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INTRODUCTION

Moving Loads in Structural Dynamics
of Cranes: Bridging the Gap Between
Theoretical and Practical Researches

The moving load problem is one of the fundamental problems in structural
dynamics. A lot of work has been reported during more than a century ago
dealing with the dynamic response of structures at first in the field of
transportation such as railway bridges, later on highway bridges and
finally various constructions such as are cranes, under the influence of
moving loads. Research discussing the moving load effects on structural
dynamics of cranes attracted the interest of several authors in the past
vears. However, regardless of the theoretical accomplishments in, after
checking the adopted crane’s parameters it is obvious that the obtained
results in many papers are not relevant for practical considerations for
already existing cranes. On the other hand, one of the challenges for
engineers and scientists is the conversion of theoretical ideas and
researches into practical and efficient approaches that can be used by
designers of mechanical equipment. However, sometimes it is needed to
move from research findings of existing machines to future systems,
particularly having in mind that cranes performances have increased over
the years and this intension is not yet finished. For instance, high-
performance mega quayside container cranes (QCCs) and gantry cranes
have already tripled in outreach, capacity and trolley velocity compared to
the machines built more than 50 years ago. This reason makes the
investigations on mathematical models of a crane moving trolley
necessary. In recent years, considerable efforts have been made to better
understand the dynamic behavior and vibration of large QCCs and gantry
cranes under a moving trolley. The other direction in research is how to
adopt the most appropriate moving load model. The goal of this paper is to
discuss a wide spectrum of the most significant published papers in this
field with respect to the future perspective of cranes structures
development and to point out how to bridge the gap between “pure
theoretical researches” (their usefulness) and practical requirements that
are imposed by the structural engineers who are involved in the design of
high-performance cranes.
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applications in the field of transportation. Bridges,
guideways, cranes, cableways, rails, roadways, runways

The moving load problem is one of the fundamental
problems in structural dynamics. In contrast to other
dynamic loads these loads vary not only in magnitude
but also in position. Structures subjected to moving
bodies have been analyzed ever since the first railway
bridges were built in the early 19th century. Interest in
analysis of moving load problems originated in civil
engineering (from observation that when an elastic
structure is subjected to moving loads, its dynamic
displacements and stresses can be significantly higher
than those due to equivalent static loads) for the design
of rail-road bridges and highway structures. The
importance of this problem is manifested in numerous
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and pipelines are examples of structural elements to be
designed to support moving masses. Applications of
moving load problem have been presented in
mechanical engineering studies for the past 30 years.
Extensive references to the literature on the subject can
be found in the monograph by Fryba [1] with many
analytical solution methods for simple cases. The basic
approaches in trolley modeling are: the “moving force”
model; the “moving mass” model and the trolley
“suspension model”.

The simplest dynamic trolley models are the
“moving force” models. The consequences of
neglecting the structure-vehicle interaction in these
models may sometimes be minor. In most moving force
models the magnitudes of the contact forces are constant
in time. A constant force magnitude implies that the
inertia forces of the trolley are much smaller than the
dead weight of the structure. Thus the structure is
affected dynamically through the moving character of
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the trolley only. All common features of all “moving
force” models are that the forces are known in advance.
Therefore structure-trolley interaction cannot be
considered. On the other hand the “moving force”
models are very simple to use and yield reasonable
structural results in some cases. The review paper
concerning with the fundamental load problem of a
uniform simply supported Euler-Bernoulli beam
subjected to a constant vertical force moving at a
constant speed is written by [2] and gives a basic
understanding of the moving load phenomenon. An
excellent overview of moving load dynamic problem is
given in [3].

2. MOVING LOAD PROBLEM IN STRUCTURAL
DYNAMICS OF CRANES

The last decades have seen a mounting interest in
research on modelling and control of cranes. The
adopted models can be distinguished by different
complexity of modelling and by the nature of neglected
parameters. The most common modelling approaches
are the lumped-mass and distributed mass approach.
The comprehensive literature review of crane modelling
and control, starting from 1961, was given in [4], where
the conducted study has covered 150 journal papers,
conference papers, and reports. The application of
moving load problem in cranes dynamics has obtained
special attention in the engineering researches in the last
few years, but unfortunately little literature on the
subject is available. Some of the most interesting papers
will be discussed. The paper [5] is according to the
authors’ best knowledge the first attempt to increase the
understanding of the dynamics of cranes due to the
moving load. Simply supported uniform Euler-Bernoulli
beam carrying a crane carriage and payload is modeled,
Figure 1 [5].
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Figure 1. Oguamanam’s model [5]

The crane carriage is modeled as a particle as is the
payload which is assumed to be suspended from the
carriage on a massless rigid rod and is restricted to
motion in the plane defined by the beam axis and the
gravity vector. The natural frequencies of vibration of
the beam-crane system for a stationary crane are
investigated and the explicit frequency equation is
derived for that set of cases. Numerical examples are
presented which cover a range of carriage speeds,
carriage masses, pendulum lengths and payload masses.
It is observed that the location and the value of the
maximum beam deflection for a given set of carriage
and payload masses is dependent upon the carriage
speed. At very fast carriage speeds, the maximum beam
deflection occurs close to the end of the beam where the
carriage stops as a result of inertial effects and at very
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slow speeds occurs near the middle of the beam because
the system reduces to a quasi static situation.
Oguamanam’s model was extended in [6]. An
overhead crane, modeled as a point mass carriage
traversing a simply supported Euler-Bernoulli beam that
is allowed to travel in a direction perpendicular to its
span, is considered. The point mass payload is attached
to the carriage via a massless beam and is allowed both
in-plane and out-of-plane motion, Figure 2 [6]. The
Rayleigh-Ritz solution technique is used to obtain the
equations of motion of the system. The influences of
traverse and travel motions, pendulum length and
payload mass on the pendulum motion are investigated.
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Figure 2. 3D Oguamanam’s model [6]

Wu analyzed in paper [7] dynamic responses of the
three-dimensional framework of a tyred overhead crane
under the action of a moving trolley hoisting a swinging
object which were calculated using the finite element
method and the direct integration method. Instead of the
conventional moving force problem where only the
vertical inertia effect of the moving trolley was
considered, the three-dimensional inertial effects due to
the masses of both the moving trolley and the swinging
object have been considered in this paper, Figure 3 [7].
To this end, an equivalent moving mass matrix has been
presented and which is dependent on both the
instantaneous swinging angle of the hoisted object and
the instantaneous position of the moving trolley so that
the contribution of the moving mass on the overall mass
matrix of the entire structure itself is easily tackled.
Finally, the title problem was solved by calculating the
forced vibration responses of the three-dimensional
framework with time-dependent overall mass and
damping matrices and subjected to an equivalent
moving force.

In the paper that comes after, [8], Wu presents a
technique to replace the moving load by an equivalent
moving finite element so that both the transverse and
the longitudinal inertial effects due to the moving mass
may easily be taken into account simultaneously. The
mass, damping and stiffness matrices of the moving
finite element are determined by the transverse (y)
inertial force, Coriolis force and centrifugal force of the
moving mass, respectively.

From the numerical examples illustrated, it has been
found that, in addition to the conventional transverse (y)
responses, the inertial effects of the moving load also
affect the longitudinal (x) responses of the portal-frame
structure significantly, Figure 4 [8].
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Figure 3. Wu’s model [7]
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Figure 4. Wu’s mathematical model for a crane hoisting a swinging mass [8]

Younesian has presented in [9], Figure 5, nonlinear
vibration of a three-dimensional moving gantry crane
carrying a trolley hoisting a swinging object. A finite
element method is used to solve nonlinear coupled
governing equations of the structure. A combinational
technique (Newmark-Runge-Kutta) is employed for
direct integration procedure. To develop a
comprehensive parametric study and sensitivity analysis
of the coupled nonlinear system, sequence of numerical
simulations are carried out. Parametric study is directed
to find out how different parameters like speed and
acceleration of the trolley and gantry crane as well as
the mass of the moving trolley and swinging object may
affect the linear and nonlinear responses of the
structure. It is found that the nonlinearity arises from
large amplitude of three-dimensional motion of the
swinging object.

The dynamics of an overhead crane system with the
suspended payload on the trolley moving at a specified
constant speed is considered in paper [10]. The beam is
discretizied by 10 elements, while the trolley is modeled
as particle along with payload suspended with rope
system modeled as spring, Figure 6 [10]. The overall
mass, damping and stiffness matrix is calculated at each
time interval, along with finite element formulation of
equivalent force vector. Equations of motion of MDOF
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system are given for oscillator moving on beam
structure. Dynamic responses in the vertical direction
for all DOFS are obtained by solving the governing
equations with direct integration method. For validation
purposes, the technique is first applied to a simple beam
subjected to a force moving along the beam with
constant velocity. The influence of moving velocity and
spring stiffness are investigated.

The moving load problem is also considered for jib
cranes. Dynamics of a two-dimensional jib crane
structure subjected to a moving trolley with hoist and
payload is investigated, Fig. 7 [11]. Dynamic responses
of the structure, both in the vertical (Y) and horizontal
direction (X), are calculated using the finite element
method and the direct integration method. Instead of the
conventional moving force problem, the paper [11]
deals with the two-dimensional inertial effects due to
the masses of trolley, hoist and payload. For this
purpose, the moving mass matrix has been used to give
contribution to the overall mass matrix of the entire
system. The title problem was solved by calculating the
forced vibration responses of the jib crane structure with
time-dependent overall mass while subjected to an
equivalent moving force. Factors as magnitude, speed
and acceleration of the moving trolley were studied as
well.
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Figure 5. 3D sketch of Younesian model [9]
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Figure 7. Gasic’s model [11]

In recent years, considerable efforts have been made
in order to better understand the dynamic behavior and
vibration of larges QCC under a moving trolley,
particularly because of a construction of faster and
heavier trolleys and the design of slender support
structures without strict deflections limits. This fact
resulted in several papers discussing the application of
moving load problem in analysis of structural behavior
of QCCs [12, 13, 14]. This is due to the fact that modern
high-performance mega QCCs have already tripled in
outreach and load capacity compared to the first QCC
built in 1959.

This is not easily accomplished given the
cantilevered nature of QCC. A cantilever (waterside
boom) identified as the more important structural part is
structurally inefficient because almost all of the
structural strength and weight is needed to support its
own weight. In practice it is very complicated and
expensive to do an experimental research on a real size
mega QCC. This reason makes the investigations on
mathematical models of moving load necessary,
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especially during the design stage and particularly
having in mind the large dimensions of the boom and
trolley mass [15]. Mathematical model of moving load
action on QCC is presented in Figure 8 [12, 15].

The dynamics of a two-dimensional gantry crane
structure subjected to a moving trolley with hoist and
payload is examined in [16].

Dynamic responses of the structure, both in vertical
(Y) and horizontal direction (X), are postulated using
the combined finite element and analytical method and
solved with the direct integration method. Instead of the
conventional moving force problem, the two-
dimensional inertial effects due to the overall mass of
trolley, hoist and payload have been considered in this
paper, Figure 9 [16]. The title problem was solved by
calculating the forced vibration responses of the jib
crane structure with time-dependent overall mass and
subjected to an equivalent moving force. Factors as
speed and acceleration of the moving trolley were
studied.
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Figure 9. a) Real model of the gantry crane, b) FE model of the framework, c) Moving mass, d) Dynamic interaction [16]

3. DISCUSSION

Results from paper [5] are obtained for beam length of
10 m with too small (unrealistic) square tube cross
section. The ratio of length/section dimension is
extremely big which can raise doubts in the usage of
Euler-Bernoulli theory for bending in this case.
Maximal static deflection due to own beam self weight
is 37 cm which also describe the practical faults of the
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research. Extended research [6] also uses unrealistic
(too small) value for inertial moment for cross section
of beam which is 6 m long. Hence, only swinging
angles of payload are presented with values (<1,71°)
which can't be of much importance. Periods for
acceleration/deceleration of 15 s are very big to raise
interest in crane dynamics. However, both papers show
the complex mathematical approach for moving load
problem.
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Basic assumption in paper [7] is the reduction of the
moving pendulum problem to moving mass problem
with equivalent moving mass as meq(t)=m7+mswcoszﬁ(t).
This approximation neglects the centrifugal forces due
to payload swinging and assumes that swinging of the
payload is known in advance. Also, structural
deflections of 3 mm are very small to gain practical
usage. Moreover, paper [8] studies the crane dynamics
with trolley speeds up to 100 m/s. These (unachievable)
speeds can not stand for conducting proper discussion.
Nevertheless, results for speeds of trolley in range of
3-5 m/s are not suitably presented which certainly could
be more interesting for discussion of real range of
trolley performances in close future.

Results in paper [9] are based on top beam
discretization with only 4 elements which can generate
bottom level of satisfactory results and can be used only
for small gantry cranes which aren't affected to moving
load problems because of short runway.

Paper [10] presents the middle span deflection of
bridge crane as main parameter in crane design. It is
noted that when the trolley speed is relatively low
(2 m/s) the dynamic response in moving mass problem
resembles the static case. For the trolley speed of 5 m/s
one can find dynamic amplification factor (DAF) of
1.085 which comes from inertial effect of moving mass,
performed on bridge span of 40 m and sectional
properties which satisfies basic static design check.
Extended analysis with moving oscillator model give
mid span deflection of 11,5 cm which is increase of
12 % from the static case, even for the critical spring
stiffness.

For the push-to-limits performances of the jib crane
structure, results from [11] show that moving load
effects are noticeable mainly in
acceleration/deceleration periods. The DAF factor goes
to 1.11 for the value of the flexural moment for the jib
crane basement compared to static case and DAF is 1.08
for the maximal horizontal deflection.

Results from paper [12] reveals that values of
acceleration of moving mass in vertical direction is
0.0165 g which belongs to the class of clearly
appreciable accelerations in the frequency range
between 1 - 10 Hz and it is not as high to disturb the
crane operator.

Trolley speed pattern in paper [13] assumes that
speed is 6 m/s and acceleration is 1.2 m/s, performed
on QCC with span of 65.8 m. The values for DAFs are
obtained in relation to the maximal static results. With
moving mass model DAF for the boom deflection is
1.142 while for the bending moment is 1.114. It is
important here to note that DAFs from moving mass
model and moving force model are very close which
was obtained in [15] with maximal value of boom
deflection of 0.407 m.

Paper [16] gives results that show the trolley speed
of 5 m/s don't have significant influence on vertical
displacements of the structure, but only for horizontal
displacements. The decrease of amplitudes for the
central displacement can be gained with structural
damping of 0.06, but is only descriptive because it is
very hard to achieve this value of damping in crane
structures.

296 = VOL. 41, No 4, 2013

4. CONCLUSION

After discussing the practical relevance of the obtained
results in many analyzed papers [5,6,7], regardless of
the theoretical accomplishments in, it is obvious that the
obtained results are not relevant for practical
considerations for already existing industrial cranes. On
the other hand in some papers discussing large high-
performance container and gantry cranes [10,11,15] are
considered both actual crane performances and the ones
predicted to be reached in the future, although the
perspective in design of such machines is uncertain.

So, the intention in research dealing with moving
load problem in structural dynamics of cranes should go
towards mega cranes with increased performances.
Obviously, dynamic behaviour of a mega structure as a
movable flexible structure is different than of a smaller
crane. Vibrations are a serious problem in crane systems
that are required to perform precise motion in the
presence of structural flexibility. Not only the vibration
of the crane is unacceptable operationally, it may be
unacceptable structurally because of additional fatigue
damage. Of course, it is very difficult and expensive in
practice to do an experimental research on a real size
mega crane or even on a scale-model. For this reason
the investigations on mathematical models are
necessary, especially during the design stage. Simpler
models of mega cranes enable easier mathematical
analysis and give better insight in the design and the
possibilities of different control algorithms. On the other
hand, more complex models are necessary to
approximate the reality closer, e.g. the flexibility of the
crane structure will certainly affect the behaviour of the
controller. However, it is impossible to include all
effects of the real life in a mathematical model of large
crane [13].

Finally, the last direction in research can be towards
how to adopt the most appropriate moving load model.
It can be found in paper [15] that the basic structural
response “moving force” model is appropriate for use in
engineering problems because it gives a very slight
difference comparing to the “moving mass” model. This
fact applies to the extreme up-to-date parameters of
QCC. Although it very difficult to predict the future
development of large cranes it seems unlikely to reach
in the next decades such an increase of performances
that will favor “moving mass” model to be suitable for
engineers in design process. However, “moving mass”
model will be viable for scientific approach and
structures of cranes can be taken as a good example in
modeling.
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INPOBJIEMATHUKA NIOKPETHOI' ONTEPEREIHLA
IPU AHAJIN3U JUHAMUYKOI IIOHAIITABA
JU3AJINIA: IPEMOIIRABAIBE JA3A UBMEBY
TEOPUJCKUX U IPAKTUYHUX [TPUCTVYIIA

H. 3puuh, B. I'amuh, C. bommwak, M. BopheBuh

IIpo6nematuka mokpetHor onrtepehema je jeaHO 01
OCHOBHHX IIOIVIaBJba JIMHAMUKE CTpyKTypa. Tokom
NOCJIEIUX CTO TOJHMHA CIPOBEAEHAa Cy MHOra
HCTpaKMBamka Koja ce 0aBe aHAIM30M IMHAMUYKHX
O[3UBa CTPYKTYpa, Hajupe KOA IKEIE3HHUKUX WU
JPYMCKHX MOCTOBA. Y TIOCIEIE BpeMe MPEAMET OBHX
UCTpaXUBaka IIOCTajy M CTPYKType JAu3aiHia. Yy
NOCNIEbUX HEKOJIMKO TOOWHA HCTPaXKHBamkba M3
o0acTi yTuIaja MOKPETHOT onTepehema Ha CTPYKTYype
JU3IMNa Cy [PUBYKIA  [aXiby  HEKOJIHIMHE
uctpaxupaya. [la umak, HE3aBHCHO O] TEOPH)jCKHX
nocturayha y oBoj 00JacTH, HAKOH MPOBEPE YCBOjEHUX
napameTapa JIu3ajMiia, OYHIVICAHO je Ja JoOujeHH
pe3yaTaTd y MHOTHMM paJOBUMa HUCY PEJIEBAaHTHU 34
NpaKkTHYHy NpPHMEHy Ha nocrojehnm nmzamunama. Ca
Jpyre CTpaHe, M3a30B 32 WHXKCHEPE N HaydHHKE je
yIpaBo KOHBEp3Wja TEOPHjCKUX HIEja y MpaKTH4aH
MIPUCTYTI, KOJU C€ MOXE MCKOPUCTUTH 3a MPOjEKTOBAbE
mBamna.  Mehytum, moHekam  je  TOTpeOHO
NPETIOCTABUTH MapaMeTpe KOjH NMpeBa3uiia3e TPEHYTHH
HUBO TEXHHUUYKHX pelIerma, Moce0Ho nMajyhu y Bumy na
ce nepdopMaHce qU3aIHlla KOHCTAHTHO MOOOJBILIABA]Y,
mTo he wm pgake OuTH HactaBjbeHo. Ha mpumep,
JAHAIIHEe 00aJICKEe KOHTSJHEPCKE JU3ANUIIC U MTOPTATHE
JM3aJIMLEe Cy TPOCTPYKO noBehase pacnoHe, HOCHBOCTH
U Op3uHe Konuua y nopehemy ca MCTHM HanpaB/bEHUM
npe 50 roxuua. 300r TOra je HEOIXOIHO pa3Marpame
JUHAMHYKHX MOJIENa AU3AINYHUX KOJHULA. Y TOCHehe
BpeMe BEJIMKA IaXmha je mocBehena 60speM pazymeBamy
JUHAMUYKOT TIOHAIIama W BHOpamdja KOI CTPYKTypa
00aJIICKHX KOHTEJHEPCKUX IHU3AIMNAa ¥ IOPTATHAX
IHM3AJIMNA yCJel NejCTBa KpeTama KoJMHa. JemaH of
OCHOBHHX IIpo0jeMa y UCTPaKUBAIIIMa jeCTe YCBajarbe
onrosapajyher monema moxperHor omrtepehema. Llmmb
OBOI' paja je Ja Ja OCBPT Ha IIUPOK CIEKTap
HajBAXHUjUX 00jaBJbEHHX pajgoBa M3 OBE 00JacTH y
onHOcy Ha Oyayhu pa3Boj CTpyKTypa mu3ajidiia U Ja
Harjgacu Kako C€ MOXKe TPEMOCTHTH ja3 usMehy
"qucTor" TEOPHjCKOT MPUCTYTIA (FbUXO0BE KOPHCHOCTH) U
MIPaKTHYHHUX II0Tpeda KOHCTPYKTOpa KOjH MPOjEKTYjy
JM3AJTULE BUCOKHX MeppopMaHCH.
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