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1. INTRODUCTION

Italy

A New Control Algorithm for Active
Suspension Systems Featuring
Hysteresis

In this paper the vibration suppression problem relative to the vertical
motion of road vehicles is investigated. In particular, the goal of the
research is to design control laws for active suspension systems of road
vehicles in order to reduce unwanted vibrations induced by a rough road
profile. The road vehicle has been represented with a quarter-car model
whereas the suspension system has been schematized using the Bouc-Wen
hysteresis model. In addition, a control actuator has been collocated
between the sprung mass and the unsprung mass. Since the problem under
study is nonlinear, the time history of the control action has been obtained
numerically using the iterative adjoint-based control optimization method.
Simulations show that the designed control action significantly mitigates
the vibrations induced by the road profile.
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equipped with an active controller showed in figure 1.

Suspension systems of road vehicles are needed to
guarantee a good ride quality for the vehicle occupants
and at the same time to obtain a good vehicle stability
[1-2]. Typically, suspension systems are realised using
passive components. The design of a passive suspension
system is performed making a trade-off between these
two conflicting goals, namely the demand of a good ride
quality and the need of a good vehicle stability [3-4].
The main drawback of a passive suspension system is
that the suspension force can be only a function of the
relative displacement and of the relative velocity
between the sprung mass and the unsprung mass. On the
other hand, active suspension systems can improve the
performance of road vehicle suspensions circumventing
these design constraints [5-6].

In this paper a new method to control nonlinear
underactuated mechanical systems has been developed.
This method originated from optimal control theory [7-
10] and it is based on the iterative adjoint-based control
optimization algorithm [11-17]. The proposed method
has been applied to design control laws for active
suspensions system of road vehicles in order to mitigate
road-induced vibrations. The hysteresis phenomenon of
the suspension system has been represented using Bouc-
Wen hysteresis model.

2. SYSTEM MODEL
2.1 System Description

The system under study is a quarter-car model
characterised by an hysteretic suspension system and
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Figure 1. Quarter-Car Model with Hysteretic Suspension
System and Active Controller

The displacement of the unsprung mass is denoted with
x; whereas the displacement of the sprung mass is
denoted with x,. The unsprung mass is denoted with m1
whereas the sprung mass is denoted with m,. The tyre
stiffness is denoted with k1 whereas the tyre damping is
denoted with r;. The suspension system is realised by a
nonlinear device interposed between the sprung mass
and the unsprung mass. The suspension stiffness is
denoted with k, whereas the suspension damping is
denoted with r,. The nonlinear suspension device
provides a nonlinear elastic force field and a linear
dissipative force field. The nonlinear suspension device
is an hysteretic suspension system which is described
using the Bouc-Wen model of hysteresis [18-20].
According to the Bouc-Wen model, the restoring force
@(A5(1),s(t),t) can be expressed as:
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where A, () is the relative displacement between the
sprung mass and the unsprung mass, s(¢) is a function

of time which denotes the hysteretic displacement and
a denotes the ratio of the post-yield to pre-yield
stiffness. The time evolution of the hysteretic
displacement is described by the following differential
equation:

$(0) =y (Ay (1), 5(0),1) (0.2)

The nonlinear function (A, (¢),s(¢),t) is defined as:

‘//(AZ (t),S(l), t) =
= (a—(Bsign(s(OA, () +7)- (0.3)
(s(t)sign(s(1)))” YA, (¢)

where a, 5, y, and p are dimensionless parameters which
regulate the shape of the hysteresis loops. Linearising
the system around its stable equilibrium configuration,
the resulting system natural frequencies are denoted
respectively with f,, and f,, whereas the resulting
system damping ratios are denoted respectively with &
and &. Considering a worst-case scenario, the quarter-
car system is excited by a road profile h(t) which is
assumed as a superposition of two harmonic
displacements whose harmonic content is close to the
linearised system natural frequencies. Indeed:

h(t) = HysinQz fit)+ Hysin@z fot)  (0.4)

where H; and H, denote the amplitudes of the road
roughness whereas f; and f> denote the frequencies of
the road roughness. A detailed list of all system data is
reported in table 1.

2.2 Equations of Motion

The configuration of the system can be defined using a
set of n2=2 degrees of freedom. Indeed, system
generalized coordinates can be grouped in a vector q(?)
as:

(0.5)

q(t):|:xl(t)}

x (1)
where x,(f) denotes the displacement of the unsprung
mass and x,(f) denotes the displacement of the sprung

mass. System equations of motion can be derived using
Lagrangian Dynamics [21-22] to yield:

M (q(0),1)4(1) =
= 0(g(1),4(2), 5(1), h(1), h(2),1)

where M(q(¢),t) 1is system mass matrix and

(0.6)

Q(q(t),cj(t),s(t),h(t),ﬁ(t),t) is the vector of generalised

forces acting on the system. For the problem on hand,
the system mass matrix and the vector of generalised
forces are defined as follows:
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m 0
M(q(t),t) :[ 01 mj 0.7)

O(g(1), 4(1), 5(1), h(1), h(1), 1) =
—ki (n () = h(0) = (A (1), 5(1). 1) +
=1 (5 (6) = (1)) = 15 (% () = %2 (1)) (0.8)

P(Ay (2),5(2),8) + 1y (X1 (1) — X (7))

If a control action Q,(u(¢),t) is introduced on the

system, the matrix form of system equations of motion
becomes:

M(q(0),0)4(1) =

= 0(g(0), 4(0), 5(t), h(1), h(1), 1) + (0.9)
+ 0, (u(®),1)

For the system under study, the control input u(¢) is a

force acting between the sprung and the unsprung mass.
Therefore, the control action can be written as:

O, (u(2),1) =B, (H)u(t) (0.10)

where B, (t) is a Boolean matrix defined as follows:

-1
@@:L} (0.11)

Since the rank of the Boolean matrix B,(¢) is b, =1

and it is lesser than the number of system degrees of
freedom n, =2, the quarter-car model is an

underactuated mechanical system.
3. RESULTS AND DISCUSSION
3.1 Control Development

A regulation controller has been designed by using the
iterative adjoint-based control optimization method [23-
33]. The goal of the regulation controller is to reduce
the vibration amplitudes of the sprung and unsprung
masses induced by the road excitation. The synthesis of
the regulation controller provides a feedforward control
action and the corresponding evolution of the system
state.

3.2 Regulation Controller Design

The regulation controller is an open-loop controller
which has been designed using the iterative adjoint-
based control optimization method. The control scheme
which describes how the regulation controller acts on
the system is represented in figure 2.

Z oo ()
eferencd REGULATION u(t) 2(1)
> CONTROLLER > SYSTEM | ————>

Figure 2. Control Scheme for Regulation Controller

The weight matrices which characterise the cost
function have been defined as follows:

FME Transactions



O (T) = diag(10*,10*,10%,10%,10%)

0. (1) = diag(10*,10%,10*,10*,10%)

0,(t)=107"*

(0.12)
(0.13)

(0.14)

where Or(T) denotes the final state cost matrix, O, (¢)

denotes the state cost matrix and Q,(¢) denotes the

input cost matrix. Figure 3

shows the

iterative

convergence towards the minimum of the cost function.

Performance Index

1047

Figure 3. Cost Function - J

Figure 4 shows the time history
regulation controller.
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Figure 5 represents the displacement
mass when the system is uncontrolled.
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Figure 5. Uncontrolled Motion — x,(t)

Figure 6 represents the displacement

of the unsprung

mass when the regulation controller acts on the system.
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Figure 6. Controlled Motion - x,(t)

Figure 7 represents the displacement of the sprung mass
when the system is uncontrolled.
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Figure 7. Uncontrolled Motion — x,(t)

Figure 8 represents the displacement of the sprung mass
when the regulation controller acts on the system.
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Figure 8. Controlled Motion - x,(t)

These figures show that the effect of the action of the

regulation controller is

a considerable amplitude

reduction of both the unsprung mass displacement and
of the sprung mass displacement. The amplitude

reductions of both displacements &, and &, can be

quantified comparing the maximum amplitudes of
system motion with and without the controller as

follows:

6‘x1

:M =37.62 %
X

1u

(0.15)
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X, - X
£y =2 —88.46% (0.16)
X2u

where X;, and X,, denote the maximum amplitudes

of system steady-state displacements when there is no
control action whereas X;. and X,. denote the

maximum amplitudes of system steady-state motion
when the regulation controller acts on the system.

4. CONCLUSIONS

Authors’ research is focused on the development of new
and effective methods to design control strategies for
nonlinear mechanical systems [34-44]. In this paper
authors propose a general and effective method to
control nonlinear underactuated mechanical systems.
The proposed method is based on the iterative adjoint-
based control optimization algorithm. This method has
been utilized to design control laws for active
suspension systems of road vehicles which present the
hysteresis phenomenon. The system analyzed has been
idealized using a quarter-car model whereas the
suspension systems has been schematized using the
Bouc-Wen hysteresis model. The quarter-car system has
been excited by a rough road profile which has been
assumed as a superposition of two harmonic functions
whose harmonic content is close to the linearized
system natural frequencies. An active control system
has been collocated between the sprung mass and the
unsprung mass in order to reduce the amplitude of the
vibrations caused by the roughness of the road profile.
The problem on hand has been solved designing a
regulation controller using the iterative adjoint-based
control optimization method and the resulting regulation
controller is an open-loop controller. The synthesis of
the regulation controller provides a feedforward control
action which drastically reduces the amplitude of the
displacements relative to the sprung mass and to the
unsprung mass. Authors believe that the proposed
method represents a viable solution to control nonlinear
underactuated mechanical systems.
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HOBU AJITOPUTAM YIIPAB/BAIBA
AKTUBHUM CUCTEMHUMA BEIIAIBA CA
KAPAKTEPUCTUKAMA XUCTEPE3E

Domenico Guida, Carmine M. Pappalardo

VY oBOM paay ce HCTpaxyje NpoOiieM NpUTyLIHBamba
BUOpAIja y OHOCY Ha BEPTUKAIHO KPETAHE JIPYMCKUX
Bo3mia. lcTakHyTO je nma je IWJb HCTpaKMBama
IIPOjEKTOBAE 3aKOHA YIPaBJbamba 38 aKTHBHE CHUCTEME
Bellama Ja O ce pemyKoBaje HEmoKeJbHe BHOpaluje
KOje u3a3uBa HepaBaH npodmi apyma. JpyMcKko BO3WIO
j€ TpencTaBJFEHO MOJIEIIOM YETBPTHHE BO3WIA, JOK je
nIeMa CHCTeMa Belllama H3pakeHa KopumhemeM Bok-
Banosor mognena xucrepese. Ilopen Tora, akryarop
yIOpaB/baykor  CHCTeMa je  IocTaB/beH  u3Mehy
ontepehene u Heonrepehene mace. [lomro je mpodiem
UCTpaXMBamba HEeJMHEapaH, yIpaBJbame 110 BPEMEHY je
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IOOHjeHO HYMEpUYKH IIPUMEHOM HTEPATHBHE METOME
ONTHMU3AlIMje CHPErHyTOr yrpaBibama. Cumyianuje

Table 1. System Data.

MOKa3yjy Ja TMPOjeKTOBaHO VIPaBjhakhe 3HATHO
yOnaxaBa BuOpaiuje u3azpaHe npoduiom apyma

DESCRIPTION SYMBOLS | DATA [UNITS]
Unsprung Mass m, 40[kg]

Sprung Mass m, 300 [kg]

Tyre Stiffness k, 140000 [kg , s’z]
Suspension Stiffness k, 12000 [kg : S_z]
Tyre Damping i 30 [kg . S—l]
Suspension Damping r, 300 [ ke - S—I:I
Suspension Post-yield to Pre-yield Stiffness lo4 0.5 [\]

Ratio

Bouc-Wen Model Hysteresis Parameter a 1 [\]

Bouc-Wen Model Hysteresis Parameter p 500 [\]
Bouc-Wen Model Hysteresis Parameter /4 100 [\]
Bouc-Wen Model Hysteresis Parameter P 2.5[\]

First Mode Natural Frequency f | 0.9716 [s‘l}
Second Mode Natural Frequency S 9.7552 [s“}
First Mode Damping Ratio & 0.1870 [\]
Second Mode Damping Ratio £ 0.1825[\]
Ground Displacement Amplitude 1 H, 0.12 [m]
Ground Displacement Amplitude 2 H, 0.03[m]
Ground Displacement Frequency 1 1, 1 [ S‘l]

Ground Displacement Frequency 2 £ 10 [ S—‘]

Initial Displacement of Unsprung Mass X0 0.001 [m]
Initial Displacement of Sprung Mass X2 0.002[m]
Initial Velocity of Unsprung Mass Vio 0.03 [m : S*1]
Initial Velocity of Sprung Mass Yy, 0.04 [ m- s’1]
Initial Hysteretic Displacement 5, 0.001[m]

Time Span T 5[s]

Time Step At 0.001 [s]
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