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The Comparison of Air Flow LDA 
Measurement in Simple Cylindical and 
Cylindrical Tube with Flat External Wall 
 
The application of 2D laser Doppler anemometry systems is considered, in 
the case of fluid flow confined in simple cylindrical and in cylindrical tube 
with flat external surface of the wall. Geometric optics laws are applied to 
the central lines of laser beams. Measurement volume dislocations, 
calibration angles and distances of measurement volume centre from the 
photo-detector field of view centre are expressed. The expressions derived 
in this paper were applied to specific turbulent swirl flow in pipe. That 
revealed several advantages of use of a simple cylindrical tube over 
nowadays favored use of cylindrical tube with flat external surface. Those 
results suggest that current avoiding of laser Doppler anemometry 
measurements with simple cylindrical tubes should be reconsidered.  
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1. INTRODUCTION  
 

Fluid flow researchers warmly welcomed laser Doppler 
anemometry (LDA) as nonintrusive and absolute 
velocity measurement technique (requires no 
calibration) that has high temporal resolution, providing 
enough data to generate reliable statistics for local 
turbulences. Its development towards two and three 
velocity component measurements promised even better 
view of complex flows. All those benefits are 
thoroughly verified in the case of open fluid flows. 
Confined flows, however, apart from requiring 
transparent sections of vessels and tubes, suffered the 
refraction of both laser beams that produce 
measurement volume and scattered light that provides 
the velocity data. Any type of transparent wall, even the 
plan-parallel one, might generate some unwanted 
phenomena that must be taken into account: 
measurement volume dislocation, decalibration of a 
system, digression of measurement volumes for 
different velocity components (astigmatism), inter-
ference fringe distortion due to beam waist dislocation, 
etc. The degree of those unwanted phenomena depends 
on experimental settings and especially on its geometry. 

As for cylindrical tube flows, among the first 
analytical approaches is one of Gardavsky et al. [1] that 
suggested the method of calculating the position of 
measurement volume and calibration angle along the 
diameter that overlaps the LDA system axis. Later, in 
order to minimize the wall curvature effects, flat 
external wall surfaces were applied [2-4]. Most of them 
considered liquid flows. More recently Zhang et al. 
performed several thorough analyses of the water flow 
within the tube of cylindrical internal and flat external 
wall [5,6]. Our attempts of experiments with LDA 

application in air flows in simple cylindrical and in tube 
with cylindrical internal and flat external wall showed 
the severe problems, especially in the second 
configuration. That incited the detailed analysis exposed 
in this paper. 

The propagation of LDA incident laser beams and 
scattered light, in the case of a simple cylindrical tube, 
are analysed by means of geometric optics in Section 2. 
The same but in a tube with cylindrical internal and flat 
external wall is analysed in Section 3. The intention is 
to measure the flow velocities along the diameter of a 
tube cross-section parallel to the lens, using two 
component LDA system. 

Theoretical analysis of this paper explains how to 
find: 1. the dislocation of measurement volume in x and 
y direction x and y, respectively, as well as the 
resultant calibration angle in the measurement of radial 
(Sections 2.1 and 3.1), and axial (Sections 2.2 and 3.2) 
velocity components; 2. how far the measurement 
volume centre is from the centre of the field of view of 
the photo-detector of the LDA system, placed in the 
centre of the lens (the beginnings of Sections 2 and 3).  

Optical aberrations, beam waist dislocations and 
fringe distortions were not taken into account and will 
be subject of further research. Still, the results of 
calculations according to the theory exposed in Sections 
2 and 3 show several advantages of the use of simple 
cylindrical tubes over the use of flat external wall tube 
in the case of air flow (Section 4). 

 
2. THE ANALYSIS IN A CASE OF A SIMPLE 

CYLINDRICAL TUBE 
 

In turbulent swirl flow experiment that is the subject of 
this paper, the system enables only vertical traversing of 
a probe i.e. along the y axis (Fig. 1). There are two pairs 
of laser beams: one pair with vertical intersecting angle 
of 2 (thick gray intersecting lines), measuring radial 
(vertical) velocity component ; and another pair with 
horizontal intersecting angle of 2, too (thick gray 
dashed intersecting lines), that measures axial 
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(horizontal) velocity component u


. The beam 
separation of both pairs of beams at lens is d: 

 2 tand f  , (1) 

where f is the focal length of the lens. 
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Figure 1. The definition of the geometry of a system with 
simple cylindrical tube 

If there had not been a tube wall, the measurement 
volume would have been at focal length f distance from 
the lens (Fig. 1). However, due to refraction of laser 
beams on a tube wall, the dislocation of beam 
intersection point, i.e. measurement volume, appears. 

It is supposed that the perfect transparent cylindrical 
tube, of internal radius Ri and external radius Re, is 
horizontal, while lens is traversing in vertical direction. 
The lens position is defined by h which is the height of 
the lens centre with respect to the height of the centre of 
the tube cross-section (Fig. 1). The distance between the 
lens and the vertical diameter of the tube cross-section 
is supposed to be constant and equals the focal length f. 
Refraction indices of a fluid within a tube, tube glass, 
and external fluid are nf, ng and no, respectively. In this 
paper it is assumed that the refraction index of glass ng 
is higher than refraction index of internal flowing fluid 
nf, which is greater than or equal to that of external fluid 
(usually air) no. 
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Figure 2. The path of the light that reaches the centre of the 
photo-detector through simple cylindrical tube wall 

In Fig. 2, full black broken line presents the path of 
the light that reaches the centre of the photo-detector. It 
enters the photo-detector in the horizontal direction, but 
it does not come from the horizontal direction in the 
internal fluid, but at angle iAAA    to the horizontal 

where eAiAeAiA    and 

 sin eA
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h
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  , 
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n h
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0sin iA
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n R
   (2) 

After calculating those angles and x and y, the 
distance of a centre of measurement volume from the 
centre of the viewing field of the photo-detector can be 
obtained as  

   sin sin cosi iA A A Ac R x h y           (3) 

 
2.1 Vertical LDA optical plane 
 
Measurement volume dislocation is calculated 
according to Fig. 3. Each laser beam intersects the tube 
wall at two points: external (e) and internal (i). Higher 
beam intersects the external surface of the tube wall at 
point He, and the internal surface of the tube wall at 
point Hi. Lower beam intersects the external surface of 
the tube wall at point Le, and the internal surface of the 
tube wall at point Li. The positions of these four points 
with respect to the centre of the tube cross-section O 
and horizontal line (double dot – dash line) are defined 
by angles He, Hi, Le and Li, respectively.  
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Figure 3. The propagation of LDA laser beams intersecting 
in vertical plane 

In Fig. 3, it can be seen that: 

     sin cos tane eH L e H L eR f R h      (4) 

With (1), by solving the (4), we obtain  
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where sign + refers to He, and sign – refers to Le. The 
angles of incidence at glass surface of laser beams are  

  H L H L e    , (6) 

where – refers to H, and + refers to the L. According 
to Snell`s law, the angles of refraction at the external 
surface are      geLHeLH nn  sinsin 0 . The law 

of sines applied to triangles OHeHi and OLeLi gives 
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which defines angles of incidence of beams at the 
internal tube surface (Fig. 3). Snell`s law applied at that 
surface and (7) lead to internal angles of refraction H/L  

   0sin sine
H L H L e

f i

n R

n R
    . (8) 

Laser beams in fluid (within the tube) are inclined to the 
horizontal (double dot – dash) lines at angles 

         H Hi H    and L L Li    , (9) 

(H is the angle between the higher beam and the 
horizontal line, and L is the angle between the lower 
beam and the horizontal line in the internal fluid). Fig. 3 
shows that     LHeLHiLH    (    eLHiLHLH   ). 

The resultant beam intersection angle, which defines 
calibration constant of a system, is  
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where LeHee   , LiHii   , LeHee    and 

LH   . 

Since the bisector of the beam intersection angle is 
no more horizontal, measured velocity component 
inclines to the vertical axes at angle 

   2H L    . (11) 

Between the lens and intersecting point, each beam 
is broken into three line segments, due to refraction: the 
first in external fluid, the second in glass, and the third 
in internal flowing fluid. It can be noted that the sum of 
the projections of those three line segments upon a 
horizontal line for one laser beam is equal to that of 
another laser beam i.e. 

 H H L Lx a x a   . (12) 

xH is horizontal distance between Hi and the actual beam 
intersection point, and xL is horizontal distance between 
Li and actual beam intersection point (Fig. 3). aH is 
horizontal distance between lens and Hi, and aL is 
horizontal distance between lens and Li. They can be 
expressed as  
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where  
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Also, the sum of the projections of those three line 
segments upon a vertical line for one laser beam plus 
that of another laser beam equals beam separation at the 
lens d i.e. 

 tan tanH H H L L Lx b x b d     . (14) 

bH is vertical distance between the position of higher 
beam at lens and Hi, and bL is vertical distance between 
the position of lower beam at lens and Li. They can be 
expressed as 
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Finding xH and xL from the system (12) and (14), 
enables calculating the horizontal and vertical 
displacement of measurement volume x and y, 
respectively (Fig. 3): 

 
H Hx f x a       

and 
 tan tanH H Hy f x b     . (16) 

 
2.2 Horizontal LDA optical plane 
 
In this case laser beams are in horizontal plane between 
the lens and the tube wall. Unlike the previous case, 
where both laser beams and all their segments were in 
the same plane – vertical plane, here the refractions on 
each side of the tube wall force laser beams to change 
the plane in which they propagate. The symmetry of 
considered geometry allows analysing the refraction of 
only one laser beam, because another beam undergoes 
exactly the same changes until the point of intersection. 

The first task is to find out the angle of incidence of 
a laser beam (thick grey line) at the external surface of a 
tube – angle . Laser beam reaches the external surface 
of a tube at point E (Fig. 4). The angle e between the 
ray OE and horizontal lines (double dot – dash lines) is 
related to the height of the centre of a lens h as follows: 

 sin e eh R  . (17) 

The plane ABC perpendicular to the laser beam at point 
A, helps in finding the angle . Noting the right angles 
in Fig. 4, it can be concluded that 

 cos cos cose   . (18) 

The angle of incidence  lies in plane ACE which is 
inclined to the horizontal plane ABE at angle . Among 
other expressions for angle , one that avoids sign 
ambiguity and division by zero, is following expression:  
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Figure 4. The incidence of a laser beam at the external 
surface of a tube wall and the propagation direction of a 
laser beam (thick grey line) within the glass of a tube wall 

Applying the Snell`s law, the angle  at which laser 
beam enters the glass is determined as gnn  sinsin 0 . 

Angle  belongs to the plane ACE which can also be 
designated as plane EDG, as well (Fig. 4). The 
projection of refracted laser beam upon horizontal plane 
EDF (or ABE) is ray EF presented as grey double dot – 
dash line. Its deviation from the initial direction of laser 
beam (i.e. ray ED) is angle  hg, and its deviation from 
the direction of refracted laser beam (i.e. ray EG) is 
angle vg. In order to express angles  hg and vg, plane 
DFG parallel to the plane ABC should be noted. The 
analysis of a tetrahedron EDFG shows that 

  sin sin sinvg       and  

  cos cos coshg vg     . (20) 

Again, exactly the same changes undergoes the other 
beam but at the opposite side with respect to the plane 
perpendicular to the tube axis. Therefore, entering the 
glass, laser beams propagate in plane EHG which is 
inclined at angle rg to the horizontal plane (plane EHF 
– Fig. 5).  
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Figure 5. The spatial position of a laser beam GE within the 
glass of a tube wall 

Note that triangles EFG and HFG are right angled 
triangles with right angle at point F, and triangles EHG 
and EHF are right angled triangles with right angle at 
point H. It helps in expressing angle rg as 
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Figure 6. The incidence of a laser beam at the internal 
surface of a tube wall 

If laser beams have been intersecting within the glass, 
they would intersect at angle g (Figs. 5, 6), which can 
be expressed as 

  sin cos sing vg hg     .  (22) 

At point G, the laser beam reaches the internal 
surface of a tube wall, and suffers another refraction. In 
order to find the angle of incidence at point G, the angle 
i, defining its position with respect to the centre of a 
tube cross – section and horizontal line, should be 
discovered (Fig. 6). (While point E belongs to the cross 
– section with centre in point O, points H and G belong 
to the cross-section with centre in point O’ shifted along 
the tube axis OO’ for the same length as it is the length 
of line segment EH.) Applying the law of sines to the 
triangle O’HG, we obtain 

  1sin sine
i rg e rg

i

R

R
     
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 

. (23) 

The angle of incidence g can be found in a way similar 
to that in the case of the incidence of laser beam at the 
external surface of a tube wall – instead of e, here it is 
i-rg, and instead of , here it is g: 

  cos cos cosg i rg g     . (24) 

Applying the Snell`s law, the angle of refraction in the 
internal fluid f is obtained as fggf nn  sinsin  . 
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Figure 7. The refraction of a laser beam at the internal 
surface of a tube wall 

To get better view at propagation of the laser beam 
after the second refraction, Fig. 7 could be useful. Note 
that it resembles Fig. 4: as if all rays emerging from 
point E were translated to the point G and then rotated 
around the horizontal GJ (parallel to the tube axis) 
counter clockwise for angle rg. That is why the 
expressions for angles in Fig. 7 resemble the 
expressions for angles in Fig. 4. The difference is in a 
fact that here refracted laser beam goes above the plane 
of angle g (ng>nf), while in previous refraction 
refracted beam went under the plane of angle g (ng>no). 
Thus the angle between the plane containing angle g 
and the plane containing angle g is angle g that could 
be expressed as  
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The projection of refracted laser beam upon the plane 
that contains angle g is ray GK presented as grey 
dashed line. Its deviation from the direction of laser 
beam in glass tube wall (i.e. ray EG) is angle hf, and its 
deviation from the direction of refracted laser beam (i.e. 
ray GI) is angle vf. Those angles could be expressed as 

  sin sin sinvf f g g     ,   and 
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Triangles KGI and KJI (Fig. 8) are right angled triangles 
with right angle at point K, and triangles KGJ and IGJ 
are right angled triangles with right angle at point J. 
Therefore, in the internal fluid, laser beam propagates in 
the plane IGJ, that is inclined to the plane of incidence 
at point G at angle rf which can be expressed as 
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The analysis of same triangles leads to the resultant 
half-angle of laser beam intersection r – the angle that 
defines the calibration constant of the LDA system: 

  sin cos sinr vf g hf      (28) 
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Figure 8. The spatial position of a laser beam in the internal 
fluid 
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Figure 9. Frontal view of laser beams (big picture) and 
view from above (small picture at the right up) 

In order to find the dislocation of measurement 
volume the lengths of line segments GH and IJ are 
required. The length of line segment GH could be found 
by applying the law of cosines to the triangle O’HG, as 
follows 

  2 2 2 cose i e i i eGH R R R R       (29) 

Observing the Figs. 5 and 8, it can be concluded that 

 tan tan cos tanr g e eIJ GH R      (30) 

It gives the length of line segment IJ.  
Finally, analysing the frontal view of a system (Fig. 

9) the dislocations of measurement volume centre in x 
and y direction can be expressed as 

 cos cos cose e rg rf rgx R GH IJ          

  sin sinrf rg rgy IJ GH       (31) 

Unlike the case of vertical laser beam intersecting 
angle, here the direction of measured velocity 
component does not change – axial velocity component 
is measured, always. 
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3. THE CASE OF A CYLINDRICAL INTERNAL AND 
FLAT EXTERNAL TUBE WALL 

 
Frequently used way of LDA measurement is presented 
in Fig. 10. The internal surface of a tube is cylindrical 
with radius of cross-section R, but external surface of a 
tube wall is flat, at least at the side that faces the lens. 
The least thickness of wall is dw. Again, the pair of laser 
beams, whose intersecting angle 2 is vertical, is 
presented by full thick grey line, and that, whose 
intersecting angle 2 is horizontal, is presented by 
dashed thick grey line. The real refraction of laser 
beams is not presented in Fig. 10 due to complexity. 

Three chosen horizontal positions of lens are 
considered: Case 1 when the distance between the lens 
and the external tube wall is  wdRfl  ; Case 2 

when vertical pair of laser beams intersects in the centre 
of a circular cross section (as in Fig. 10), and the 
distance between the lens and the external surface of a 
tube l is 

  
tan

tan
g

wl f R d



   , (32) 

where g is the angle of refraction in glass that can be 
expressed as gg nn  sinsin 0 ; and Case 3 when 

horizontal pair of laser beams intersects at the centre of 
a circular cross-section, and l is 

 
  1tan sin sin tan

tan tan

g g f g
w

n n
l f R d

 

 



   .(33) 
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Figure 10. The definition of the geometry of a system with 
cylindrical tube having flat external surface of the wall 

For flat external wall, the distance of the centre of 
the measurement volume from the centre of the viewing 
field of a photo-detector should be calculated, too. 
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Figure 11. The path of the light that reaches the centre of 
the photo-detector though tube wall with flat external wall 

Inside the tube (Fig. 11), the path of the light that 
reaches the centre of the photo-detector is inclined to 
the horizontal at angle   AA , where 

sin
h

R
   and sin

g
A

f

n h

n R
  . (34) 

With this and x and y calculated, the distance 
between the centre of the measurement volume and the 
centre of the viewing field is 

  cos sin cosA i A Ac R x y       (35) 

 
3.1 Vertical LDA optical plane 
 
After the refraction of laser beams at the external 
surface of a glass tube, they reach the internal surface of 
a tube at points that can be defined by H for higher, and 
L for lower laser beam. Those angles can be found as 

 

 
 

2

22

sin cos

sin 1 cos

H L H L g

g H L g

t

t

 

 

 

 
, (36) 

where sign + refers to the higher, sign  refers to the 
lower beam, and parameter tH and tL are   Rtht LH 1 . 

Again, sign + refers to the higher, sign  refers to the 
lower beam, and parameter t1 is 

  1 2 tan tane gt d l R    . (37) 

Then, laser beams refract at the internal surface of a 
glass tube with the angle of refraction, defined as 

  fgLHgLH nn  sinsin  . Now, sign  refers to the 

higher, sign + refers to the lower beam. After that 
refraction, the directions of higher and lower laser 
beam, with respect to the horizontal lines, are at angles 

 H H H     and L L L     (38) 
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Figure 12. The propagation of laser beams in the case of 
vertical LDA optical plane and flat external wall of a tube 

The horizontal distances between the point of 
intersection of the beams and points at which beams 



FME Transactions VOL. 41, No 4, 2013 ▪ 339
 

reach the internal surface of a tube are xL for lower, and 
xH for higher beam (Fig. 12). They can be expressed as 

 2 3tan

tan tan
H

L
H L

t t
x


 





 and 2H Lx x t  , (39) 

where parameters t2 and t3 are 

  2 cos cosL Ht R    , (40) 

and 

  3 12 cos cos tanL H gt t R      . (41) 

The dislocations of measurement volume x and y 
directions are 

 cos H Hx R x    and   

 sin tanH H Hy R x h       (42) 

 
3.2 Horizontal LDA optical plane 

 
Laser beams paths are symmetrical with respect to the 
vertical plane normal to the tube axis. Therefore, it is 
enough to consider the propagation of only one beam 
e.g. the one closer to the viewing point. First, this beam 
refracts at the external fluid –glass interface. Both, the 
angle of incidence  and the angle of refraction g 
(defined by Snell`s law) are in horizontal plane. Then 
the beam reaches the internal surface of a tube at point 
A. Its position with respect to the centre of the tube 
cross-section and horizontal line  is defined by 

Rhsin . The angle of incidence at point A is  (Fig. 

13), and it can be expressed as 

 cos cos cos g   . (43) 

Angle  lies in the plane AIC that is inclined to the 
horizontal plane at angle  for which it stands that 

 
tan

tan
sin g




 . (44) 

The angle of refraction at point A is  determined as 
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
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Figure 13. The propagation of laser beams in the case of 
vertical LDA optical plane and flat external wall of a tube 

Observed laser beam propagates in the internal fluid 
along the ray AI. Its projection on a horizontal plane is 
ray AB, whose deviation from ray AI is angle v, and 
deviation from ray AC is h, defined as 

  sin sin sinv       and  

  cos cos cosh v       (46) 

The projection of angle v on the tube cross-section 
plane is angle r that presents resultant deviation of laser 
beam from the horizontal in the fluid, and it can be 
expressed as 

 

 
tan

tan
cos

v
r

g h




 



. (47) 

The resultant calibration angle r (i.e. half of the angle 
of intersection of laser beams) is defined by 

  sin cos sinr v g h     . (48) 

The horizontal penetration of the laser beam until the 
intersecting point I is 

 

 
1 cos tan

tan

i g

g h

t R
x DE

 

 


 


 (49) 

Finally, the distance of measurement volume from the 
vertical diameter of circular cross-section of a tube x, 
and from the horizontal y=h are 

 cosix R x     and  

 tan ry x    (50) 

 
4. RESULTS AND DISCUSSION 
 
The calculations explained in previous section are 
applied to the case of already performed LDA 
measurements with two component system (red 
1=660nm and infrared 2=785nm). External fluid as 
well as internal fluid is air (n0=nf=1). The tube is made 
of acrylic glass. The indices of refraction of tube wall 
glass are ng=1.4878 for red light and ng=1.48452 for 
infrared (IR) light [7]. The focal length of applied 
transmitting lens is f=0.3m, and the beam separation in 
the lens is d=0.06m. Thus, the calibration angle of this 
system in open air is =5.7106o. Measurement volume 
in open air is 1.2670.1270.121mm for red light, and 
1.5070.15070.1499mm for infrared light. Therefore, 
approximate diameter of viewing field of the photo-
detector is supposed to be 0.121mm for red, and 
0.1499mm for infra red light,. Internal radius of a tube 
is Ri=R=0.2m and external radius is Re=0.2055m. In the 
case of flat external wall, the least wall thickness is 
dw=11mm (Fig. 10). 

The influence of the thickness of the wall on LDA 
measurement could be analyzed in further research. The 
discussion and conclusions in this paper refer to the 
thicknesses and materials mentioned in previous 
paragraph. Performed calculations indicated at least five 
advantages of measurement with simple cylindrical tube 
over the measurement with the flat external wall tube.  
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1. In the case of simple cylindrical tube, calibration 
angle r, is constant and the same as one in the open air 
(Table 1, the first data column). This means that, in this 
case, no corrections of the values of measured velocities 
are required. On the other hand, calibration angle, in the 
case of flat external wall, is smaller than that in the open 
air (which, among other issues, makes the measurement 
volume shorter), and the decalibration must be taken 
into account. In the case of radial velocity component 
measurement at lens positions 1 and 3 it is even not 
constant (Fig. 14). The change of the calibration angle 
presented in Fig. 14 is for infrared beams and it is 
almost the same in the case of infrared beams. 

2. Measurement range, the range for which the 
measurement system gives any result, is shown in the 
second data column of Table 1. It is restricted by three 
phenomena: total reflection at the glass - internal fluid 
interface, laser beam intersection is outside the internal 
fluid and measurement volume is outside the viewing 
field of photo-detector. For simple cylindrical tube, 
measurement range encompasses almost the entire 
diameter (0-0.99R), whereas in Cases 1, 2 and 3, they 
are considerably smaller. In Case 1, when the distance 
between the lens and vertical diameter of the circular 
cross-section is f, vertical pair of laser beams does not 
intersect inside the tube at all.  

3. The linearity of relation between the relative 
heights of lens centre h/Ri and measurement volume 
height (h+y)/Ri, is analyzed through the slope of linear 
regression a and its relative standard uncertainty urel – 
type A (last two data columns in Table 1). The slopes 
for simple cylindrical tube are close to 1, which means 
that vertical displacements of lens approximately equal 
the displacements of measurement volumes. The same 
does not stand for the flat external wall tube. Though 
the analysed regressions are very close to linear, values 
of urel show that the linearity of measurement with 
simple cylindrical tube is better than that for flat 
external wall for one order of magnitude in the case of 
axial velocity measurement, and for two orders of 
magnitudes in the case of radial velocity component 
measurement. 

Table 1. The comparison of measurement in simple 
cylindrical and flat external – cylindrical internal wall tube 

Linearity 

Tube 
type 

Measured 
velocity 

componen
t 
 

Calibra-
tion 

angle 
r (o) 

Measure
-ment 
range 

Slope 
a 

urel 
(‰) 

Red/IR 
Radial 

5.7106 0-0.99Ri 0.999 0.073 Simple 
cylin-
drical Red/IR 

Axial 
5.7106 0-0.99Ri 1.001 0.079 

1 Radial Fig. 14 0-0R - - 

1 Red/IR 
Axial 

5.7098/ 
5.6972 

0-0.22R/ 
0-0.26R 

1.50 
0.15/ 
0.25 

2 Red/IR 
Radial 

3.835 / 
3.843 

0-0.81R 1.4 
3.34/ 
3.43 

2 Red/IR 
Axial 

5.7098/ 
5.6972 

0-0.28R/ 
0-0.35R 

1.33 
0.13/ 
0.17 

3 Red/IR 
Radial 

Fig. 14 
0-0.81R 
0-0.86R 

2.02/ 
2.05 

2.10 
2.36 

Cylin-
drical 
inter-
nal 
and 
flat 

exter-
nal 
sur-
face 3 Red/IR 

Axial 
5.7098/ 
5.6972 

0-0.22R/ 
0-0.27R 

1.49 
0.15/ 
0.21 

 

Figure 14. Calibration angle r – the resultant half angle of 
the intersection of beams – versus vertical relative position 
of transmitting lens for the case of infrared laser beams 
and horizontal positions 1 and 3 for flat external tube wall 

4. The dislocation of measurement volume from the 
desired points along the vertical diameter of a tube 
cross-section and mutual measurement volume 
distances can be seen in Figs. 15 -17. In Figs. 16 and 17, 
crosses represent positions of measurement volumes for 
axial velocity component in lens positions 2 and 3, but 
squares represent only those of them that are within the 
viewing field of photo-detector. Thus, for flat external 
tube wall and horizontal positions 2 and 3, the 
measurement volumes for the two components are 
simultaneously visible only within the central 25% of 
internal radius Ri. Furthermore, the measurement 
volume distances are greater than 0.3R for Case 2 and 
greater than 0.9R for Case 3. With simple cylindrical 
tube, for h up to 0.99R, measurement volumes for 
different velocity components are simultaneously 
visible in photo-detector. They are no more than 0.01R 
apart in half of the radius closer to tube centre, and rises 
only up to 0.055R near the tube wall. Smaller mutual 
distances of measurement volumes for different velocity 
components might also indicate smaller optical 
aberration of the beams in simple cylindrical tube.  

 
Figure 15. Simple cylindrical tube: Positions of IR measure-
ment volume for radial velocity component, and red 
measurement volume for axial velocity component 

 
Figure 16. Cylindrical tube with flat external wall: Positions 
of IR measurement volume for radial velocity component, 
and red measurement volume for axial velocity component 
at position 2 
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Figure 17. Cylindrical tube with flat external wall: Positions 
of IR measurement volume for radial velocity component 
and red measurement volume for axial velocity component 
at position 3 

 
Figure 18. The angle of deviation of direction of measured 
radial velocity component, in simple cylindrical tube 

 
Figure 19. The angle of deviation of direction of measured 
radial velocity component, in a tube with flat external wall 

5. In order to measure radial velocity component 
along the vertical diameter of a tube cross section, the 
bisector of beam intersecting angle must be horizontal. 
Its deviation from horizontal  in simple cylindrical tube 
(Fig. 18) is negligible with respect to that in flat external 
wall tube (Fig. 19). 
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ПОРЕЂЕЊЕ ЛДА МЕРЕЊА КОД ВАЗДУШНОГ 
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Срећковић 
 

Примена 2D ласер Доплер анемометарских система 
је разматрана за случај затвореног тока флуида у 
обичној цилиндричној и у цилиндричној цеви са 
равним спољашњим зидом. Закони геометријске оп-
тике су примењени на централне линије ласерских 
снопова. Изведени су изрази за дислокације мерних 
запремина, углове калибрације и растојања центра 
мерне запремине од центра видног поља фото-
детектора. Изрази изведени у овом раду су преиме-
њени на одређени вртложни ток у цеви. То је 
показало неколико предности коришћења обичне 
цилиндричне цеви у односу на данас омиљеније 
коришћење цилиндричне цеви са равним спољаш-
њим зидом. Ови резултати указују на то да би се са-
дашње избегавање ЛДА мерења код обичне 
цилиндричне цеви требало преиспитати.

 


