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with flat external surface of the wall. Geometric optics laws are applied to
the central lines of laser beams. Measurement volume dislocations,
calibration angles and distances of measurement volume centre from the

photo-detector field of view centre are expressed. The expressions derived
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in this paper were applied to specific turbulent swirl flow in pipe. That
revealed several advantages of use of a simple cylindrical tube over
nowadays favored use of cylindrical tube with flat external surface. Those

results suggest that current avoiding of laser Doppler anemometry
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measurements with simple cylindrical tubes should be reconsidered.
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1. INTRODUCTION

Fluid flow researchers warmly welcomed laser Doppler
anemometry (LDA) as nonintrusive and absolute
velocity =~ measurement technique (requires no
calibration) that has high temporal resolution, providing
enough data to generate reliable statistics for local
turbulences. Its development towards two and three
velocity component measurements promised even better
view of complex flows. All those benefits are
thoroughly verified in the case of open fluid flows.
Confined flows, however, apart from requiring
transparent sections of vessels and tubes, suffered the
refraction of both laser beams that produce
measurement volume and scattered light that provides
the velocity data. Any type of transparent wall, even the
plan-parallel one, might generate some unwanted
phenomena that must be taken into account:
measurement volume dislocation, decalibration of a
system, digression of measurement volumes for
different velocity components (astigmatism), inter-
ference fringe distortion due to beam waist dislocation,
etc. The degree of those unwanted phenomena depends
on experimental settings and especially on its geometry.

As for cylindrical tube flows, among the first
analytical approaches is one of Gardavsky et al. [1] that
suggested the method of calculating the position of
measurement volume and calibration angle along the
diameter that overlaps the LDA system axis. Later, in
order to minimize the wall curvature effects, flat
external wall surfaces were applied [2-4]. Most of them
considered liquid flows. More recently Zhang et al.
performed several thorough analyses of the water flow
within the tube of cylindrical internal and flat external
wall [5,6]. Our attempts of experiments with LDA

Received: June 2012, Accepted: July 2013
Correspondence to: Jelena Ili¢

Faculty of Mechanical Engineering,

Kraljice Marije 16, 11120 Belgrade 35, Serbia
E-mail: jilic@mas.bg.ac.rs

© Faculty of Mechanical Engineering, Belgrade. All rights reserved

application in air flows in simple cylindrical and in tube
with cylindrical internal and flat external wall showed
the severe problems, especially in the second
configuration. That incited the detailed analysis exposed
in this paper.

The propagation of LDA incident laser beams and
scattered light, in the case of a simple cylindrical tube,
are analysed by means of geometric optics in Section 2.
The same but in a tube with cylindrical internal and flat
external wall is analysed in Section 3. The intention is
to measure the flow velocities along the diameter of a
tube cross-section parallel to the lens, using two
component LDA system.

Theoretical analysis of this paper explains how to
find: 1. the dislocation of measurement volume in x and
y direction Ax and Ay, respectively, as well as the
resultant calibration angle in the measurement of radial
(Sections 2.1 and 3.1), and axial (Sections 2.2 and 3.2)
velocity components; 2. how far the measurement
volume centre is from the centre of the field of view of
the photo-detector of the LDA system, placed in the
centre of the lens (the beginnings of Sections 2 and 3).

Optical aberrations, beam waist dislocations and
fringe distortions were not taken into account and will
be subject of further research. Still, the results of
calculations according to the theory exposed in Sections
2 and 3 show several advantages of the use of simple
cylindrical tubes over the use of flat external wall tube
in the case of air flow (Section 4).

2. THE ANALYSIS IN A CASE OF A SIMPLE
CYLINDRICAL TUBE

In turbulent swirl flow experiment that is the subject of
this paper, the system enables only vertical traversing of
a probe i.e. along the y axis (Fig. 1). There are two pairs
of laser beams: one pair with vertical intersecting angle
of 26 (thick gray intersecting lines), measuring radial
(vertical) velocity component ¥; and another pair with
horizontal intersecting angle of 26, too (thick gray
dashed intersecting lines), that measures axial
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(horizontal) velocity component (. The beam
separation of both pairs of beams at lens is d:

d=2ftan@, €))

where f is the focal length of the lens.

Figure 1. The definition of the geometry of a system with
simple cylindrical tube

If there had not been a tube wall, the measurement
volume would have been at focal length f distance from
the lens (Fig. 1). However, due to refraction of laser
beams on a tube wall, the dislocation of beam
intersection point, i.e. measurement volume, appears.

It is supposed that the perfect transparent cylindrical
tube, of internal radius R; and external radius R, is
horizontal, while lens is traversing in vertical direction.
The lens position is defined by h which is the height of
the lens centre with respect to the height of the centre of
the tube cross-section (Fig. 1). The distance between the
lens and the vertical diameter of the tube cross-section
is supposed to be constant and equals the focal length f.
Refraction indices of a fluid within a tube, tube glass,
and external fluid are ng, N, and no, respectively. In this
paper it is assumed that the refraction index of glass n,
is higher than refraction index of internal flowing fluid
ng which is greater than or equal to that of external fluid
(usually air) n,,.

X

Figure 2. The path of the light that reaches the centre of the
photo-detector through simple cylindrical tube wall

In Fig. 2, full black broken line presents the path of
the light that reaches the centre of the photo-detector. It
enters the photo-detector in the horizontal direction, but
it does not come from the horizontal direction in the
internal fluid, but at angle 6.=7.—%a to the horizontal

where @a=a+8a-Fn and

sin @, h sin Nh
A =5 YA= 5
Re neR >
. noh . nOh
Sin fgp = sin fip = ——
NgRe > Ng R; 2
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After calculating those angles and Ax and Ay, the
distance of a centre of measurement volume from the
centre of the viewing field of the photo-detector can be
obtained as

Ac = R; sin(@ip + 55 ) — Axsin Sp — (h+ Ay )cos 5p (3)

2.1 Vertical LDA optical plane

Measurement volume dislocation is calculated
according to Fig. 3. Each laser beam intersects the tube
wall at two points: external (e) and internal (i). Higher
beam intersects the external surface of the tube wall at
point H., and the internal surface of the tube wall at
point H;. Lower beam intersects the external surface of
the tube wall at point L., and the internal surface of the
tube wall at point L;. The positions of these four points
with respect to the centre of the tube cross-section O
and horizontal line (double dot — dash line) are defined

by angles @, @i, ¢re and @i, respectively.

Figure 3. The propagation of LDA laser beams intersecting
in vertical plane

In Fig. 3, it can be seen that:
Re singo(H/L)e ir( f—R. COS(p(H/L)e)tanﬁz h 4

With (1), by solving the (4), we obtain

. h 2
SN QL) = R—(cos&) +
e

h 2
+sin @ 1_(R_j (cos:9)2

€

; )

where sign + refers to ¢y, and sign — refers to ¢.. The
angles of incidence at glass surface of laser beams are

aH/L = Ph/L)e F O (©)

where — refers to o, and + refers to the o.. According
to Snell's law, the angles of refraction at the external
surface are SN B(u/) = N, sin (¢(H/L)e * 9)/”g . The law

of sines applied to triangles OH.H; and OL.L; gives
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. Re Sin ﬂ(H/L)e
s1n,6'(H/L)i B E——
1
) (7
R g0 0)
R ng S AR L)e *
which defines angles of incidence of beams at the
internal tube surface (Fig. 3). Snell's law applied at that

surface and (7) lead to internal angles of refraction y,.

. Ny Re .
sin yy :ﬁ?‘_}sm((ﬂ(H/L)e 19). )]
1

Laser beams in fluid (within the tube) are inclined to the
horizontal (double dot — dash) lines at angles

O =oni—rnand O =y -9y, )

(G4 is the angle between the higher beam and the
horizontal line, and & is the angle between the lower
beam and the horizontal line in the internal fluid). Fig. 3
shows that ﬁ(H/L)i :iB(H/L)e +Apy, (A¢H/L =A@ 7A¢(H/L)e).

The resultant beam intersection angle, which defines
calibration constant of a system, is

_Out+6

6 ==

. , (10)
=E(A¢e +AB - ABe _A7)

Where A@e:A(pHe_AgoLe, Aﬂi:ﬁHi_ﬂLi’ Aﬁe:ﬂHe_ﬁLe and
Ay=ry—7L.

Since the bisector of the beam intersection angle is
no more horizontal, measured velocity component
inclines to the vertical axes at angle

5=(64 -6.)/2. (11)

Between the lens and intersecting point, each beam
is broken into three line segments, due to refraction: the
first in external fluid, the second in glass, and the third
in internal flowing fluid. It can be noted that the sum of
the projections of those three line segments upon a
horizontal line for one laser beam is equal to that of
another laser beam i.e.

XH +aH =X|_+a|_. (12)

Xy 1s horizontal distance between H; and the actual beam
intersection point, and X, is horizontal distance between
L; and actual beam intersection point (Fig. 3). ay is
horizontal distance between lens and H;, and a; is
horizontal distance between lens and L;. They can be
expressed as

ay =[HiHe[cos(on; — Aui ) +
+(f —Rg cos e )

a :||_iLe|cos(,B|_i —Li)+

s 13
+(f —Rgcosgpe) (13)

where
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|HiHe|:
— (13a)
=\/Re +R{" = 2RgR; cos (@i — Pre )
|LiLe|=
(13b)

= \/Re2 +R7 —2ReR; cos (o1 — o)

Also, the sum of the projections of those three line
segments upon a vertical line for one laser beam plus
that of another laser beam equals beam separation at the
lens di.e.

XH tanHH +bH +XL tan&l_ +b|_ =d. (14)

by is vertical distance between the position of higher
beam at lens and H;, and by is vertical distance between
the position of lower beam at lens and L;. They can be
expressed as

by =[HiHelsin (i - i)+
+(f —Rg cos e )tan 6

b = |LiLe[sin(ALi —oLi) +
(15)
+(f —Rgcosg ¢ )tan
Finding Xy and x_ from the system (12) and (14),
enables calculating the horizontal and vertical
displacement of measurement volume AXx and Ay,
respectively (Fig. 3):

Ax = f — Xy —ay
and

Ay = f tan @ — xy tan Gy —by . (16)
2.2 Horizontal LDA optical plane

In this case laser beams are in horizontal plane between
the lens and the tube wall. Unlike the previous case,
where both laser beams and all their segments were in
the same plane — vertical plane, here the refractions on
each side of the tube wall force laser beams to change
the plane in which they propagate. The symmetry of
considered geometry allows analysing the refraction of
only one laser beam, because another beam undergoes
exactly the same changes until the point of intersection.
The first task is to find out the angle of incidence of
a laser beam (thick grey line) at the external surface of a
tube — angle «. Laser beam reaches the external surface
of a tube at point E (Fig. 4). The angle ¢. between the
ray OE and horizontal lines (double dot — dash lines) is
related to the height of the centre of a lens h as follows:

sing, =h/Rg . (17)

The plane ABC perpendicular to the laser beam at point
A, helps in finding the angle «. Noting the right angles
in Fig. 4, it can be concluded that

CosQ = Ccos @, cosd . (18)

The angle of incidence « lies in plane ACE which is
inclined to the horizontal plane ABE at angle 7. Among
other expressions for angle y one that avoids sign
ambiguity and division by zero, is following expression:
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tany = — . (19)

RN

s

Figure 4. The incidence of a laser beam at the external
surface of a tube wall and the propagation direction of a
laser beam (thick grey line) within the glass of a tube wall

Applying the Snell's law, the angle S at which laser
beam enters the glass is determined as sin/#=n,sina/n,

Angle [ belongs to the plane ACE which can also be
designated as plane EDG, as well (Fig. 4). The
projection of refracted laser beam upon horizontal plane
EDF (or ABE) is ray EF presented as grey double dot —
dash line. Its deviation from the initial direction of laser
beam (i.e. ray ED) is angle J1,, and its deviation from
the direction of refracted laser beam (i.e. ray EG) is

angle &y,. In order to express angles o, and Jy,, plane
DFG parallel to the plane ABC should be noted. The
analysis of a tetrahedron EDFG shows that

sindyg :sin(a—ﬂ)sin)/ and

€08 Spg = cos(a _ﬂ)/cos g . (20)

Again, exactly the same changes undergoes the other
beam but at the opposite side with respect to the plane
perpendicular to the tube axis. Therefore, entering the
glass, laser beams propagate in plane EHG which is
inclined at angle &, to the horizontal plane (plane EHF
—Fig. 5).

glass tube
wall

internal
fluid

Figure 5. The spatial position of a laser beam GE within the
glass of a tube wall
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Note that triangles EFG and HFG are right angled
triangles with right angle at point F, and triangles EHG
and EHF are right angled triangles with right angle at
point H. It helps in expressing angle o, as

tan o,y = Y9
9 cos(€—5hg) @1
glass tube external

!
|
i wall
i
i

| internal
 fluid

Figure 6. The incidence of a laser beam at the internal
surface of a tube wall

If laser beams have been intersecting within the glass,
they would intersect at angle 6, (Figs. 5, 6), which can
be expressed as

sin @y = cos Oy sin (0 —Ohg ) ' (22)

At point G, the laser beam reaches the internal
surface of a tube wall, and suffers another refraction. In
order to find the angle of incidence at point G, the angle
@,, defining its position with respect to the centre of a
tube cross — section and horizontal line, should be
discovered (Fig. 6). (While point E belongs to the cross
— section with centre in point O, points H and G belong
to the cross-section with centre in point O’ shifted along
the tube axis OO’ for the same length as it is the length
of line segment EH.) Applying the law of sines to the
triangle O’HG, we obtain

.1 Re .
@ = Opg +sin l(ﬁsm(% — g )J (23)
[

The angle of incidence ¢, can be found in a way similar
to that in the case of the incidence of laser beam at the
external surface of a tube wall — instead of ¢, here it is
@0y, and instead of &, here it is 6,

cosag = cos(¢, —rg )cos by - (24)

Applying the Snell's law, the angle of refraction in the
internal fluid £ is obtained as Sin B =Ny sin ay/n
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glass tube
wall

internal

Figure 7. The refraction of a laser beam at the internal
surface of a tube wall

To get better view at propagation of the laser beam
after the second refraction, Fig. 7 could be useful. Note
that it resembles Fig. 4: as if all rays emerging from
point E were translated to the point G and then rotated
around the horizontal GJ (parallel to the tube axis)
counter clockwise for angle &, That is why the
expressions for angles in Fig. 7 resemble the
expressions for angles in Fig. 4. The difference is in a
fact that here refracted laser beam goes above the plane
of angle 6, (ngng), while in previous refraction
refracted beam went under the plane of angle 6§, (nz>n,).
Thus the angle between the plane containing angle o,
and the plane containing angle 6, is angle y, that could
be expressed as

tan((p, —Org )

25
sin Hg 25)

tan Vg =

The projection of refracted laser beam upon the plane
that contains angle 6, is ray GK presented as grey
dashed line. Its deviation from the direction of laser
beam in glass tube wall (i.e. ray EG) is angle dyy, and its
deviation from the direction of refracted laser beam (i.e.
ray Gl) is angle &,¢. Those angles could be expressed as

sin Oy =sin(ﬂf —ag)sinyg, and
s cos (ﬁf —ag )
cosdpt =—————=

hf cos Oyf (26)

Triangles KGI and KJI (Fig. 8) are right angled triangles
with right angle at point K, and triangles KGJ and 1GJ
are right angled triangles with right angle at point J.
Therefore, in the internal fluid, laser beam propagates in
the plane 1GJ, that is inclined to the plane of incidence
at point G at angle ¢, which can be expressed as

tan &

sin (0 + St ) @7

tan Sy =

The analysis of same triangles leads to the resultant
half-angle of laser beam intersection 6, — the angle that
defines the calibration constant of the LDA system:
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sin 0 = cos &4 sin 0y + Sy ) (28)

- ‘7 . .
/! -- ,/ internal fluid

Figure 8. The spatial position of a laser beam in the internal
fluid

'ne | n, |n, lpns

i H

Figure 9. Frontal view of laser beams (big picture) and
view from above (small picture at the right up)

In order to find the dislocation of measurement
volume the lengths of line segments GH and 1J are
required. The length of line segment GH could be found
by applying the law of cosines to the triangle O’HG, as
follows

IGH|=\[RE +R? —2RR;cos(p —) (29
Observing the Figs. 5 and 8, it can be concluded that
|IJ|tan¢9r +|GH|tant9g =Recosp,tand  (30)

It gives the length of line segment 1J.

Finally, analysing the frontal view of a system (Fig.
9) the dislocations of measurement volume centre in X
and y direction can be expressed as

AX = R, cos ¢, —|GH |cos Org —|IJ|cos(é'nc — g )
Ay =|N|sin (S —rg ) ~|GH]sindyg (1)
Unlike the case of vertical laser beam intersecting
angle, here the direction of measured velocity

component does not change — axial velocity component
is measured, always.
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3. THE CASE OF A CYLINDRICAL INTERNAL AND
FLAT EXTERNAL TUBE WALL

Frequently used way of LDA measurement is presented
in Fig. 10. The internal surface of a tube is cylindrical
with radius of cross-section R, but external surface of a
tube wall is flat, at least at the side that faces the lens.
The least thickness of wall is dy. Again, the pair of laser
beams, whose intersecting angle 26 is vertical, is
presented by full thick grey line, and that, whose
intersecting angle 26 is horizontal, is presented by
dashed thick grey line. The real refraction of laser
beams is not presented in Fig. 10 due to complexity.
Three chosen horizontal positions of lens are
considered: Case 1 when the distance between the lens
and the external tube wall is |=f—-(R+d, ; Case 2

when vertical pair of laser beams intersects in the centre
of a circular cross section (as in Fig. 10), and the
distance between the lens and the external surface of a
tube | is

tan 6,
= f~(R+dy)—1. (32)

where 6, is the angle of refraction in glass that can be
expressed as sin @, =ngsin 0/n; - and Case 3 when

horizontal pair of laser beams intersects at the centre of
a circular cross-section, and | is

tan(sin ™' (ng sin @y /n P2
= f-R (s (ng sindy f))—dwm 9.33)
tan & tan &

Intersecting
laser beams ¥ 9]

Figure 10. The definition of the geometry of a system with
cylindrical tube having flat external surface of the wall

For flat external wall, the distance of the centre of
the measurement volume from the centre of the viewing
field of a photo-detector should be calculated, too.

Figure 11. The path of the light that reaches the centre of
the photo-detector though tube wall with flat external wall
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Inside the tube (Fig. 11), the path of the light that
reaches the centre of the photo-detector is inclined to
the horizontal at angle 91 =7~ %, where
ngh

and sinyp = (34)

sin —E —
4 R nfR.

With this and AXx and Ay calculated, the distance
between the centre of the measurement volume and the
centre of the viewing field is

Acp =(R; cosp—AX)sinSp —Aycossy  (35)

3.1 Vertical LDA optical plane

After the refraction of laser beams at the external
surface of a glass tube, they reach the internal surface of
a tube at points that can be defined by ¢y for higher, and
¢ for lower laser beam. Those angles can be found as

. 2
singy ) =ty (cos by ) +

, ; 7, (36)
Esinby 41—ty (cosﬁg )

where sign + refers to the higher, sign — refers to_the
lower beam, and parameter ty; and t; are by = (h £ )/ R,

Again, sign + refers to the higher, sign — refers to the
lower beam, and parameter t; is

tj =d/2~(Itan 0+ R tan ). 37

Then, laser beams refract at the internal surface of a
glass tube with the angle of refraction, defined as
sin B, =N, sinlg,,,. 76, /”f . Now, sign — refers to the

higher, sign + refers to the lower beam. After that
refraction, the directions of higher and lower laser
beam, with respect to the horizontal lines, are at angles

Oy =pn =Py and O = - (38)

Figure 12. The propagation of laser beams in the case of
vertical LDA optical plane and flat external wall of a tube

The horizontal distances between the point of
intersection of the beams and points at which beams
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reach the internal surface of a tube are X; for lower, and
Xy for higher beam (Fig. 12). They can be expressed as

t, tan Gy +t
L=——H 3 and xy =X -4, (39)
tan Gy +tan g

where parameters t, and t; are
t, = R(cosp —cosgy ), (40)
and
ty =2t + R(cosgy +cos gy )tan . (41)

The dislocations of measurement volume X and Y
directions are

AXx=Rcospy —Xy and

Ay =Rsingy —xy tanfy —h (42)

3.2 Horizontal LDA optical plane

Laser beams paths are symmetrical with respect to the
vertical plane normal to the tube axis. Therefore, it is
enough to consider the propagation of only one beam
e.g. the one closer to the viewing point. First, this beam
refracts at the external fluid —glass interface. Both, the
angle of incidence & and the angle of refraction 6,
(defined by Snell's law) are in horizontal plane. Then
the beam reaches the internal surface of a tube at point
A. Its position with respect to the centre of the tube
cross-section and horizontal line ¢ is defined by
sinp=h/R The angle of incidence at point A is « (Fig.
13), and it can be expressed as

cosa = cosgcos by . (43)

Angle « lies in the plane AIC that is inclined to the
horizontal plane at angle y for which it stands that

tany =—2f (44)

The angle of refraction at point A is £ determined as

n, sina

sin ff = (45)

No

Figure 13. The propagation of laser beams in the case of
vertical LDA optical plane and flat external wall of a tube
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Observed laser beam propagates in the internal fluid
along the ray Al. Its projection on a horizontal plane is
ray AB, whose deviation from ray Al is angle ¢,, and
deviation from ray AC is &, defined as

sind, =sin(f—a)siny and

cos &, = cos(f—a)/cos s, (46)

The projection of angle &, on the tube cross-section
plane is angle &, that presents resultant deviation of laser

beam from the horizontal in the fluid, and it can be
expressed as

tan o,

tandy = cos(ﬁg +5h) .

(47

The resultant calibration angle Or (i.e. half of the angle
of intersection of laser beams) is defined by

sin@, =cosd, sin(ﬁg + 0y ) (48)
The horizontal penetration of the laser beam until the
intersecting point | is
t; + Rj cosptan &y
tan (Hg +6h )

x =|DE| = (49)

Finally, the distance of measurement volume from the
vertical diameter of circular cross-section of a tube AX,
and from the horizontal y=h are

AX=Rjcosp—X and

4. RESULTS AND DISCUSSION

The calculations explained in previous section are
applied to the case of already performed LDA
measurements with two component system (red
A1=660nm and infrared A,=785nm). External fluid as
well as internal fluid is air (ng=n=1). The tube is made
of acrylic glass. The indices of refraction of tube wall
glass are n,=1.4878 for red light and n,=1.48452 for
infrared (IR) light [7]. The focal length of applied
transmitting lens is =0.3m, and the beam separation in
the lens is d=0.06m. Thus, the calibration angle of this
system in open air is 6=5.7106°. Measurement volume
in open air is 1.267x0.127x0.121mm for red light, and
1.507x0.1507x0.1499mm for infrared light. Therefore,
approximate diameter of viewing field of the photo-
detector is supposed to be 0.12lmm for red, and
0.1499mm for infra red light,. Internal radius of a tube
is R=R=0.2m and external radius is R;=0.2055m. In the
case of flat external wall, the least wall thickness is
dw=11mm (Fig. 10).

The influence of the thickness of the wall on LDA
measurement could be analyzed in further research. The
discussion and conclusions in this paper refer to the
thicknesses and materials mentioned in previous
paragraph. Performed calculations indicated at least five
advantages of measurement with simple cylindrical tube
over the measurement with the flat external wall tube.
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1. In the case of simple cylindrical tube, calibration
angle g, is constant and the same as one in the open air
(Table 1, the first data column). This means that, in this
case, no corrections of the values of measured velocities
are required. On the other hand, calibration angle, in the
case of flat external wall, is smaller than that in the open
air (which, among other issues, makes the measurement
volume shorter), and the decalibration must be taken
into account. In the case of radial velocity component
measurement at lens positions 1 and 3 it is even not
constant (Fig. 14). The change of the calibration angle
presented in Fig. 14 is for infrared beams and it is
almost the same in the case of infrared beams.

2. Measurement range, the range for which the
measurement system gives any result, is shown in the
second data column of Table 1. It is restricted by three
phenomena: total reflection at the glass - internal fluid
interface, laser beam intersection is outside the internal
fluid and measurement volume is outside the viewing
field of photo-detector. For simple cylindrical tube,
measurement range encompasses almost the entire
diameter (0-0.99R), whereas in Cases 1, 2 and 3, they
are considerably smaller. In Case 1, when the distance
between the lens and vertical diameter of the circular
cross-section is f, vertical pair of laser beams does not
intersect inside the tube at all.

3. The linearity of relation between the relative
heights of lens centre h/R; and measurement volume
height (h+Ay)/R;, is analyzed through the slope of linear
regression a and its relative standard uncertainty U —
type A (last two data columns in Table 1). The slopes
for simple cylindrical tube are close to 1, which means
that vertical displacements of lens approximately equal
the displacements of measurement volumes. The same
does not stand for the flat external wall tube. Though
the analysed regressions are very close to linear, values
of U, show that the linearity of measurement with
simple cylindrical tube is better than that for flat
external wall for one order of magnitude in the case of
axial velocity measurement, and for two orders of
magnitudes in the case of radial velocity component
measurement.

Table 1. The comparison of measurement in simple
cylindrical and flat external — cylindrical internal wall tube

Measu.red Calibra- Linearity
Tube velocity tion Measure
componen -ment Slope urel
type angle o
t or (o) range a (%o)
simple | KSR 159106 | 0-099Ri | 0999 | 0.073
cylin- Radial
drical | ReVIR 157106 | 0-0.99Ri | 1.001 | 0.079
Axial
. 1 Radial Fig. 14 0-0R - -
Cylin-
drical | | Red/IR [ 57098/ [ 0-022R/ | | ¢ "[ 0.15/
inter- | Axial | 5.6972 | 0-0.26R 0.25
nal 2Red/IR | 3.835/ y 3.34/
ot | Radial | 3843 | OOBIR 14 5,
flat | 2RedIR | 57098/ [ 0-028R/ [ | oo [ 0.13/
exter- | Axial 56972 | 0-035R | 0.17
nal 3 Red/IR Fie. 14 0-0.81R | 2.02/ | 2.10
sur- Radial & 0-0.86R | 2.05 2.36
face | 3Red/IR [ 57098/ [ 0-022R/ | | o [ 0.15/
Axial 5.6972 0-0.27R ) 0.21

340 = VOL. 41, No 4, 2013

a5 %, * IR radial 1
&0 "y  =Rmdiol3
15 .
C.5
R
-0.5 B3 45— gt

Figure 14. Calibration angle 6, — the resultant half angle of
the intersection of beams — versus vertical relative position
of transmitting lens for the case of infrared laser beams
and horizontal positions 1 and 3 for flat external tube wall

4. The dislocation of measurement volume from the
desired points along the vertical diameter of a tube
cross-section and mutual measurement volume
distances can be seen in Figs. 15 -17. In Figs. 16 and 17,
crosses represent positions of measurement volumes for
axial velocity component in lens positions 2 and 3, but
squares represent only those of them that are within the
viewing field of photo-detector. Thus, for flat external
tube wall and horizontal positions 2 and 3, the
measurement volumes for the two components are
simultaneously visible only within the central 25% of
internal radius R;. Furthermore, the measurement
volume distances are greater than 0.3R for Case 2 and
greater than 0.9R for Case 3. With simple cylindrical
tube, for h up to 0.99R, measurement volumes for
different velocity components are simultaneously
visible in photo-detector. They are no more than 0.01R
apart in half of the radius closer to tube centre, and rises
only up to 0.055R near the tube wall. Smaller mutual
distances of measurement volumes for different velocity
components might also indicate smaller optical
aberration of the beams in simple cylindrical tube.
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Figure 15. Simple cylindrical tube: Positions of IR measure-
ment volume for radial velocity component, and red
measurement volume for axial velocity component
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Figure 16. Cylindrical tube with flat external wall: Positions
of IR measurement volume for radial velocity component,
and red measurement volume for axial velocity component
at position 2
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Figure 17. Cylindrical tube with flat external wall: Positions
of IR measurement volume for radial velocity component
and red measurement volume for axial velocity component
at position 3
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Figure 18. The angle of deviation of direction of measured
radial velocity component, in simple cylindrical tube
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Figure 19. The angle of deviation of direction of measured
radial velocity component, in a tube with flat external wall

5. In order to measure radial velocity component
along the vertical diameter of a tube cross section, the
bisector of beam intersecting angle must be horizontal.
Its deviation from horizontal Jin simple cylindrical tube
(Fig. 18) is negligible with respect to that in flat external
wall tube (Fig. 19).
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IHOPEBEIBE JITA MEPEIA KO/l BA3AYIIHOI'
TOKA Y OBUYHOJ HWJIMHAPUYHOJ 1
INJIMHAPUYHOJ IEBU CA PABHUM
CIIOJbAIIIIBUM 3UIOM

Jesena T. Wnuh, CaaBuna C. Puctuh, Hophe C.
Yantpak, HoBuna 3. Jankosuh, MuJieca 7K.
CpehkoBuh

IIpumena 2D nacep [omiep aHeMOMETapCKUX CHUCTEMa
je pa3MaTpaHa 3a Cliy4yaj 3aTBOPEHOI TOKa Quiynma y
00MYHO] IMIMHAPUYHO] M Y WWIMHAPHYHO] LIEBU ca
PAaBHUM CIOJBAIIBUM 3UI0M. 3aKOHH T'€OMETPHU]CKE OII-
TUKE Cy NMPHUMCH-CHH Ha ICHTPAJHE JIMHUjE JTaCePCKUX
cHormoBa. M3BeqeHn cy U3pasu 3a JAUCIOKAIN]e MEPHUX
3alpeMrHa, YIioBe KanuOpamdje M pacTojama LEeHTpa
MEpHE 3alpeMuHe OJ IEHTpa BUAHOT T0Jba (OTO-
nerextopa. V3pasu u3BeleHn Yy OBOM pajly Cy HperMe-
BEHH Ha opeleHHM BPTIOKHM TOK y ueBu. To je
MOKa3aJl0 HEKOJWKO MPEIHOCTH Kopuinhema OOWYHE
NWIMHAPUYHE LIEBM y OJHOCY Ha JlaHAC OMUJbCHU]jE
Kopnmhe}be OUIMHAPUYHE ILIEBU Ca paBHUM CIIOJballl-
®BUM 3u0M. OBH pe3yJITaTd yKa3yjy Ha TO Ja Ou ce ca-
mamme usberaBame JIJJA  Mepema KoJ  OOMYHE
LUTHHPUYHE 1eBU Tpebaio NPEUCITUTATH.
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