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In this paper the vibration suppression problem relative to the vertical 
motion of road vehicles is investigated. In particular, the goal of the 
research is to design control laws for active suspension systems of road 
vehicles in order to reduce unwanted vibrations induced by a rough road 
profile. The road vehicle has been represented with a quarter-car model 
whereas the suspension system has been schematized using the Bouc-Wen 
hysteresis model. In addition, a control actuator has been collocated 
between the sprung mass and the unsprung mass. Since the problem under 
study is nonlinear, the time history of the control action has been obtained 
numerically using the iterative adjoint-based control optimization method. 
Simulations show that the designed control action significantly mitigates 
the vibrations induced by the road profile. 
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1. INTRODUCTION  
 

Suspension systems of road vehicles are needed to 
guarantee a good ride quality for the vehicle occupants 
and at the same time to obtain a good vehicle stability 
[1-2]. Typically, suspension systems are realised using 
passive components. The design of a passive suspension 
system is performed making a trade-off between these 
two conflicting goals, namely the demand of a good ride 
quality and the need of a good vehicle stability [3-4]. 
The main drawback of a passive suspension system is 
that the suspension force can be only a function of the 
relative displacement and of the relative velocity 
between the sprung mass and the unsprung mass. On the 
other hand, active suspension systems can improve the 
performance of road vehicle suspensions circumventing 
these design constraints [5-6].  

In this paper a new method to control nonlinear 
underactuated mechanical systems has been developed. 
This method originated from optimal control theory [7-
10] and it is based on the iterative adjoint-based control 
optimization algorithm [11-17]. The proposed method 
has been applied to design control laws for active 
suspensions system of road vehicles in order to mitigate 
road-induced vibrations. The hysteresis phenomenon of 
the suspension system has been represented using Bouc-
Wen hysteresis model. 
 
2. SYSTEM MODEL 
 
2.1 System Description 

 
The system under study is a quarter-car model 
characterised by an hysteretic suspension system and 

equipped with an active controller showed in figure 1.  

 
Figure 1. Quarter-Car Model with Hysteretic Suspension 
System and Active Controller 

The displacement of the unsprung mass is denoted with 
x1 whereas the displacement of the sprung mass is 
denoted with x2. The unsprung mass is denoted with m1 
whereas the sprung mass is denoted with m2. The tyre 
stiffness is denoted with k1 whereas the tyre damping is 
denoted with r1. The suspension system is realised by a 
nonlinear device interposed between the sprung mass 
and the unsprung mass. The suspension stiffness is 
denoted with k2 whereas the suspension damping is 
denoted with r2. The nonlinear suspension device 
provides a nonlinear elastic force field and a linear 
dissipative force field. The nonlinear suspension device 
is an hysteretic suspension system which is described 
using the Bouc-Wen model of hysteresis [18-20]. 
According to the Bouc-Wen model, the restoring force 

2( ( ), ( ), )t s t t   can be expressed as: 
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where 2 ( )t  is the relative displacement between the 

sprung mass and the unsprung mass, ( )s t  is a function 

of time which denotes the hysteretic displacement and 
  denotes the ratio of the post-yield to pre-yield 
stiffness. The time evolution of the hysteretic 
displacement is described by the following differential 
equation: 

 2( ) ( ( ), ( ), )s t t s t t   (0.2) 

The nonlinear function 2( ( ), ( ), )t s t t    is defined as: 
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where a, β, γ, and p are dimensionless parameters which 
regulate the shape of the hysteresis loops. Linearising 
the system around its stable equilibrium configuration, 
the resulting system natural frequencies are denoted 
respectively with fn,1 and fn,2 whereas the resulting 
system damping ratios are denoted respectively with ξ1 
and ξ2. Considering a worst-case scenario, the quarter-
car system is excited by a road profile h(t) which is 
assumed as a superposition of two harmonic 
displacements whose harmonic content is close to the 
linearised system natural frequencies. Indeed: 

 1 1 2 2( ) sin(2 ) sin(2 )h t H f t H f t     (0.4) 

where H1 and H2 denote the amplitudes of the road 
roughness whereas f1 and f2 denote the frequencies of 
the road roughness. A detailed list of all system data is 
reported in table 1. 
 
2.2 Equations of Motion 
 
The configuration of the system can be defined using a 
set of n2=2 degrees of freedom. Indeed, system 
generalized coordinates can be grouped in a vector q(t) 
as: 

 1
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where x1(t) denotes the displacement of the unsprung 
mass and x2(t) denotes the displacement of the sprung 
mass. System equations of motion can be derived using 
Lagrangian Dynamics [21-22] to yield: 
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where ( ( ), )M q t t  is system mass matrix and 

( ( ), ( ), ( ), ( ), ( ), )Q q t q t s t h t h t t  is the vector of generalised 

forces acting on the system. For the problem on hand, 
the system mass matrix and the vector of generalised 
forces are defined as follows: 
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If a control action ( ( ), )cQ u t t  is introduced on the 

system, the matrix form of system equations of motion 
becomes: 
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For the system under study, the control input ( )u t  is a 

force acting between the sprung and the unsprung mass. 
Therefore, the control action can be written as:  

 2( ( ), ) ( ) ( )cQ u t t B t u t   (0.10) 

where 2 ( )B t  is a Boolean matrix defined as follows: 

 2
1

( )
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  (0.11) 

Since the rank of the Boolean matrix 2 ( )B t  is 2 1b   

and it is lesser than the number of system degrees of 
freedom 2 2n  , the quarter-car model is an 

underactuated mechanical system. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Control Development 
 
A regulation controller has been designed by using the 
iterative adjoint-based control optimization method [23-
33]. The goal of the regulation controller is to reduce 
the vibration amplitudes of the sprung and unsprung 
masses induced by the road excitation. The synthesis of 
the regulation controller provides a feedforward control 
action and the corresponding evolution of the system 
state.  
 
3.2 Regulation Controller Design 
 
The regulation controller is an open-loop controller 
which has been designed using the iterative adjoint-
based control optimization method. The control scheme 
which describes how the regulation controller acts on 
the system is represented in figure 2. 

 
Figure 2. Control Scheme for Regulation Controller 

The weight matrices which characterise the cost 
function have been defined as follows: 
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 4 4 4 4 4( ) (10 ,10 ,10 ,10 ,10 )TQ T diag   (0.12) 

 4 4 4 4 4( ) (10 ,10 ,10 ,10 ,10 )zQ t diag   (0.13) 

 4( ) 10uQ t    (0.14) 

where ( )TQ T  denotes the final state cost matrix, ( )zQ t  

denotes the state cost matrix and ( )uQ t  denotes the 

input cost matrix. Figure 3 shows the iterative 
convergence towards the minimum of the cost function. 

 
Figure 3. Cost Function - J 

Figure 4 shows the time history of the resulting 
regulation controller. 

 
Figure 4. Regulation Controller - u(t) 

Figure 5 represents the displacement of the unsprung 
mass when the system is uncontrolled. 

 
Figure 5. Uncontrolled Motion – x1(t) 

Figure 6 represents the displacement of the unsprung 
mass when the regulation controller acts on the system. 

 
Figure 6. Controlled Motion - x1(t) 

Figure 7 represents the displacement of the sprung mass 
when the system is uncontrolled. 

 
Figure 7. Uncontrolled Motion – x2(t) 

Figure 8 represents the displacement of the sprung mass 
when the regulation controller acts on the system. 

 
Figure 8. Controlled Motion - x2(t) 

These figures show that the effect of the action of the 
regulation controller is a considerable amplitude 
reduction of both the unsprung mass displacement and 
of the sprung mass displacement. The amplitude 

reductions of both displacements 
1x

  and 
2x  can be 

quantified comparing the maximum amplitudes of 
system motion with and without the controller as 
follows: 

 1, 1,
1

1,
37.62 %u c

x
u

X X

X



    (0.15) 



288 ▪ VOL. 41, No 4, 2013 FME Transactions
 

 2, 2,
2

2,
88.46 %u c

x
u

X X

X



    (0.16) 

where 1,uX  and 2,uX  denote the maximum amplitudes 

of system steady-state displacements when there is no 
control action whereas 1,cX  and 2,cX  denote the 

maximum amplitudes of system steady-state motion 
when the regulation controller acts on the system. 
 
4. CONCLUSIONS 
 
Authors’ research is focused on the development of new 
and effective methods to design control strategies for 
nonlinear mechanical systems [34-44]. In this paper 
authors propose a general and effective method to 
control nonlinear underactuated mechanical systems. 
The proposed method is based on the iterative adjoint-
based control optimization algorithm. This method has 
been utilized to design control laws for active 
suspension systems of road vehicles which present the 
hysteresis phenomenon. The system analyzed has been 
idealized using a quarter-car model whereas the 
suspension systems has been schematized using the 
Bouc-Wen hysteresis model. The quarter-car system has 
been excited by a rough road profile which has been 
assumed as a superposition of two harmonic functions 
whose harmonic content is close to the linearized 
system natural frequencies. An active control system 
has been collocated between the sprung mass and the 
unsprung mass in order to reduce the amplitude of the 
vibrations caused by the roughness of the road profile. 
The problem on hand has been solved designing a 
regulation controller using the iterative adjoint-based 
control optimization method and the resulting regulation 
controller is an open-loop controller. The synthesis of 
the regulation controller provides a feedforward control 
action which drastically reduces the amplitude of the 
displacements relative to the sprung mass and to the 
unsprung mass. Authors believe that the proposed 
method represents a viable solution to control nonlinear 
underactuated mechanical systems. 
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НОВИ АЛГОРИТАМ УПРАВЉАЊА 

АКТИВНИМ СИСТЕМИМА ВЕШАЊА СА 
КАРАКТЕРИСТИКАМА ХИСТЕРЕЗЕ 

 
Domenico Guida, Carmine M. Pappalardo 

 
У овом раду се истражује проблем пригушивања 
вибрација у односу на вертикално кретање друмских 
возила. Истакнуто је да је циљ истраживања 
пројектовање закона управљања за активне системе 
вешања да би се редуковале непожељне вибрације 
које изазива нераван профил друма. Друмско возило 
је представљено моделом четвртине возила, док је 
шема система вешања изражена коришћењем Бок-
Вановог модела хистерезе. Поред тога, актуатор 
управљачког система је постављен између 
оптерећене и неоптерећене масе. Пошто је проблем 
истраживања нелинеаран, управљање по времену је 
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добијено нумерички применом итеративне методе 
оптимизације спрегнутог управљања. Симулације 

показују да пројектовано управљање знатно 
ублажава вибрације изазване профилом друма 

 

Table 1. System Data. 

DESCRIPTION SYMBOLS DATA [UNITS] 
Unsprung Mass 

1m    40 kg   

Sprung Mass 
2m    300 kg   

Tyre Stiffness 
1k   2140000 kg s     

Suspension Stiffness 
2k   212000 kg s     

Tyre Damping 
1r   180 kg s     

Suspension Damping 
2r   1800 kg s    

Suspension Post-yield to Pre-yield Stiffness 
Ratio  

    0.5 \   

Bouc-Wen Model Hysteresis Parameter   a    1 \   

Bouc-Wen Model Hysteresis Parameter       500 \   

Bouc-Wen Model Hysteresis Parameter      100 \  

Bouc-Wen Model Hysteresis Parameter   p    2.5 \   

First Mode Natural Frequency 
,1nf   10.9716 s     

Second Mode Natural Frequency 
,2nf  19.7552 s    

First Mode Damping Ratio 
1    0.1870 \   

Second Mode Damping Ratio 
2   0.1825 \  

Ground Displacement Amplitude 1  
1H    0.12 m   

Ground Displacement Amplitude 2 
2H    0.03 m   

Ground Displacement Frequency 1 
1f   11 s     

Ground Displacement Frequency 2 
2f  110 s     

Initial Displacement of Unsprung Mass 
1,0x    0.001 m   

Initial Displacement of Sprung Mass 
2,0x   0.002 m  

Initial Velocity of Unsprung Mass 
1,0v   10.03 m s     

Initial Velocity of Sprung Mass 
2,0v  10.04 m s    

Initial Hysteretic Displacement 
0s    0.001 m   

Time Span T    5 s   

Time Step t    0.001 s   

 


