveness of the proposed control 
technique for suppressing the pendulum oscillation via 
cable length manipulation is demonstrated through 
simulations and experiments. 

 
Figure 1. A variable length pendulum. 

 
2. MATHEMATICAL MODEL 

 
Figure 1 shows a pendulum with variable length, where 
l is the cable length, θ is the sway angle of the load, m is 
the mass of the load, and F are the control forces 
applied to the load. We assume that the cable is a 
massless rigid link and that the load is a point mass. In 
addition, the load is constrained to move in the vertical 
plane. On the basis of this assumption, the equations of 
motion for the system can be written as (e.g., [3]) 

 Fmgmllm   cos2 , (1) 

 0sin2  
l

g

l

l  , (2) 

where g is the acceleration of gravity. It should be noted 
that the dynamics of the load hoisting and swing are 
described by Eqs. (1) and (2), respectively. If the 
desired cable length l is controlled, the dynamics of the 
load hoisting can be negligible. The present study 
adopts this assumption, and hence, only Eq. (2) is used 
in the vibration control scheme mentioned in the next 
section. 
 
3. CONTROL DESIGN 
 
In this section, we propose a non-linear feedback 
control scheme for the oscillation attenuation of a 
pendulum via cable length manipulation. The validity of 
the proposed method is confirmed numerically. 

3.1 Non-linear feedback control 
 
In the present study, we attempt to attenuate the 
oscillation of a pendulum via cable length manipulation. 
Generally speaking, it is difficult to control the motion 
of a pendulum by vertical up-and-down motion. On the 
other hand, when a pendulum is subjected to a vertical 
harmonic excitation whose frequency is close to twice 
the natural frequency, a parametric resonance 
phenomenon can occur. Thus, we propose a control law 
utilising the parametric resonance. 

In the proposed control scheme, the control input is 
defined as the acceleration of the cable for the purpose 
of the cable length manipulation. Under the following 
condition 

  cos2 gll   , (3) 

the cable sags. To simply avoid this situation, we 
impose the following constraint on the acceleration of 
the cable: 

 2m/s0.8|| l . (4) 

Taking into account Eq. (4), a non-linear feedback 
control is defined as 
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where u is the control input, sign(  ) is the signum 
function, and l0 is a target length of the cable. The term 
k1|θ| is introduced to move the cable in twice the 
frequency of the pendulum oscillation, in which the 
parametric resonance is utilized to suppress the sway 
angle. Furthermore, it is desirable to control not only the 
sway angle but also the cable length. Thus, PD control 

for the cable length is given by the terms k2(l-l0) and k3 l . 
Because the governing equation (2) and the control 

law (5) and (6) are non-linear, it is very difficult to 
analytically solve the feedback gains (k1, k2, and k3) in 
Eq. (6) for the stabilization of the system. Hence, in the 
present study, the feedback gains are determined by use 
of the PSO. The algorithm for the non-linear control 
design method using the PSO will be mentioned in the 
next subsection. 

 
3.2 Control design using PSO 
 
In the algorithm, the feedback gains (k1, k2, and k3) are 
considered to be the optimized parameters. First of all, 
the optimized parameters are randomly initialized. By 
using the control law (5) and (6), the sway angle of the 
pendulum is calculated by numerically integrating (2) 
until time t = 10 s, where the feedback gains are set to 
k1= 0, k2= 10, and k3= 5 in the time interval (8 t  10 s). 
In order to reduce the pendulum oscillation as much as 
possible, the fitness value f is defined as 

 max||f , (7) 

where max||  is the maximum absolute value of the 

sway angle in the time interval (8 t  10 s). In addition, 
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to realise the suppression of oscillations within a certain 
cable length range, we consider the following constraint 

 UL lll  . (8) 

If Eq. (8) is not satisfied, we add a large penalty to the 
fitness value (i.e., this operation is a penalty function 
method to handle constraints in the constrained 
optimization problem). According to the PSO algorithm, 
the fitness value can be minimised and then the optimal 
feedback gains can be obtained. The algorithm for 
tuning the feedback gains based on the PSO can be 
summarized as follows: 
 

1) The positions and velocities of all particles are 
initialized randomly. The position and velocity 
vectors of the i-th particle are respectively defined 
as 

 ],,,[ ,2,1, diiii xxx x , ],,,[ ,2,1, diiii vvv v , (9) 

where the elements of the position xi, j represent the 
optimized parameters (i.e., the values of the 
feedback gains), and d is the dimension of the 
search space (i.e., the number of the feedback 
gains). 

2) Evaluate the fitness value (7) from the numerical 
integration of Eq. (2) by using Eqs. (5) and (6), in 
which the cable length constraint (8) is checked. 
Next, set pbesti, which represents the previous best 
position vector of the i-th particle, to the fitness 
value. Furthermore, choose the position vector with 
the best fitness value among all the particles as 
gbest. 

3) The velocity and position vectors of the i-th particle 
are updated using the following equations: 
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where n stands for the iteration number, r1
(n) and 

r2
(n) are two independent uniform random numbers 

with values from 0 to 1. In addition, the following 
relation prevails among the coefficients χ, c1, and c2. 
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Typically, c1 and c2 are both set to 2.05. 

4) Calculate the fitness value of all the particles using 
the same procedure as described in Step 2). For 
each particle, if the current fitness value is better 
than pbesti, then pbesti is replaced by its position 
vector. If the best value in the current pbesti is 
better than gbest, then gbest is replaced by its 
position vector. 

5) If n is less than the maximum iteration number, 
then the iteration number is updated as 1 nn  
and Steps 2)-4) are repeated. The value of gbest 
obtained finally is inferred as the optimal solution 
(i.e., the optimal feedback gains are deternimed). 
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Figure 2. Simulation results: (a) sway angle, (b) cable 
length, and (c) control input. 

 
3.3 Numerical results 
 
Numerical examples are considered to evaluate the 
performance of the proposed cable length manipulation 
technique for the vibration control of the pendulum. In 
the following numerical simulations using the PSO 
algorithm, the number of particles is set to 20 and the 
maximum number of iterations is set to 50. The search 
space for the optimised parameters is considered to be 
as follows: 

 ]50,0[],500,0[],150,0[ 321  kkk . (13) 

The initial conditions for the sway angle and cable 
length are taken as 

 0)0(,m5.0)0(,0)0(deg,30)0(  ll  . (14) 

The target cable length in Eq. (6) and the constraint 
condition in Eq. (8) are set to be 

 m7.0,m3.0,m5.00  UL lll . (15) 

For the above parameters, the optimal feedback gains 
obtained using the PSO algorithm are as follows: 

 631.1,45.90,37.19 321  kkk . (16) 

Figure 2 shows time histories of the sway angle, 
cable length, and control input. It should be noted that 
the feedback gains are set to k1= 0, k2= 10, and k3= 5 in 
the time interval (8  t  10 s), as mentioned in the 
previous subsection. It can be observed from Figure 2(a) 
that the pendulum oscillation decays sufficiently, 
thereby ensuring the validity of the proposed control 
technique. Comparing Figures 2(a) and 2(b), it can be 
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seen that the frequency of the cable length is about 
twice that of the sway angle. This fact indicates that the 
effect of the term k1|θ| in the non-linear feedback 
attenuates the pendulum oscillation. 
 
4. EXPERIMENTAL VALIDATION 
 
Experiments are performed to validate the non-linear 
feedback control scheme developed in the previous 
section. 
 

 
Figure 3. Photograph of the experimental setup. 

 
4.1 Experimental setup 
 
Figure 3 shows a photograph of the experimental setup 
for a pendulum with variable length. The cable length 
can be changed by using a pulley, which is actuated by 
an AC servomotor (SGMAH; Yaskawa Electric Corp.). 
The servomotor is operated in the speed control mode, 
which facilitates the control of the desired cable length 
using a servo drive unit (SGDM; Yaskawa Electric 
Corp.). A serial encoder mounted on the servomotor 
measures the pulley angle, and then, a measurement of 
the cable length is performed. As shown in Figure 3, the 
cable is passed through a slit of a rigid rod, whose angle 
is measured by a potentiometer (SP2800; B & PLUSS K. 
K.). The sway angle of the pendulum is acquired from 
the potentiometer. The measurement and control of the 
experimental setup are implemented on a DSP board 
(DS1104; dSPACE GmbH), which has a 500 Hz 
sampling rate. 

Figure 4(a) shows the free vibration of the pendulum 
measured by the potentiometer when the cable length is 
0.5 m. As can be seen in Figure 4(a), the data of the 
potentiometer signal contains some noise, which has a 
harmful influence on the performance of the feedback 

control scheme. To eliminate the noise in the 
potentiometer signal, we employ a nonlinear digital 
filter to Estimate the Smoothed and Differential values 
of the sensor inputs by using Sliding mode system 
(ESDS) [10, 11]. The system of the ESDS can be given 
by the following differential equations: 
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Figure 4. Free vibration of the experimental setup: (a) 
potentiometer signal and (b) values estimated by ESDS. 

where x1 is the noise removed signal (the estimated 
angle) and y is the input signal (the potentiometer 
signal). The parameters UR2 and aR are chosen as 100 
and 30, respectively. The sway angle estimated by the 
ESDS is presented in Figure 4(b). As depicted in Figure 
4(b), the estimated value is smooth and the noise is 
perfectly removed. In the following experiments, we 
adopt the ESDS as the noise removal filter for the 
potentiometer signal, and then, the estimated value is 
used in the non-linear feedback control scheme. 

On the other hand, it can be observed from Figure 4 
that the pendulum oscillation does not decay with time. 
Therefore, we can recognise the experimental setup to 
be a frictionless pendulum.  
 
4.2 Experimental results 
 
In the previous section, we show from the numerical 
simulations that the proposed cable length manipulation 
technique facilitates the suppression of the pendulum 
oscillation. To further evaluate the feasibility of the 
vibration control scheme, we perform experiments. 

The time histories of the experimental results 
obtained by using the non-linear feedback law (5) and 
(6) are illustrated in Figure 5. Here, the feedback gains, 
initial cable length, and target cable length are the same 
as those in Figure 2. It should be noted that Figure 5(a) 
displays the data obtained from the ESDS. A 
comparison between Figure 4(b) and 5(a) demonstrates 
that the proposed feedback controller, whose gains are 

Rigid Rod Load 

Potentiometer 

AC Servomotor Pulley 
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tuned by the PSO, is quite effective in attenuating the 
oscillation of the pendulum. As can be seen in Figures 
5(a) and 5(b), the frequency of the cable length is about 
twice that of the sway angle as observed in the 
numerical results, and hence, we reconfirm the effect of 
the term k1|θ| in the non-linear feedback law. Moreover, 
the cable length converges to the target length with a 
decrease in the amplitude of the sway angle. This 

confirms the effectiveness of the terms k2(l-l0) and k3 l in 
Eq. (6). 
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Figure 5. Experimental results: (a) sway angle, (b) cable 
length, and (c) control input: (l(0)=0.5 m, l0=0.5 m, lL =0.3 m, 
lU =0.7 m, k1=19.37, k2=90.45, k3=1.631). 

In order to further check the feasibility of the 
proposed method for controlling the vibration, we 
change the cable length conditions and then perform the 
simulations and experiments. Figures 6 and 7 
respectively present experimental results under the cable 
length conditions (l(0)=0.6 m, l0=0.5 m, lL =0.3 m, lU 

=0.8 m) and (l(0)=0.7 m, l0=0.7 m, lL =0.5 m, lU =0.9 m). 
It should be noted that the initial length l(0) and target 
length l0 are not mutually equal in Figure 6. The 
feedback gains are obtained as k1=18.67, k2=92.04, 
k3=1.904 for (l(0)=0.6 m, l0=0.5 m, lL =0.3 m, lU =0.8 m) 
and k1=14.97, k2=68.14, k3=1.000 for (l(0)=0.7 m, l0=0.7 
m, lL =0.5 m, lU =0.9 m). It is apparent in Figures 6 and 
7 that the present method can control both the sway 
angle and the cable length under different cable 
conditions. Therefore, we can say that the proposed 
cable length manipulation technique for a pendulum 
with variable length facilitates the simultaneous control 
of the sway angle and the cable length. 
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Figure 6. Experimental results: (a) sway angle, (b) cable 
length, and (c) control input: (l(0)=0.6 m, l0=0.5 m, lL =0.3 m, 
lU =0.8 m, k1=18.67, k2=92.04, k3=1.904). 
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Figure 7. Experimental results: (a) sway angle, (b) cable 
length, and (c) control input: (l(0)=0.7 m, l0=0.7 m, lL =0.5 m, 
lU =0.9 m, k1=14.97, k2=68.14, k3=1.000). 



 

270 ▪ VOL. 41, No 4, 2013 FME Transactions
 

5. CONCLUSIONS 
 

In this study, we develop a cable length manipulation 
technique for the vibration control of a pendulum with 
variable length. In the proposed non-linear feedback 
control law, we introduce a term that allows us to move 
the cable at a frequency that is twice the frequency of 
the pendulum oscillation. A parametric resonance 
phenomenon is thus utilised to suppress the sway angle. 
Because the governing equation for the pendulum and 
the proposed control law are non-linear, it is very 
difficult to analytically solve the feedback gains for the 
stabilization of the system. Thus, we attempt to tune the 
feedback gains by using a PSO algorithm. The PSO is a 
metaheuristic algorithm, and it facilitates the easy 
determination of the feedback gains without any control 
knowledge. From the experimental results, we confirm 
that the controller tuned by the PSO realises not only 
oscillation attenuation but also cable length control. 
Therefore, it is concluded that the proposed control 
scheme is effective for the oscillation attenuation of a 
pendulum whose length can be variable as a control 
input. 
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ТЕХНИКА НЕЛИНЕАРНОГ УПРАВЉАЊА 
КЛАТНОМ ПРОМЕНОМ ДУЖИНЕ УЖЕТА: 

ПРИМЕНА ОПТИМИЗАЦИЈЕ РОЈЕМ 
ЧЕСТИЦА КОД ПРОЈЕКТОВАЊА 

УПРАВЉАЧА 
 

Akira Abe 
 
Рад приказује нову технику управљања вибрацијама 
клатна променом дужине ужета. У циљу управљања 
углом њихања применом намотавања и одмотавања 
дизаличног ужета развили смо шему нелинеарног 
управљања у повратној спрези коришћењем 
параметарске резонанце код које је улаз управљања 
дефинисан као убрзање ужета. Како су главна 
једначина и закон управљања нелинеарни, веома је 
тешко аналитички решити утицај повратне спреге у 
стабилизовању система. Отуда су учинци повратне 
спреге одређени применом оптимизације ројем 
честица (ПСО), еволутивном техником 
израчунавања, да би се угао њихања редуковао до 
максимално могућег. Валидност предложене 
технике управљања је потврђена нумеричким 
симулацијама. У циљу верификације изводљивости 
приказане методе извршени су експерименти. На 
основу резултата експеримената показали смо да је 
примена ПСО алгоритма валидна за усклађивање 
учинка повратне спреге и да је предложена шема 
нелинеарног управљања у повратној спрези 
ефикасна за управљање вибрацијама клатна са 
променљивом дужином ужета. 
 

 
 
 

 

 


