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Theoretical Study of Shliomis Model
Based Magnetic Squeeze Film in
Rough Curved Annular Plates With
Assorted Porous Structures

In present theoretical investigation, the effect of Shliomis model based
ferrofluid lubrication on the squeeze film between curved rough annular
plates with comparison between two different porous structures is
discussed. Kozeny- Carman’s formulation and Irmay’s model are adopted
for porous structures. The stochastic models of Christensen and Tonder
have been used for characterizing transverse roughness. The associated
Reynolds type equation is solved to obtain the pressure distribution leading
to the calculation of the load carrying capacity. The graphical
representations show that the adverse effect of transverse roughness can
be minimized by the positive effect of magnetization in the case of
negatively skewed roughness, suitably choosing curvature parameters.
Further, this compensation appears to be more in the case of Irmay’s
model as compared to that of Kozeny- Carman’s method, which makes the
Irmay’s model more suitable for adoption. It is observed that the effect of
morphology parameter and volume concentration parameter increases the

load carrying capacity of the bearing system.

Keywords: Porous Structures, Magnetic fluid, Curved Annular plates,
Squeeze film, Roughness.

1. INTRODUCTION

In the field of engineering and technology, annular
bearing are often designed to bear the transverse loads.
The study of performance characteristics of annular
bearings with different shape and different lubricants
has been done from time to time by the researchers. [1]
studied the effect of ferrofluid on the curved squeeze
film between two annular plates, when the upper plate
approached the lower one normally including the
rotation of the magnetic particles and their magnetic
moments. [2] analyzed the behaviour of a magnetic
fluid based squeeze film between rotating transversely
rough porous annular plates incorporating elastic
deformation. [3] examined the combined effect of
couple stresses and surface roughness patterns on the
squeeze film characteristics of curved annular plates.
The positive effect of magnetic fluid lubricant drew
considerable attentions during the last two decades.
Recently, many theoretical and experimental
investigations were made using a ferrofluid as lubricant
owing to its various advantages such as in seals,
dampers, sensors, coating system and load speakers. On
the other hand, [4] proposed a ferrofluid flow model in
which the effect of rotation of magnetic particles, their
magnetic moments and the volume concentration were
included. [5] analyzed the effect of rotational inertia on
the squeeze film load between porous annular curved
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plates. It was found that the load carrying capacity
decreased when the speed of rotation of the upper disk
increased up to certain value. It was shown that the load
carrying capacity could be enhanced without altering
the speed of rotation by increasing the upper plate’s
curvature parameter. [6] analyzed that the magnetic
energy was partially transformed into the angular
momentum of the magnetic particles which in turn, was
converted into a hydrodynamic motion of the fluid. [7]
dealt with the effect of fluid inertia in magneto
hydrodynamic annular squeeze films. It was concluded
that the inertia correction factor in the magneto
hydrodynamic load carrying capacity was more
pronounced with large Hartmann numbers. [8§]
theoretically presented the effect of ferrofluid on the
dynamic characteristics of curved slider bearings using
Shliomis model. [9] discussed the influence of fluid
inertia forces on the ferrofluid squeeze film between a
sphere and a plate in the presence of external magnetic
fields on the ground of the ferrohydrodynamic model
proposed from by [4]. All these above studies
established that the volume concentration and the
intensity of magnetic field provided an increase in the
load carrying capacity and the time of approach due to
the Shliomis model based magnetic fluid lubrication.

By now, it is well established that porous materials
are used in a wide variety of applications which
includes catalyses, chemical separation and tissue
engineering. Porous structures are very important in
biomedical applications where there are strict limits on
the amount of residual organic solvent that may remain
in the materials; this provides a strong driving force to
seek non- toxic solvent alternatives. Of course, one
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needs to remember that surface modification or
templating of nano porous material presents some
special problem because organic solvents are often too
viscous to fill such small pores. In view of their wide
range of applications, theoretical studies have been
conducted by [10-11]. Recently, [12] discussed the
effect of various porous structures on the performance
of a Shliomis model based ferrofluid lubrication of a
squeeze film in rotating rough porous curved circular
plates. It was found that the adverse effect of transverse
roughness could be overcome by the positive effect of
ferrofluid lubrication in the case of negatively skewed
roughness when Kozeny- Carman’s model is deployed
by suitably choosing curvature parameters and
rotational inertia.

In most of the investigations, it has been
considered that the bearing surfaces are smooth. This
is an unrealistic assumption for the bearing operating
with small film thickness. In the last decade, a
considerable amount of tribological research has been
conducted to study the effect of surface roughness on
hydrodynamic lubrication. This is mainly because of
the fact that all solid surfaces are rough to some extent
and generally the height of roughness asperities is of
the same order of magnitude as the mean separation
between lubricated contacts. In literature, several
investigations such as [13-18] accounting for surface
roughness effect have been proposed in order to seek a
more realistic representation of bearing surfaces. [19]
analyzed the effect of magneto-hydrodynamic squeeze
film characteristics between curved annular plates. On
the basis of the Christenson and Tonder’s stochastic
model of roughness, the discussion carried out by [20-
23] reported that the negatively skewed roughness
turns in better performance. All these above studies
established that increasing values of porosity caused
reduced load carrying capacity and friction. The
combination of magnetization and negatively skewed
roughness reduced the friction. Moreover, porosity
played a seminal role in improving the overall
performance of a bearing system by choosing a
suitable range of roughness parameters with proper
selection of rotation ratio. Lastly, [24] presented the
performance of a ferrofluid based squeeze film in
rotating rough curved circular plates resorting to
Shliomis model. It was concluded that the adverse
effect of roughness could be reduced considerably at
least in the case of negatively skewed roughness with a
suitable choice of curvature parameters.

The aim of this paper is to theoretically analyze the
performance of Shliomis model based ferrofluid
squeeze film in curved rough annular plates with a
comparison between the porous structure of Kozeny-
Carman and capillary fissures model of Irmay.

2. ANALYSIS

The geometry of the bearing system which consists of
annular plates is displayed in Figure 1. The bearing
consists of two annular plates each of inside radius b
and outside radius a (a>b). Surfaces of both disks are
considered to be transversely rough. The upper plate
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moves towards the lower plate normally with uniform

velocity 7 =dho/dt.

§

Figure 1. Configuration of the bearing system

In view of the discussions concerning the stochastic
modeling of transverse roughness mooted by [14-16],
the film thickness h(x) is assumed to be,

h(x)=h(x)+hy ()

where Z(x) denotes the mean film thickness and 4, is

the deviation from the mean film thickness
characterizing the random roughness of the bearing
surfaces. The deviation 4, is obtained by a generalized
probability density function

35 k2,
f(hs): @(1——2) ,—CShSSC

0,o0therwise

where ¢ is the maximum deviation from the mean film
thickness. The mean a, the standard deviation ¢ and the
parameter ¢, which is the measure of symmetry of the
random variable 4, are defined by the relationships:

R I

where E denotes the expected value defined by
C
E(R)= [Rf (h;)ds
—C

The details can be seen from [14-16].
It is assumed that the upper disk lying along the
surface determined by the relation

z, =hy exp(—,b’rz);a <r<b

approaches with normal velocity (ho)' to the lower
plate, lying along the surface given by

zp=hy [exp(—yrz)—l];a <r<b

where Ayis the central distance between the plates, f and
y are the curvature parameters of the corresponding

VOL. 42, No 2, 2014 = 57



plates. The film thickness 4(r) then, is defined by
[22,25]

h(r):ho[exp(—ﬂrz)—exp(—yr2)+l};a <r<b

In fact, magnetic fluids (or ferrofluids) are stable
colloidal suspensions of very fine magnetic particles in
a viscous fluid (carrier liquid). These types of fluids can
be positioned, confined or controlled at desired places
under the application of an external magnetic field. The
external magnetic field further introduces an increase in
effective viscosity of the ferro solution. This indeed has
resulted in increased application of magnetic fluids as
lubricants in bearing systems. It is pertinent to note that
most of the studies deal with the model of Neuringer-
Rosensweig which assumes that the magnetization
vector is parallel to the applied magnetic field. This
restriction is relaxed in the model of Shliomis which
takes into account the particle rotation also. [4]
suggested that magnetic particles of a magnetic fluid
could relax in two ways when the applied magnetic field
changed. One was by the rotation of magnetic particles
in the fluid and the other one by rotation of the magnetic
moment with in the particles. Brownian relaxation time
parameter 7z gives particle rotation while the relaxation
time parameter 7g describes the intrinsic rotational
process. Assuming steady flow, neglecting inertial and

second derivatives of S, the equations governing the
flow become,

~V, + V2 g+ 1y (M.V)E+LV x(§—15) =0(2)

2TS
E:Iﬁ+,uors(ﬁxﬁ) 3)
M:M()%JTB(EXM) @)

where S is the internal angular momentum, I is the sum
of moment of inertia of the particles per unit volume,

Q= %V XE , together with
Vg=0,VxH= o,v.(ﬁ+ﬁ) =0

[25], ais the fluid viscosity in the film region, His
external magnetic field, M is magnetization vector, ;

is magnetic susceptibility of the magnetic field, p is the
film pressure, # is the fluid viscosity, u, is the
permeability of the free space and M, is the equilibrium
magnetization. By using equation (3), in equation (2)
and (4), one finds that,

-V, +77V2;]+,uo (M.V)E+%,u0Vx(Mxﬁ) =0(5)

and

M = My 2 () - FUEES 3 (M ) 6)
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At this stage, one needs to remember that Langevin’s
parameter ¢ is a measure of the dimensionless field
strength. For a strong magnetic field &1. In this case zg
can’t be neglected. Then equation (6) takes the form as,

M:%(H+T(Q><H)) 7
where
r—___ B
1+L[BTSMOH

For a suspension of spherical particles I/zg =6n¢ and
5=3nV/(kg T), where ¢=nV is the volume concentration
of the particles, kg is the Boltzmann constant, »n is the
number of particles per unit volume and 7 is the

temperature, one can obtain 7 as

6n¢
nkBT(l + & coth 5)

T= (®)
By taking My= nu (cothé-1/5) and =kpTC/ugu, 1 being
magnetic moments of a particle, as in [4], (9).

In an axially symmetric flow under a uniform
magnetic field H = (0,0,H,) with radial velocity
component, (5) to (7) yield

2
a_Z = 1 _ dp (10)
0oz ( ,UoMoHo T ] dr
nll+—=—7—
4n
Using (8)-(10) one obtains
2
u__ 1 dp (11
o2 n(l+7)dr
where
e 3 S—tanh&
2" &+tanh &
Solving (11) under the no-slip boundary conditions
u=0 when z=0,h.
one gets
2 —
_z'—hz d_p (12)

‘e 27](1+T) dr

Substituting in the integral form of continuity equation

h .
li rudz + ho
rdr
0
yields,
1d( 3 dp )
——\r—|=12n(1+7)h 13
rdr( rdrj 77( T) 0 (13)

Making use of Einstein formula n=#,(1+5/2 @), where
7o 1s the viscosity of the main liquid,
Equation (13) reduces to
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ld(,3 dp 5 )
—— | r—= =12y 1+=¢ |(1 h 14
rdr( rdrj 770( +2¢j( +T) 0 (14

For the stochastical averaging of this differential
equation, a method has been proposed in [14-16]. Here
attempt has been made to modify this method, which
can certain simplifications yields, under the usual
assumptions of hydro-magnetic lubrication [25-27] the
modified Reynolds equation takes the form

li[(g(h)+ 12ph)r ;’pj -

rdr ar
5 .
=127, 1+E¢ (1+7)hy (15)
where
g(h) =i +3h2a+3(0'2 +a2)h+362a+a3 +¢
and /; is porous layer thickness and v is permeability of
porous region.

The following non dimensional quantities are
introduced,

_ X
b=t R=1p=- g gt C= i,
0 nob” ho
2
— — - — D7l
g:i’azﬁ’g:%,kzﬁ’(//: Cl’
hoy ho hg b g
2 3
«  D{l 12pe
p = g (16)
ho J(l—e)
. Ly !
12y | 1-(1-e)3 | | 1+(1—e)3
D=
I (1-e)
The associated boundary conditions are:
P(1)=P(k)=0 17)

The two different porous structures are discussed
below.

2.1 A globular sphere model as displayed in Figure 2

In this model, a porous material is filled by globular
spherical particles, with a mean particle size D..

w O
(o

N—f
Figure 2. Configuration of a globular sphere model

The Kozeny-Carman equation is well known in fluid
dynamics. Relatively better results for pressure drop are
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obtained when this model is applied to laminar flow.
The hydraulic radius theory of Kozeny-Carman
formulation resulted in the relationship [10, 28]

_ Dge3
J(1-e)?

where e is the porosity parameter and J is a parameter
known to depend on the morphology of pores. From
experimental investigation, usually 180 are set for the
permeability structure presented by Kozeny-Carman.
The Kozeny-Carman equation yields satisfactory results
for media that consists of particles of approximately
spherical shape and whose diameter fills with a narrow
range.

Making use of the boundary conditions (17) and non
dimensional quantities (16), one obtains the
dimensionless pressure distribution for globular sphere
model in a following form

R

P= —6[1+§¢J(1+1)!g<;ﬁd13+

(18)
dR

+Cl'1[R{g(Z)+A}
where
J-k ISdR
] =6(1+%¢j(1+1)"_kg#
1R{g(%)+A}

g(h)=H +30°a 30" +a’ Jr3o'ara’ vz

The non-dimensional load carrying capacity of the
bearing system is obtained from

hg k
W=-—"0 w:jRPdR (19)
271'77[74 l’lo 1

Therefore, the dimensionless load carrying capacity for
globular sphere model is expressed as

W=3(1+§¢j(1+7)!#d12—
[ RaR 2 (20)
Lg(h)+4
3(1+§¢j(1+1)jkg(—2m
1R{g(%)+A}

2.2 A capillary fissures model as shown in Figure 3

This model of porous sheets consists of three sets of
mutually orthogonal fissures with a mean solid size
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Figure 3. Geometry of capillary fissures model.

[29] derived the following expression for the
permeability of the grid of cubes considering no loss of
hydraulic gradient at the junctions, valid for e<1;

1y 1

D 1-m3 | |1+m3

ve I"(1-e)

where m=1-e and I" is a parameter known to depend on
the morphology of pores.

Resorting to the non dimensional quantities (16) and
the boundary conditions (17), the expression for non
dimensional pressure distribution for Irmay’s model
takes the form:

5 R R
P= —6(1+E¢j(1+r){WdR+
2 (1)
+C2J.{—R
1R{g(h)+D}

where
J‘k RdR
TS
5 g(h)-‘rD
C2 = 6(1+E¢j(l+f)jkT
' R{g(h)+D}
By making use of (19), the expression for the

dimensionless form of load carrying capacity is
calculated as

5 kogd
w =3(1+5¢j(1+1)!WdR_
2
J-k IEdR (22)

3. RESULTS AND DISCUSSION

It is easily observed that the dimensionless pressure
distribution in the bearing system given by equation
(18) and equation (21) while the non dimensional load
carrying capacity of the bearing system is obtained from
equation (20) and equation (22). It is clearly seen that
the pressure increases by
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and

ngiﬁw

respectively while the increase in load carrying capacity
turns out to be

(3(1+%¢jrﬁg(£;;ﬂldle

and

@@g%’ljﬁﬂ

respectively, in comparison with the conventional
lubricants.

Moreover, it is transparent from equation (20) and
equation (22) that the expression is linear with respect
to the magnetization parameter t. As a result increasing
value of the magnetization parameter would lead to
increased load carrying capacity. It is not surprising
because the magnetization increases the effective
viscosity of the lubricant there by increasing the
pressure and consequently the load carrying capacity.
Setting the magnetization parameter to be zero for a
porous bearing with smooth surfaces the current
investigation reduces to the discussion of [30]. In
particular, the current investigation also includes the
study of [31]. In the absence of porosity this study
reduces to the investigation of [1] for a bearing with
smooth surfaces when lower plate’s curvature parameter
is zero.

The graphical representations concerning the
Kozeny-Carman model and Irmay’s model are
presented in Figures 4-33.

Here the morphology parameter significantly
contributes towards the enhancement of the load
carrying capacity which can be seen from Figures 4-8
for Kozeny-Carman model and 9-13 for Irmay’s model.
However, the rate of increase in the load carrying
capacity due to morphology parameter gets decreased
with large value of lower plate’s curvature parameter for
Kozeny-Carman model.

1.68
1.61
2154
1.47/
1.4 4 : T : [J
150 165 180 195 210
= =(0.01 =002 = p = 0.03
——p = (0.04 e p = (0.05

Figure 4. Variation of Load carrying capacity with respect
toJ and ¢.
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1.52
1.44
g.I..3’6

1.28

1.2 4 : I I 1J

150 165 180 195 210
=g =25 W =30 —— =35
= =40 i P =45

Figure 5. Variation of Load carrying capacity with respect
toJandy.

L & s & =
1.2
208
04
0 + T T T 1
150 165 180 195 210
——e =034 e=049 e = (0.64

o = (.79 i o = (0,94

Figure 6. Variation of Load carrying capacity with respect
toJande.

1.6 +
N o
t _+— - h
14
=12 +
D e——te——te——t——"
0.8 f f f [ J
150 165 180 195 210
—p— (=1 Cc=2 e (= 3
——C-=4 ——C=5

Figure 7. Variation of Load carrying capacity with respect
toJandC.
1.53
1.46
=739

132

1.25 f I f 1 J
150 165 180 195 210
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Figure 8. Variation of Load carrying capacity with respect
to J and ;
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Figure 9. Variation of Load carrying capacity with respect
to I ande.
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¢
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L
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215 /
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i (¥ = 20 e WF = 25

Figure 10. Variation of Load carrying capacity with respect
to I* and yp*
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0.4 &£ -

0 '. ' f I*
10 11 12 13 14
——c=034 e=049  —h—e=064

——c =079 —t—g = 0.94

Figure 11. Variation of Load carrying capacity with respect
to I*and e.
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Figure 12. Variation of Load carrying capacity with respect
to I* and B.
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1.39 ; : '
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Figure 13. Variation of Load carrying capacity with respect
tol** and ¢

Further, by increasing the volume concentration
parameter load carrying capacity can be increased
which is exhibited in Figures 14-17 for Kozeny-
Carman’s formulation and 18-21 for Irmay’s model.
Moreover, this rate of increase in the load carrying
capacity due to volume concentration parameter
stabilizes for higher values of porosity parameter and
lower plate’s curvature parameter

1.6
p T
214 -
1.3
1.2 | i i ¢
0.01 0.02 0.03 0.04 0.05
—— =25 ~P =30  —=W=35
— =40 i = 45
Figure 14. Variation of Load carrying capacity with respect
to @ and @
o ——
14 L
105 +
g(1 7
0.35 ; —- — - —ir —h
0 - I 1 I I
0.01 0.02 0.03 0.04 0.05
——c = (.34 e=049 e = (0.64
——p=(0.79 —f—e=0.94

Figure 15. Variation of Load carrying capacity with respect
topande
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Figure 16. Variation of Load carrying capacity with respect
topandC
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Figure 17. Variation of Load carrying capacity with respect
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Figure 18. Variation of Load carrying capacity with respect
*
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Figure 19. Variation of Load carrying capacity with respect
topande.
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Figure 20. Variation of Load carrying capacity with respect
to and C.
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Figure 21. Variation of Load carrying capacity with respect

topand ¢

The porous structure has relatively more effect in the
case of Irmay’s model which can be encountered in
Figures 22-24 for Kozeny-Carman’s model and 25-27
for Irmay’s model. But, the rate of decrease in the load
carrying capacity due to porous structure parameter gets
decreased with large value of porosity parameter and
lower plate’s curvature parameter.

1.4 0\,_\‘_
12 + ———
1 4
508
06
04
0.2 m e
0" l s | o
25 30 35 40 45
——e=-034 e=049 —k—e=0.64
——e=079 —4—e=094

Figure 22. Variation of Load carrying capacity with respect
toy ande.
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Figure 23. Variation of Load carrying capacity with respect
toy andC.
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Figure 24. Variation of Load carrying capacity with respect

toy and ¢.
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Figure 25. Variation of Load carrying capacity with respect
to y** and e.
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Figure 26. Variation of Load carrying capacity with respect
to y** and C.
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Figure 27. Variation of Load carrying capacity with respect

toy*and ¢

[32] suggested that for porosity in between 0.25 and
0.65 the Kozeny- Carman’s formulation and Irmay’s
model agree reasonably well in the sense that the
performance differed by at the best 8 to 9 %. This is
visible from the Figures presented below.

By increasing the upper plate’s curvature parameter
and lowering the lower plat’s curvature parameter the
bearing performance characteristics may be enhanced
for both the models as can be witnessed from Figures 28
for Kozeny-Carman’s formulation and 29 for Irmay’s
model.

144 T
21.26 +
1.08 l ﬂf
0.9 + f I
1.5 1.7 1.9
——(=1 C=2 —tr—=3
—— (=4 (=5

Figure 28: Variation of Load carrying capacity with respect
toB and C.

17 /—f‘*”*

15 -+
313
11 F=*==4_—_—==t==*
0.9 - | |
15 17 1.9
+C:4 *C:S

Figure 29: Variation of Load carrying capacity with respect
toBandC
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The effect of roughness is provided in Figures 30-31
for Kozeny-Carman model and 32-33 for Irmay’s
model. It is easily observed from Figure 30 that the
combined effect of standard deviation and positive
skewness is considerably adverse in the sense that it
results in heavy decrease in load carrying capacity.

1.51

1.41
i \
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1.11 I I I g
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Figure 30: Variation of Load carrying capacity with respect

to oand ¢
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Figure 31: Variation of Load carrying capacity with respect

to € and a

1.59

147
2735

123 -

1.11 I I f | &

0.05 0.1 0.15 0.2 0.25

==z =-().05 £=-0025 =de=c=0

i £ =(0.025 =4=£=0.05
Figure 32: Variation of Load carrying capacity with respect

to o0 and ¢
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Figure 33: Variation of Load carrying capacity with respect

to &€ and

From the above graphical representations, it is clear that
the increase in standard deviation results in decreased
load carrying capacity. However, the load carrying
capacity gets increased due to negatively skewed
roughness but positive skewness introduces a decrease
in load carrying capacity. The trends of the variance
appear quite similar to that of skewness. The decrease in
the load carrying capacity is basically due to the fact
that transverse roughness retards the motion of the
lubricant.

Some of the graphs presented here reveal the following:
1. The morphology parameter and the volume
concentration parameter significantly increase the load
carrying capacity.

2. Further, it is observed that at least in the case of
negatively skewed roughness the adverse effect of
porosity and standard deviation can be compensated to a
large extent. This compensation being more in the case
of Irmay’s model.

3. Although, the trends are similar for both the models
the load carrying capacity is found to be more in the
case of Irmay’s model.

4. The combine effect of porosity and the porous
structure is relatively more for the case of Irmay’s
model.

5. As suggested by the Figures the negatively variance
induced increase in load carrying capacity gets further
increased owing to negatively skewed roughness which
may mitigate the negative effect of porosity to some
extent.

6. It is noticed that the bearing system can support
certain amount of load even in the absence of flow
which does not happen in the case of conventional
lubricants.

7. A constant magnetic field fails to significantly
enhance the performance characteristics in the
Neuringer-Rosensweig model but it does so in the
Shliomis model where in the rotation of magnetic
particles and their moments are taken into consideration.
Here also Irmay’s model scores over the Kozeny-
Carman model, so far as Shliomis model based
ferrofluid lubrication is concerned.

4. CONCLUSION

Although the effect of transverse roughness is adverse
in general, this investigation offers the suggestion that
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the bearing performance can be improved significantly
by the positive effect of magnetization at least in the
case of negatively skewed roughness for Irmay’s model.
Further, this article establishes that the roughness must
be given due consideration while designing the bearing
system even when Irmay’s model is in place. Needless
to say is that Irmay’s model may be preferred over the
Kozeny-Carman’s model for an overall improved
performance.
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TEOPUJCKO IMTPOYYABAIGE IIVIMOMHUCOBOI'
MOJEJIA 3BACHOBAHOI' HA MATHETHOM
OJIYUAY BASUPAHOM HA CTUCHYTOM
OUNJIMY KOJ XPAITABUX 3AKPUB/bEHUX
IMPCTEHACTHX IIVIOYA CA OJABPAHOM
IMOPO3HOM CTPYKTYPOM

Jimit R. Patel, Gunamani Deheri

Y 0BOM TECOPHjCKOM HCTPAXXKHMBAEY pa3Marpa Ce YTHIIA]
HInuomucoBor Monena, Oa3UpaHOr Ha MOIMAa3HBabY
IBO3CHUM (IIYHJIOM, Ha CTUCHYTH GuiM un3mehy
3aKPHBJCHHX XPAalaBHX MPCTEHACTUX IUIoYa mopehemem
ca JBEe pa3NMYUTE TIOpo3He CTpykType. KoseHu-
KapmanoBa popmymnanuja u pMejeB Mozen ¢y yCBOjeHH
3a MOpo3He  CTpykType. CTOXacTHYKH  MOJIENH
Kpucrencena n ToHaepa ce KOPHUCTe 3a KapaKTepH3aLujy
MOTIpeYHe XpanaBocTy. JegHaunHa PejHonacoBor Tuma ce
periasa Ja Ou ce nobuina TucTpuOylHja MPUTHUCKA, IITO
JIOBOJIM JIO M3padyHaBamba HOCUBOCTH. I'padiuku mpukas
TIOKa3yje /1a ce HeTOBOJbaH YTHIIA] ONPEYHE XPariaBOCTH
MOJKe MHHHMH30BaTH MO3UTHBHUM edexrom
MarHeTH3alldje y CJIy4ajy HEraTHBHO  YKpIITCHE
XparmaBocTH ~ M300poM  oxaromapajyhmx  mapamerapa
kpuBHuHE. [laske, n3riena aa je oa KomreHsanyja Beha y
crydajy UpmejeBor momena y mopehemy ca Koszenu-
KapmanoBom wmeromom, mro HMpmejeB Meron YHHH
MOTOAHUJUM 3a YCBajame. YTBpheHO je ma edekar
napaMerpa MOpQoJIOTHje U TMapaMeTpa KOHIIEHTpalluje
3anpeMuHe MoBehaBa HOCHBOCT CHCTEMa JIexKajeBa.
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