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Theoretical Study of Shliomis Model 
Based Magnetic Squeeze Film in 
Rough Curved Annular Plates With 
Assorted Porous Structures 
 
In present theoretical investigation, the effect of Shliomis model based 
ferrofluid lubrication on the squeeze film between curved rough annular 
plates with comparison between two different porous structures is 
discussed. Kozeny- Carman’s formulation and Irmay’s model are adopted 
for porous structures. The stochastic models of Christensen and Tonder 
have been used for characterizing transverse roughness. The associated 
Reynolds type equation is solved to obtain the pressure distribution leading 
to the calculation of the load carrying capacity. The graphical 
representations show that the adverse effect of transverse roughness can 
be minimized by the positive effect of magnetization in the case of 
negatively skewed roughness, suitably choosing curvature parameters. 
Further, this compensation appears to be more in the case of Irmay’s 
model as compared to that of Kozeny- Carman’s method, which makes the 
Irmay’s model more suitable for adoption. It is observed that the effect of 
morphology parameter and volume concentration parameter increases the 
load carrying capacity of the bearing system. 
 
Keywords: Porous Structures, Magnetic fluid, Curved Annular plates, 
Squeeze film, Roughness. 

 
 

1. INTRODUCTION 
 

In the field of engineering and technology, annular 
bearing are often designed to bear the transverse loads. 
The study of performance characteristics of annular 
bearings with different shape and different lubricants 
has been done from time to time by the researchers. [1] 
studied the effect of ferrofluid on the curved squeeze 
film between two annular plates, when the upper plate 
approached the lower one normally including the 
rotation of the magnetic particles and their magnetic 
moments. [2] analyzed the behaviour of a magnetic 
fluid based squeeze film between rotating transversely 
rough porous annular plates incorporating elastic 
deformation. [3] examined the combined effect of 
couple stresses and surface roughness patterns on the 
squeeze film characteristics of curved annular plates.  

The positive effect of magnetic fluid lubricant drew 
considerable attentions during the last two decades. 
Recently, many theoretical and experimental 
investigations were made using a ferrofluid as lubricant 
owing to its various advantages such as in seals, 
dampers, sensors, coating system and load speakers. On 
the other hand, [4] proposed a ferrofluid flow model in 
which the effect of rotation of magnetic particles, their 
magnetic moments and the volume concentration were 
included. [5] analyzed the effect of rotational inertia on 
the squeeze film load between porous annular curved 

plates. It was found that the load carrying capacity 
decreased when the speed of rotation of the upper disk 
increased up to certain value. It was shown that the load 
carrying capacity could be enhanced without altering 
the speed of rotation by increasing the upper plate’s 
curvature parameter. [6] analyzed that the magnetic 
energy was partially transformed into the angular 
momentum of the magnetic particles which in turn, was 
converted into a hydrodynamic motion of the fluid. [7] 
dealt with the effect of fluid inertia in magneto 
hydrodynamic annular squeeze films. It was concluded 
that the inertia correction factor in the magneto 
hydrodynamic load carrying capacity was more 
pronounced with large Hartmann numbers. [8] 
theoretically presented the effect of ferrofluid on the 
dynamic characteristics of curved slider bearings using 
Shliomis model. [9] discussed the influence of fluid 
inertia forces on the ferrofluid squeeze film between a 
sphere and a plate in the presence of external magnetic 
fields on the ground of the ferrohydrodynamic model 
proposed from by [4]. All these above studies 
established that the volume concentration and the 
intensity of magnetic field provided an increase in the 
load carrying capacity and the time of approach due to 
the Shliomis model based magnetic fluid lubrication.  

By now, it is well established that porous materials 
are used in a wide variety of applications which 
includes catalyses, chemical separation and tissue 
engineering. Porous structures are very important in 
biomedical applications where there are strict limits on 
the amount of residual organic solvent that may remain 
in the materials; this provides a strong driving force to 
seek non- toxic solvent alternatives. Of course, one 
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needs to remember that surface modification or 
templating of nano porous material presents some 
special problem because organic solvents are often too 
viscous to fill such small pores. In view of their wide 
range of applications, theoretical studies have been 
conducted by [10-11]. Recently, [12] discussed the 
effect of various porous structures on the performance 
of a Shliomis model based ferrofluid lubrication of a 
squeeze film in rotating rough porous curved circular 
plates. It was found that the adverse effect of transverse 
roughness could be overcome by the positive effect of 
ferrofluid lubrication in the case of negatively skewed 
roughness when Kozeny- Carman’s model is deployed 
by suitably choosing curvature parameters and 
rotational inertia. 

In most of the investigations, it has been 
considered that the bearing surfaces are smooth. This 
is an unrealistic assumption for the bearing operating 
with small film thickness. In the last decade, a 
considerable amount of tribological research has been 
conducted to study the effect of surface roughness on 
hydrodynamic lubrication. This is mainly because of 
the fact that all solid surfaces are rough to some extent 
and generally the height of roughness asperities is of 
the same order of magnitude as the mean separation 
between lubricated contacts. In literature, several 
investigations such as [13-18] accounting for surface 
roughness effect have been proposed in order to seek a 
more realistic representation of bearing surfaces. [19] 
analyzed the effect of magneto-hydrodynamic squeeze 
film characteristics between curved annular plates. On 
the basis of the Christenson and Tonder’s stochastic 
model of roughness, the discussion carried out by [20-
23] reported that the negatively skewed roughness 
turns in better performance. All these above studies 
established that increasing values of porosity caused 
reduced load carrying capacity and friction. The 
combination of magnetization and negatively skewed 
roughness reduced the friction. Moreover, porosity 
played a seminal role in improving the overall 
performance of a bearing system by choosing a 
suitable range of roughness parameters with proper 
selection of rotation ratio. Lastly, [24] presented the 
performance of a ferrofluid based squeeze film in 
rotating rough curved circular plates resorting to 
Shliomis model. It was concluded that the adverse 
effect of roughness could be reduced considerably at 
least in the case of negatively skewed roughness with a 
suitable choice of curvature parameters. 

The aim of this paper is to theoretically analyze the 
performance of Shliomis model based ferrofluid 
squeeze film in curved rough annular plates with a 
comparison between the porous structure of Kozeny-
Carman and capillary fissures model of Irmay. 

 
2. ANALYSIS 

 
The geometry of the bearing system which consists of 
annular plates is displayed in Figure 1. The bearing 
consists of two annular plates each of inside radius b 
and outside radius a (a>b). Surfaces of both disks are 
considered to be transversely rough. The upper plate 

moves towards the lower plate normally with uniform 

velocity 
.

0h  dh0/dt. 

 
Figure 1. Configuration of the bearing system 

In view of the discussions concerning the stochastic 
modeling of transverse roughness mooted by [14-16], 
the film thickness h(x) is assumed to be, 

     sh x h x h   (1) 

where  h x  denotes the mean film thickness and hs is 

the deviation from the mean film thickness 
characterizing the random roughness of the bearing 
surfaces. The deviation hs is obtained by a generalized 
probability density function 
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where c is the maximum deviation from the mean film 
thickness. The mean α, the standard deviation σ and the 
parameter ε, which is the measure of symmetry of the 
random variable hs, are defined by the relationships: 

     2 32, ,s s sE h E h E h                 
  

where E denotes the expected value defined by 

    
c

s

c

E R Rf h ds

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The details can be seen from [14-16]. 
It is assumed that the upper disk lying along the 

surface determined by the relation 

  2
0 exp ;uz h r a r b      

approaches with normal velocity ( 0h ) ̇ to the lower 

plate, lying along the surface given by 

  2
0 exp 1 ;lz h r a r b       

  

where h0is the central distance between the plates, β and 
γ are the curvature parameters of the corresponding 
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plates. The film thickness h(r) then, is defined by 
[22,25] 

     2 2
0 exp exp 1 ;h r h r r a r b          

  

In fact, magnetic fluids (or ferrofluids) are stable 
colloidal suspensions of very fine magnetic particles in 
a viscous fluid (carrier liquid). These types of fluids can 
be positioned, confined or controlled at desired places 
under the application of an external magnetic field. The 
external magnetic field further introduces an increase in 
effective viscosity of the ferro solution. This indeed has 
resulted in increased application of magnetic fluids as 
lubricants in bearing systems. It is pertinent to note that 
most of the studies deal with the model of Neuringer-
Rosensweig which assumes that the magnetization 
vector is parallel to the applied magnetic field. This 
restriction is relaxed in the model of Shliomis which 
takes into account the particle rotation also. [4] 
suggested that magnetic particles of a magnetic fluid 
could relax in two ways when the applied magnetic field 
changed. One was by the rotation of magnetic particles 
in the fluid and the other one by rotation of the magnetic 
moment with in the particles. Brownian relaxation time 
parameter τB gives particle rotation while the relaxation 
time parameter τS describes the intrinsic rotational 
process. Assuming steady flow, neglecting inertial and 

second derivatives of S , the equations governing the 
flow become, 

   2
0

1
. 0

2p
S

M H S Iq 


          (2) 

  0 SS I M H     (3) 

  0
BM M M

H

H

I
S


    (4) 

where S is the internal angular momentum, I is the sum 
of moment of inertia of the particles per unit volume, 

1

2
q   , together with 

  . 0, 0, . 0q H H M         

[25], q is the fluid viscosity in the film region, H is 

external magnetic field, M is magnetization vector,   

is magnetic susceptibility of the magnetic field, p is the 
film pressure, η is the fluid viscosity, μ0 is the 
permeability of the free space and M0 is the equilibrium 
magnetization. By using equation (3), in equation (2) 
and (4), one finds that, 
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0 0

1
. 0

2p q M H M H           (5) 

and 
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At this stage, one needs to remember that Langevin’s 
parameter ξ is a measure of the dimensionless field 
strength. For a strong magnetic field ξ>1. In this case τS 
can’t be neglected. Then equation (6) takes the form as, 

   0M
M H H

H
    (7) 
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For a suspension of spherical particles I/τS =6ηϕ and 
τB=3ηV/(kB T), where ϕ=nV is the volume concentration 
of the particles, kB is the Boltzmann constant, n is the 
number of particles per unit volume and T is the 

temperature, one can obtain  as 
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 (8) 

By taking M0= ημ (cothξ-1/ξ) and =kBTξ/μ0μ, μ being 
magnetic moments of a particle, as in [4], (9). 

In an axially symmetric flow under a uniform 

magnetic field H = (0,0,H0) with radial velocity 
component, (5) to (7) yield 
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Using (8)-(10) one obtains 
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where 
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Solving (11) under the no-slip boundary conditions 
u=0 when z=0,h. 
one gets 

 
 

2

2 1

z hz dp
u

dr 





 (12) 

Substituting in the integral form of continuity equation 

 0

0

1
h

d
rudz h

r dr


   

yields, 

  3
0

1
12 1

d dp
h r h

r dr dr
 

    
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 (13) 

Making use of Einstein formula η=η0(1+5/2 Φ), where 
η0 is the viscosity of the main liquid, 
Equation (13) reduces to 
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  3
00

1 5
12 1 1

2

d dp
h r h

r dr dr
  

        
   

 (14) 

For the stochastical averaging of this differential 
equation, a method has been proposed in [14-16]. Here 
attempt has been made to modify this method, which 
can certain simplifications yields, under the usual 
assumptions of hydro-magnetic lubrication [25-27] the 
modified Reynolds equation takes the form 

   1
1

12
d dp

g h l r
r dr dr

   
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where 

   3 2 2 2 2 33 3 3g h h h h               

and l1 is porous layer thickness and ψ is permeability of 
porous region. 

The following non dimensional quantities are 
introduced, 
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The associated boundary conditions are: 

    1 0P P k   (17) 

The two different porous structures are discussed 
below. 
 
2.1 A globular sphere model as displayed in Figure 2 
 
In this model, a porous material is filled by globular 
spherical particles, with a mean particle size Dc. 

 
Figure 2. Configuration of a globular sphere model 

The Kozeny-Carman equation is well known in fluid 
dynamics. Relatively better results for pressure drop are 

obtained when this model is applied to laminar flow. 
The hydraulic radius theory of Kozeny-Carman 
formulation resulted in the relationship [10, 28] 
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where e is the porosity parameter and J is a parameter 
known to depend on the morphology of pores. From 
experimental investigation, usually 180 are set for the 
permeability structure presented by Kozeny-Carman. 
The Kozeny-Carman equation yields satisfactory results 
for media that consists of particles of approximately 
spherical shape and whose diameter fills with a narrow 
range.  

Making use of the boundary conditions (17) and non 
dimensional quantities (16), one obtains the 
dimensionless pressure distribution for globular sphere 
model in a following form 

 

   

  

1

1
1

5
6 1 1

2

R

R

R
P dR

g h A

dR
C

R g h A

       
  







 (18) 

where 
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The non-dimensional load carrying capacity of the 
bearing system is obtained from 
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Therefore, the dimensionless load carrying capacity for 
globular sphere model is expressed as 
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 (20) 

 
2.2 A capillary fissures model as shown in Figure 3 
 
This model of porous sheets consists of three sets of 
mutually orthogonal fissures with a mean solid size 
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Figure 3. Geometry of capillary fissures model. 

[29] derived the following expression for the 
permeability of the grid of cubes considering no loss of 
hydraulic gradient at the junctions, valid for e≪1; 

 
 

31 1
2 3 3

*

1 1

1

sD m m

I e


   
    
   
   


  

where m=1-e and I* is a parameter known to depend on 
the morphology of pores. 

Resorting to the non dimensional quantities (16) and 
the boundary conditions (17), the expression for non 
dimensional pressure distribution for Irmay’s model 
takes the form: 

 

   

  

1

2
1

5
6 1 1

2

R

R

R
P dR

g h D

dR
C

R g h D

       
  







 (21) 

where 

 
 

  

1

2

1

5
6 1 1

2

k

k

RdR

g h D
C

dR

R g h D

 
    

 





  

By making use of (19), the expression for the 
dimensionless form of load carrying capacity is 
calculated as 
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3. RESULTS AND DISCUSSION  
 
It is easily observed that the dimensionless pressure 
distribution in the bearing system given by equation 
(18) and equation (21) while the non dimensional load 
carrying capacity of the bearing system is obtained from 
equation (20) and equation (22). It is clearly seen that 
the pressure increases by 

 
 

1
5

6 1
2

R

R
d

g Ah
R     

   
   

and 

 
 

1
5

6 1
2

R

R
dR

g h D
     

   
   

respectively while the increase in load carrying capacity 
turns out to be 
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respectively, in comparison with the conventional 
lubricants.  

Moreover, it is transparent from equation (20) and 
equation (22) that the expression is linear with respect 
to the magnetization parameter τ. As a result increasing 
value of the magnetization parameter would lead to 
increased load carrying capacity. It is not surprising 
because the magnetization increases the effective 
viscosity of the lubricant there by increasing the 
pressure and consequently the load carrying capacity. 
Setting the magnetization parameter to be zero for a 
porous bearing with smooth surfaces the current 
investigation reduces to the discussion of [30]. In 
particular, the current investigation also includes the 
study of [31]. In the absence of porosity this study 
reduces to the investigation of [1] for a bearing with 
smooth surfaces when lower plate’s curvature parameter 
is zero. 

The graphical representations concerning the 
Kozeny-Carman model and Irmay’s model are 
presented in Figures 4-33. 

Here the morphology parameter significantly 
contributes towards the enhancement of the load 
carrying capacity which can be seen from Figures 4-8 
for Kozeny-Carman model and 9-13 for Irmay’s model. 
However, the rate of increase in the load carrying 
capacity due to morphology parameter gets decreased 
with large value of lower plate’s curvature parameter for 
Kozeny-Carman model. 

 
Figure 4. Variation of Load carrying capacity with respect 
to J and φ. 
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Figure 5. Variation of Load carrying capacity with respect 
to J and ψ ̅. 

 
Figure 6. Variation of Load carrying capacity with respect 
to J and e. 

 
Figure 7. Variation of Load carrying capacity with respect 
to J and C. 

 
Figure 8. Variation of Load carrying capacity with respect 

to J and   

 
Figure 9. Variation of Load carrying capacity with respect 
to I* andφ. 

 
Figure 10. Variation of Load carrying capacity with respect 
to I* and ψ* 

 
Figure 11. Variation of Load carrying capacity with respect 
to I* and e. 

 
Figure 12. Variation of Load carrying capacity with respect 
to I* and B. 
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Figure 13. Variation of Load carrying capacity with respect 

to I^* and   

Further, by increasing the volume concentration 
parameter load carrying capacity can be increased 
which is exhibited in Figures 14-17 for Kozeny-
Carman’s formulation and 18-21 for Irmay’s model. 
Moreover, this rate of increase in the load carrying 
capacity due to volume concentration parameter 
stabilizes for higher values of porosity parameter and 
lower plate’s curvature parameter 

 
Figure 14. Variation of Load carrying capacity with respect 

to ϕ and   

 
Figure 15. Variation of Load carrying capacity with respect 

to ϕ and e 

 
Figure 16. Variation of Load carrying capacity with respect 

to ϕ and C 

 
Figure 17. Variation of Load carrying capacity with respect 

to ϕ and   

 
Figure 18. Variation of Load carrying capacity with respect 

to  and 
*  

 
Figure 19. Variation of Load carrying capacity with respect 

to ϕ and e. 
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Figure 20. Variation of Load carrying capacity with respect 

to ϕ and C. 

 

Figure 21. Variation of Load carrying capacity with respect 

to ϕ and   

The porous structure has relatively more effect in the 
case of Irmay’s model which can be encountered in 
Figures 22-24 for Kozeny-Carman’s model and 25-27 
for Irmay’s model. But, the rate of decrease in the load 
carrying capacity due to porous structure parameter gets 
decreased with large value of porosity parameter and 
lower plate’s curvature parameter. 

 
Figure 22. Variation of Load carrying capacity with respect 
to ψ ̅ and e. 

 
Figure 23. Variation of Load carrying capacity with respect 
to ψ ̅ and C. 

 
Figure 24. Variation of Load carrying capacity with respect 

to ψ ̅ and  . 

 
Figure 25. Variation of Load carrying capacity with respect 
to ψ^* and e. 

 
Figure 26. Variation of Load carrying capacity with respect 
to ψ^* and C. 
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Figure 27. Variation of Load carrying capacity with respect 

to ψ* and   

[32] suggested that for porosity in between 0.25 and 
0.65 the Kozeny- Carman’s formulation and Irmay’s 
model agree reasonably well in the sense that the 
performance differed by at the best 8 to 9 %. This is 
visible from the Figures presented below. 

By increasing the upper plate’s curvature parameter 
and lowering the lower plat’s curvature parameter the 
bearing performance characteristics may be enhanced 
for both the models as can be witnessed from Figures 28 
for Kozeny-Carman’s formulation and 29 for Irmay’s 
model. 

 
Figure 28: Variation of Load carrying capacity with respect 
to B and C. 

 
Figure 29: Variation of Load carrying capacity with respect 
to B and C 

The effect of roughness is provided in Figures 30-31 
for Kozeny-Carman model and 32-33 for Irmay’s 
model. It is easily observed from Figure 30 that the 
combined effect of standard deviation and positive 
skewness is considerably adverse in the sense that it 
results in heavy decrease in load carrying capacity. 

 
Figure 30: Variation of Load carrying capacity with respect 

to  and   

 
Figure 31: Variation of Load carrying capacity with respect 

to   and   

 
Figure 32: Variation of Load carrying capacity with respect 

to   and   
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Figure 33: Variation of Load carrying capacity with respect 

to   and   

From the above graphical representations, it is clear that 
the increase in standard deviation results in decreased 
load carrying capacity. However, the load carrying 
capacity gets increased due to negatively skewed 
roughness but positive skewness introduces a decrease 
in load carrying capacity. The trends of the variance 
appear quite similar to that of skewness. The decrease in 
the load carrying capacity is basically due to the fact 
that transverse roughness retards the motion of the 
lubricant. 
Some of the graphs presented here reveal the following: 
1. The morphology parameter and the volume 
concentration parameter significantly increase the load 
carrying capacity. 
2. Further, it is observed that at least in the case of 
negatively skewed roughness the adverse effect of 
porosity and standard deviation can be compensated to a 
large extent. This compensation being more in the case 
of Irmay’s model. 
3. Although, the trends are similar for both the models 
the load carrying capacity is found to be more in the 
case of Irmay’s model. 
4. The combine effect of porosity and the porous 
structure is relatively more for the case of Irmay’s 
model. 
5. As suggested by the Figures the negatively variance 
induced increase in load carrying capacity gets further 
increased owing to negatively skewed roughness which 
may mitigate the negative effect of porosity to some 
extent. 
6. It is noticed that the bearing system can support 
certain amount of load even in the absence of flow 
which does not happen in the case of conventional 
lubricants. 
7. A constant magnetic field fails to significantly 
enhance the performance characteristics in the 
Neuringer-Rosensweig model but it does so in the 
Shliomis model where in the rotation of magnetic 
particles and their moments are taken into consideration. 
Here also Irmay’s model scores over the Kozeny-
Carman model, so far as Shliomis model based 
ferrofluid lubrication is concerned. 
 
4. CONCLUSION 
 
Although the effect of transverse roughness is adverse 
in general, this investigation offers the suggestion that 

the bearing performance can be improved significantly 
by the positive effect of magnetization at least in the 
case of negatively skewed roughness for Irmay’s model. 
Further, this article establishes that the roughness must 
be given due consideration while designing the bearing 
system even when Irmay’s model is in place. Needless 
to say is that Irmay’s model may be preferred over the 
Kozeny-Carman’s model for an overall improved 
performance. 
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ТЕОРИЈСКО ПРОУЧАВАЊЕ ШЛИОМИСОВОГ 
МОДЕЛА ЗАСНОВАНОГ НА МАГНЕТНОМ 
ФЛУИДУ БАЗИРАНОМ НА СТИСНУТОМ 
ФИЛМУ КОД ХРАПАВИХ ЗАКРИВЉЕНИХ 
ПРСТЕНАСТИХ ПЛОЧА СА ОДАБРАНОМ 

ПОРОЗНОМ СТРУКТУРОМ 
 

Jimit R. Patel, Gunamani Deheri 
 
У овом теоријском истраживању разматра се утицај 
Шлиомисовог модела, базираног на подмазивању 
гвозденим флуидом, на стиснути филм између 
закривљених храпавих прстенастих плоча поређењем 
са две различите порозне структуре. Козени-
Карманова формулација и Ирмејев модел су усвојени 
за порозне структуре. Стохастички модели 
Кристенсена и Тондера се користе за карактеризацију 
попречне храпавости. Једначина Рејнолдсовог типа се 
решава да би се добила дистрибуција притиска, што 
доводи до израчунавања носивости. Графички приказ 
показује да се неповољан утицај попречне храпавости 
може минимизовати позитивним ефектом 
магнетизације у случају негативно укрштене 
храпавости избором одговарајућих параметара 
кривине. Даље, изгледа да је ова компензација већа у 
случају Ирмејевог модела у поређењу са Козени-
Кармановoм методом, што Ирмејев метод чини 
погоднијим за усвајање. Утврђено је да ефекат 
параметра морфологије и параметра концентрације 
запремине повећава носивост система лежајева.  

 


