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Advanced Quaternion Forward 
Kinematics Algorithm Including 
Overview of Different Methods for 
Robot Kinematics 

 
Formulation of proper and efficient algorithms for robot kinematics is 
essential for the analysis and design of serial manipulators. Kinematic 
modeling of manipulators is most often performed in Cartesian space. 
However, due to disadvantages of most widely used mathematical 
constructs for description of orientation such as Euler angles and 
rotational matrices, a need for unambiguous, compact, singularity free, 
computationally efficient method for representing rotational information is 
imposed. As a solution, unit quaternions are proposed and kinematic 
modeling in dual quaternion space arose. In this paper, an overview of 
spatial descriptions and transformations that can be applied together 
within these spaces in order to solve kinematic problems is presented. 
Special emphasis is on a different mathematical formalisms used to 
represent attitude of a rigid body such as rotation matrix, Euler angles, 
axis-angle representation, unit quaternions, and their mutual relation. 
Benefits of kinematic modeling in quaternion space are presented. New 
direct kinematics algorithm in dual quaternion space pertaining to a 
particular manipulator is given. These constructs and algorithms are 
demonstrated on the human centrifuge as 3 DoF robot manipulator. 

 
Keywords: robot, orientation, direct kinematics, quaternion, dual 
quaternion. 

 
 

1. INTRODUCTION  
 

Robot kinematics pertains to the motion of bodies in a 
robotic mechanism without regard to the forces/torques 
that cause the motion. Since robotic mechanisms are by 
their very essence designed for motion, kinematics is 
the most fundamental aspect of robot design, analysis, 
control and simulation [1]. Special emphasis in the 
study of robot kinematics is on geometry of the 
structure of robotic system which is modelled as multi-
degree of freedom kinematic chain. A kinematic chain 
is an assemblage of rigid bodies-links, connected by 
joints providing pure rotation or translation [2], [3].  

In general, a rigid displacement may consist of both 
translation and rotation of the object [4]. Thus, a rigid 
body in three-dimensional space generally has six 
degrees of freedom; its location is completely described 
by its position and orientation-the pose of a rigid body. 
It is of greatest importance in robotic systems to know 
the correct location of the end-effector in every 
moment. The actuated joint variables and their time 
derivatives can be obtained by reading of sensors 
installed on the joints. Direct kinematics problem is to 
find end-effector position and orientation relative to the 
base when positions of all joints are given [5]. During 

the development of kinematics, a number of mathematic 
theories, tools and algorithms have been introduced and 
implemented [4], [6]. In this paper, two different spaces, 
Cartesian space and quaternion space, are used for 
overview of mathematical constructs representing rigid 
transformation. 

Orientation of the rigid body can be described in 
several different ways. A rotation is a displacement in 
which at least one point of the rigid body remains in its 
initial position and not all lines in the body remain 
parallel to their initial orientations [1]. Psyhically, a 
rotation may be explained as reorientation of a body 
without changing the body’s size and shape [7]. All 
mathematical formalisms used to describe attitude of the 
rigid body are derived from Euler’s rotation theorem. 

According to Euler’s rotation theorem, any 
rotational movement of a rigid body in three-
dimensional space such that a point of the rigid body 
remains fixed troughout the movement is equivalent to a 
single rotation about particular axis passing through the 
fixed point. The axis of rotation is represented by a unit 
vector û  called Euler axis [8]. Hence, any rotation in 
three dimensional space can be represented via unit 
vector indicating the direction of a rotational axis and a 
scalar  (angle of rotation). This rotation representation 
is called axis-angle representation (Figure 1). From 
axis-angle representation another representation-
rotation vector, or Euler vector is derived. Rotation 
vector is represented by a vector directed towards the 
rotational axis whose magnitude is value of angle of 
rotation , ˆv u .  
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Figure 1. Axis-angle representation 

Besides the axis-angle and rotational vector 
representations, several sets of three-parameter 
representations have been reported in the literature. 
These three-parameter representations are called 
minimal representations. Perhaps, the most commonly 
used minimal representation is set of  Euler angles [9]. 

 
Figure 2. Proper Euler angles 

In linear algebra, the Euler theorem states that in 
three-dimensional space, any two Cartesian coordinate 
systems with a common origin can be put to 
coincidence by a finite rotation about certain axis 
passing through the origin. This approach is used in 
mechanics of rigid body. Frame can be attached to the 
rigid body and moving together with it, it defines 
orientation of the body. This frame is called local and it 
is described by three basis vectors. Orientation of these 
basis vectors can be described by means of their 
direction cosines with respect to the basis of the fixed 
frame. These parameters can be composed into 3 × 3 
matrix called a rotation matrix [1]. A rotation matrix 
may also be referred to as a direction cosine matrix, 
because the elements of this matrix are the cosines of 
the unsigned angles between the body-fixed axes and 
the axes of the fixed frame. 

Combining mathematical constructs for position in 
the form of position vector in homogeneous coordinates 
and orientation represented by rotational matrix yields 

4x4 homogeneous transformation matrix. This real 
orthonormal matrix is widely used in robotics 
community [10].  

The most popular mathematical constructs 
describing attitude of a rigid body possess certain 
disadvantages. Euler angles suffer from wrist 
singularities which are unfortunate consequence of 
using minimal representation [11]. Rotational matrix 
can be numerically unstable [12]. These disadvantages 
are overcome by usage of unit quaternions. The relevant 
functions of the unit quaternions have no singularities 
and they are numerically stable end efficent. When used 
to integrate incremental changes in attitude over time, 
they are more accurate than Euler angles [9]. 
Counterpart for homogenous transformation matrix in 
quaternion space is dual quaternion. Dual quaternions 
inherit advantages of unit quaternions while 
representing rigid transforms [13]. 

Although quaternions constitute an elegant 
representation of rotation, they are not used as much as 
other constructs in robotics community [14]. Main 
reason for this is lack of physicality, i.e. physical 
meaning of four quaternion parameters is not apparent 
which is the case with, for an example, Euler angles. On 
the other hand, extracting the angle and axis of rotation 
is simple.  

The purpose of this paper is to provide simple 
explanation of possibilities of usage of unit and dual 
quaternions for spatial descriptions and transformations 
in robotics. Their relation with corresponding constructs 
in Cartesian space is given. Features of unit and dual 
quaternions are considered as much as necessary to be 
used in robot kinematics relations and algorithms. New 
direct kinematics algorithm in dual quaternion space is 
presented and demonstrated on human centrifuge which 
is modelled as 3 DoF robot manipulator.  

It is important to say that all mathematical 
formalisms described in this paper apply only to 
coordinate systems of determined orientation. Here, 
right handed frames are used. 

 
2. SPATIAL DESCRIPTIONS AND 

TRANSFORMATIONS IN CARTESIAN SPACE 
 

To identify the location of a body in Cartesian space, a 
reference coordinate system should be established. This 
reference coordinate system is called world coordinate 
system or fixed coordinate system and here it is denoted 
by Ojxj yj zj. After defining a reference coordinate 
system, the position and orientation of the rigid body are 
fully described by the position of the origin of the local 
frame Oi xi yi zi and the orientation of its axes. 

 
2.1 Position of the local frame origin 

 
The position of the origin of coordinate frame i relative 
to coordinate frame j can be denoted by the 3 × 1 vector: 

  Tj j x j y j z
i i i ip p pp . (1) 

The components of this vector are the Cartesian 
coordinates of the position vector of the frame origin 

iO  with respect to reference j-th frame. 
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Figure 3. Fixed and local coordinate system 

 
2.2 Attitude presentations: Rotational matrix 

 
The orientation of coordinate frame i relative to coor-
dinate frame j can be determined by defining the basis 
vectors of local frame  i i iˆ ˆ ˆ, ,x y z  with respect to the 

basis vectors of the fixed frame  j j jˆ ˆ ˆ, ,x y z . A rotation 

matrix j
iR  is a matrix whose multiplication with a 

vector rotates the vector while preserving its length [9]. 

The elements of j
iR  are dot products of basis vectors 

of the two coordinate frames: 

j i j i j i

j
i j i j 1i j i

j i j i j i

ˆ ˆ ˆ ˆ ˆ ˆcos( , ) cos( , ) cos( , )

ˆ ˆ ˆ ˆ ˆcos( , ) cos( , ) cos( ,z )

ˆ ˆˆ ˆ ˆ ˆcos( , ) cos( , ) cos( , )

 
 

  
 
  

x x x y x z

R y x y y y

z x z y z z

. (2) 

The columns of this matrix are unit vectors of local 
frame with respect to the fixed frame: 

 j j j j
i i i iˆ ˆ ˆ   R x y z . (3) 

If i 3p   and j 3p  are coordinate  vectors 

representing positions of the same point in three-
dimensional space with respect to the frames i and j and 
the origins of the two frames coincides, then following 
relation holds: 

 j j i
ip R p .  (4) 

In this paper, notation is adopted in which if reference 
frame is fixed frame, superscript j is denoted by 0 or 
denoting superscript is simply omitted. 

Rotation matrices are square matrices with real 
entries. More specifically, they can be characterized as 

orthogonal matrices  T 1R R  with determinant 1. 

The set of all such matrices of size 3 forms a special 
orthogonal group SO(3). 

The following three rotation matrices rotate vector in 
space about the x, y, or z axis respecitvely: 

 x,

1 0 0

0 cos sin

0 sin cos
  

 

 
   
  

R , (5)   

 y ,

cos 0 sin

0 1 0

sin 0 cos


 

 

 
   
  

R , (6) 

 z ,

cos sin 0

sin cos 0

0 0 1


 
 

 
   
  

R . (7) 

Other rotation matrices can be obtained from (5), 
(6) and (7) using successive matrix multiplication. The 
result of multiplication is another rotational matrix 
representing one resultant rotation which produces the 
same effect as sequential application of the original 
rotation matrices. 

The rotation matrix j
iR contains nine elements, 

while only three parameters are required to define the 
orientation of a body in space. Therefore, six auxiliary 
relationships exist between the elements of the matrix 
[1]. This redundancy can introduce numerical problems 
in calculations and often increase computational cost of 
an algorithm [12]. 

 
2.3 Attitude presentations: Euler angles 

 
The most common way to represent the attitude of a 
rigid body in minimal representation is a set of three 
Euler angles φ, θ, and ψ, known respectively as spin, 
nutation, and precession. These are popular because 
they are easy to understand and easy to use [9].  

In the Euler angle representation, three rotations in 
sequence about the coordinate axis of either a fixed or a 
moving coordinate frame can describe any rotation 
provided that two successive rotations are not 
performed about parallel axes. If these elemental 
rotations are performed about the axes of the fixed 
frame, they are called extrinsic rotations. Otherwise, if 
the frame about which axes rotations are performed is 
local frame, these elemental rotations are called 
intrinsic. These two sets can be classified in two groups, 
called proper Euler angles and Tait–Bryan angles also 
known as roll, pitch and yaw (RPY angles). In the case 
of proper Euler angles (Figure 2), the first and third 
rotational axis are the same (e.g. x-y-x, or z-y’-z″). RPY 
angles represent rotations about three different axes 
(e.g. x-y-z, or x-y’-z″). Here, superscripts ′ and ′′ are used 
in the case of intrinsic rotations to denote axes of 
moving frame after first and second rotation 
respectively. 

Traditionally, rotational matrices have been used to 
represent Euler angles because the basic rotation 
matrices for rotation about the x, y, and z axes are 
simple and well-known [15]. Let us consider RPY 
convention in which elemental rotations are performed 
about z, y’ and x″ axis, with angles ψ , θ , and φ. The 
function that maps this transformation to its 

corresponding rotation matrix  3
xyz:  SO 3R   is: 
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      xyz
'z , y , x ,   ''R Rot Rot Rot . (8) 

Here      'z , y , x ,  ''Rot Rot Rot , are given by (7), 

(6), (5) and following rotational matrix is obtained: 

xyz  

c c c s s s c c s c s s

s c s s s c c s s c c s .

s c s c c

           
           

    

  
    
  

R

 (9) 

Here and throughout the paper, abbreviations c and s are 
used to denote cosine and sine of an angle. If orientation 
of end-effector is given in the form of rotation matrix: 

 
11 12 13

21 22 23

31 32 33

r r r

r r r

r r r

 
   
  

R . (10) 

RPY angles are obtained from following equations: 

  21 11atan r ,r  , (11) 

 
 31 11 21a tan 2 r ,cos r sin r     , (12) 

 13 23 12 22a tan2 sin r cos r , sin r cos r        . (13) 

The conversion from a general rotation to Euler 
angles is ambiguous since the same rotation can be 
obtained with different sets of Euler angles [15]. 
Another disadvantage of this method is singularities 
found in the various Euler angle representations which 
occur in problem of gimbal lock situation [9]. A gimbal 
is a physical device consisting of spherical concentric 
hoops with pivots connecting adjacent hoops, allowing 
them to rotate within each other [16]. A gimbal is 
constructed by aligning three rings and attaching them 
orthogonally. Gimbals are often seen in gyroscopes used 
by the aeronautical industry. Gimbal lock is loss of one 
degree of freedom which occurs when two rotational 
axis align (Figure 4). This phenomenon can be 
considered mathematically through rotation matrix 
representation of Euler angles (9). If angle  is /2, 
angles  and  cannot be determined, only their 
difference can be determined.  

 
Figure 4. Gimbal with three degrees of freedom and gimbal 
lock situation in which one degree of freedom is lost 

It is very important to avoid gimbal lock situation 
because the unpredictability could potentially cause 
fatal consequences [17]. 

In robotics, gimbal lock is commonly referred to as 
"wrist flip" or wrist singularity and it happens when two 
axes align, for example first and third or fourth and 
sixth axis. As joints rotate and approach to wrist flip, the 
singularity will cause numerical ill-conditioning. In 

order to maintain constant orientation, second (or fifth) 
axis makes a spin of 360° or 180°. This high velocity 
motion could cause damages and should be avoided. 

Another problem using Euler angles is that they are 
less accurate than unit quaternions when used to 
integrate incremental changes in attitude over time [9]. 
This creates a problem in relating the angular velocity 
vector of a body to the time derivatives of Euler angles, 
which in some way limits their usefulness in modelling 
robotic systems. 

 
2.4 Homogeneous transformations matrix using D-H 

convention 
 

Given the above considerations, a general 

transformation of any vector i p  given with respect to a 

moving frame i into its representation in reference frame 

j denoted by j p  can be described by following vector 

equation: 

 j j j i
i i p p R p . (14) 

where j
ip  is position vector of the origin of the moving 

frame with respect to reference frame (1). The same 
applies to position vector of the arbitrary point M of the 
robotic segment.  

 
Figure 5. Transformation of vector  from one coordinate 
system to another 

Using homogeneous coordinates, by which position 
vector of a point is given as [5]: 

 

T*
x y zp p p 1   p , (15) 

equation (14) can be written if the following compact 
matrix form: 

 

j * j i *
ip T p . (16) 

where: 

 

j j
i i

j
i

000 1

 
 

  
 
 

R p

T


  


. (17) 

This 4x4 matrix is homogenous transformation matrix 
which maps homogenous position vector from one 
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coordinate system to another. If several transformations 
are performed successively, transformation matrix 
describing total transformation is obtained by 
multiplication of transformation matrices describing 
those successive transformations. Homogenous 
transformation matrix describing rotation of angle i 
provided by revolute joint whose axis is zi is denoted 
by:  

 ( , )rot i iz T . (18) 

while homogenous transformation matrix describing 
translation for id  provided by prismatic joint whose 

axis is iz  is denoted by : 

 
( , )trans i iz dT . (19) 

Denavit and Hartenberg showed that general 
transformation between two coordinate systems requires 
knowledge of the 4 parameters [18]. These parameters 
called the Denavit-Hartenberg parameters (DH 
parameters) became standard for describing the robot 
kinematics. Figure 6 shows the DH parameters for the 
case of two joints. Within this convention, z axis is in 
the direction of the joint axis, x axis is parallel to the 
normal vector zn-1×zn, and y axis follows from the x and 
z axis to establish right-handed coordinate system.  

 
Figure 6. Frames and parameters in D-H convention  

D-H parameters are: 
• an - the distance between the axis zn-1 and zn, 
• αn - the angle between joint axes zn-1 and zn, 
• dn - the offset along zn-1 to the xn 
• θn - the angle between the joint axes xn-1 and xn. 
Since joints used in manipulators provide usually 
rotation or translation, only one parameter is variable, 
while other three are constant. In general, homogeneous 
transformation matrix  based on D-H convention  
describing motion of link n provided by actuator in joint 
n-1 with respect to frame attached to joint n-1, n 1

n
 T , is 

obtained by matrix multiplication: 

       rot n 1 n trans n 1 n trans n n rot n nz , z ,d x ,a x ,  T T T T ,(20) 

sn n n n n n n

n n n n n n nn 1
n

n n n

c s c s a c

s c c c s a s

0 s c d

0 0 0 1

     
     

 


 
  
 
 
 

T .(21) 

2.5 Rodrigues’ approach 
 

Conversion from angle and vector representation of 
orientation to rotation matrix may be achived using 
Rodrigues’ rotational formula [3]: 

  2(1 cos ) sind dq q   R I e e , (22) 

where q is angle of rotation about axis determined by 

unit vector ê , de  is skew symmetric matrix of vector ê  
and I is 3×3 identity matrix. In order to obtain general 
transformation matrix in the form of (22) that would 
apply for revolute as well for prismatic joint j, 

additional parameter j  is introduced so that it has 

value 1 for rotation and 0 for translation, and following 
equation is obtained:  

 21 (1 cos ) sinj j d j d
j j j jq q  
    

 
A I e e , (23) 

Position of the centre of mass iC  of the i-th segment 

w.r.t. to fixed frame is given by equation: 

 
1

i

i Ci kk k k k i
k

OC r q


   
 

ρ e ρ , (24) 

where 1kk k kO O 


ρ  and 1i i iO C 


ρ  are suitable 

position vectors (Figure 7). Parameter k has value 0 for 

rotation and 1 for translation; q is translational or 
angular displacement.  

 
Figure 7. Rodrigues’ approach: representative vectors in 
open chain robot mechanism 

Position vector of the end-effector tip w.r.t. to fixed 
frame is: 

   
n

E 0,k kk k k k
k 1

q


 r A ρ e , (25) 

where 0 1 k 1
0,k 1 2 k

A A A A . It is important to say 

that all vectors are given with respect to local frame 

i i i iC    . 

 
3. SPATIAL DESCRIPTIONS AND 

TRANSFORMATIONS IN QUATERNION SPACE 
 

3.1. Unit quaternions 
 

The quaternion representation of orientation due to 
Hamilton, while largely superseded by the simpler 
vector representations of Gibbs and Grassmann is 
extremely useful for problems in robotics that result in 
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representational singularities in the vector/matrix 
notation [1]. Unit quaternion is a convenient and 
compact mathematical notation for describing the 
attitude of rigid bodies in three dimensions. 

Quaternions are hyper complex numbers that can be 
written as the linear combination a+bi+cj+dk with 

2 2 2 1i j k    . Here a represents real part, while b, 

c and d are imaginary parts or the componests of pure 
quaternion [19]. They can be also interpreted as 
quadruple  1 2 3 4q ,q ,q ,qq  or via vector and scalar 

representation  s,q v . Late formulation is very 

suitable for rotation description.  
Expressing rotations in 3D via unit quaternions 

instead of matrices has following advantages [20]: 
 Concatenating rotations is computationally faster 

and numerically more stable. 
 Since gimbal lock is innate to the matrix 

representation of Euler angles, this problem does 
not appear in the quaternion representation. 

 Unambiguousness 
 Extracting the angle and axis of rotation is simple 
 Interpolation is more straightforward. 
As indicated before, from Euler rotational theorem it 

can be concluded that any rotation in three dimensional 
space can be described by unit vector indicating the 
direction of rotational axis and a rotational angle θ. 
Using extension of Euler formula, this transformation in 
unit quaternion space becomes: 

 

 

      

 

x y z
1 ˆ ˆ ˆu u u
2

x y z

x y z

e
cos / 2 ,sin / 2 u ,u ,u s,

cos ,sin u ,u ,u



 

 

 
 
   

   

i j k
q

v , (26) 

 
Figure 8. Visualisation of unit quaternion parametres 
through relation with axis-angle presentation 

hereinafter, 
2

  . Thus, if rotation is given in the 

axis-angle form where rotational axis is defined by unit 

vector  x y z
ˆ ˆ ˆˆ u u u  u i j k  and by angle of rotation  , 

quaternion representing this rotation is: 

 
    x y zcos ,sin u ,u ,u s,  q v . (27) 

To define pure rotation, quaternions must satisfy |q| =1, 
i.e. pure rotation is defined by unit quaternions.  

There is an extensive review of  quaternion 
mathematic features in the literature [10]. In this paper, 

only basic quaternion operations required for deriving 
kinematic algorithms in robotics are considered.  

For given unit quaternions  1 1 1s ,q v  and 

 2 2 2s ,q v , quaternion addition is defined as: 

 
     1 2 1 1 2 2 1 2 1 2s , s , s s ,     q q v v v v , (28) 

and quaternion product is defined as: 

 
 1 2 1 2 1 2 1 2 2 1 1 2s s ,s s     q q v v v v v v . (29) 

Quaternion multiplication is associative and distributive 
across addition, but not commutative.  
 Two successive pure rotations represented by unit 
quaternion representatives 1q  and 2q  can be achieved 

by a single rotation about an appropriately chosen axis. 
Unit quaternion corresponding to this transformation is 
obtained from quaternion product 1 2q q , analogously 

to the resultant rotational matrix representing total 
rotation in Cartesian space is obtained by successive 
rotational matrix multiplication. 
 For a given unit quaternion  1 2 3 4q ,q ,q ,qq , 

corresponding rotational matrix  R q  is obtained by 

following formula: 

   
   
   

2 2 2 2
2 3 4 1 2 3 4 1 2 4 3 1

2 2 2 2
2 3 4 1 2 3 4 1 3 4 2 1

2 2 2 2
2 4 3 1 3 4 2 1 2 3 4 1

q q q q 2 q q q q 2 q q q q

2 q q q q q q q q 2 q q q q

2 q q q q 2 q q q q q q q q

     
 
       
 

       
 (30) 

 
3.2. Dual quaternions 

 
Dual Quaternions (DQ) were proposed by William 
Kingdom Clifford in 1873. and they can be considered 
as extension of quaternions since they represent both 
rotations and translations of rigid body-it’s spatial 
displacement [12]. The dual-quaternion model is an 
accurate, computationally efficient, robust, and flexible 
method of representing rigid transforms and should not 
be overlooked [16]. They can be defined as quaternions 
whose parameters are dual numbers and thus are 
represented by eight-dimensional vector: 

   ˆ ˆ ˆ ˆ ˆs,x, y,z ,s ,x , y ,z s,x, y,z       q q q .(31) 

where  is dual factor, 2=0, 0. Since spatial 
displacements of a rigid body in three-dimensional 
space have six degrees of freedom, dual quaternions are 
subject to two constraints: 

 

2 2 2 2
1 2 3 4q q q q 1    , (32) 

 
1 1 2 2 3 3 4 4q q q q q q q q 0       . (33) 

Some important operations with dual quaternions 
(from the robotics point of view) are presented bellow. 
Dual quaternion multiplication is defined as: 

    
 

1 2 1 1 2 2

1 2 1 2 1 2

ˆ ˆ  

 

 


     
     
q q q q q q

q q q q q q
. (34) 
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Dual conjugate of
 
q̂ is given by: 

 
ˆ  q q q . (35) 

A second conjugation operator of dual quaternion is 
defined as [13]: 

 
  *ˆ s, x, y, z, s ,x , y ,z       q . (36) 

If vector p is defined in Cartesian space 
as x y zp p p  p i j k , representation of this vector in 

unit quaternion space is: 

 x y z0 p p p   p i j k , (37) 

and in in dual quaternion space: 

 
 x y zˆ 1 p p p   p i j k , (38) 

or: 

 
   x y zˆ 1,0,0,0 0, p , p , p    p p p . (39) 

Representing pure rotation 
Rotation of the vector p about axis a for angle  is 
represented in dual quaternion space by following 
equation: 

 ' *
R Rˆ ˆ ˆ ˆ  p q p q , (40) 

where dual quaternion of transformed vector p in the 
form: 

 
 x y zˆ 1 p p p   ' ' ' 'p i j k , (41) 

is obtained from: 

     
R R R R

x y z R

ˆ

cos ,sin a , a , a , 0,0,0,0





 

   
 
q q q q

q . (42) 

Representing pure translation 
 

Dual quaternion vector corresponding to translation 

described by translation vector  x y zt t t  T i j k is: 

 
   
 

T x y z

x y z

ˆ 1,0,0,0 0,t ,t ,t
2

1 t t t
2




  

   

q

i j k
, (43) 

Dual quaternion representing vector p after translation 
defined by T is: 

 

' *
T Tˆ ˆ ˆ ˆ  p q p q , (44) 

from which dual quaternion vector of transformed 
vector p is obtained in the form: 

 
 x y zˆ 1 p p p   ' ' ' 'p i j k . (45) 

 A pure translation of a vector can be represented as 
vector addition of a given vector p and translational 
vector T, thus translation of the vector in dual 
quaternion space can be represented with another 
identity: 

      x x y y z zˆ 1 p t p t p t      'p i j k . (46) 

Representing rigid transformations 
 

Let us assume that vector p was rotated about axis a for 
an angle  and after that translated by translation vector 
T. This transformation is described in dual quaternion 
space in a following manner: 

  ' ' * ' *
T R R Tˆ ˆ ˆ ˆ ˆ ˆ    p q q p q q , (47) 

where
 

Rq̂  is given by (42). Special attention should be 

paid that '
Tq̂  is dual quaternion describing pure 

translation defined by translational vector T'-which is 
rotated vector T: 

 
 ' *

R R
ˆˆ ˆ  T q T q . (48) 

If we assume transformation in which translation 
given by T is performed first, and rotation given by Rq̂  
second, transformated vector 'p̂  will be obtained from 

following: 

 
 ' * *

R T T Rˆ ˆ ˆ ˆ ˆ ˆ    p q q p q q . (49) 

 
3.3. Direct kinematics algorithm in quaternion space 

 
In this paragraph, it will be considered how vector 
transformations in dual quaternion space described 
before are related to direct kinematics algorithm.  

To define an efficient kinematic algorithm, a 
suitable reference frame should be established, as well 
as local frames moving together with robot segments. 
Rotations are described by following dual quaternion: 

 
  

 

R R R x y z

R

ˆ cos ,sin a , a , a ,

0,0,0,0





    



q q q

q
, (50) 

where  is value of joint angle for rotational axis 
represented by vector a in three dimensional space. 
These vectors are determined with respect to the fixed 
frame for a robot in a initial position. Rotations for 
angle  about axis parallel to x,y,z axis of fixed 
coordinate system will be described respectively: 

 
  R,x,ˆ cos ,sin 1,0,0  q , (51) 

 
  R,y ,ˆ cos ,sin 0,1,0  q , (52) 

   R,z ,ˆ cos ,sin 0,0,1  q . (53) 

As stated before, we consider clockwise rotations. That 
mentioned if the axis of rotation is in opposite direction 
of unit axis of fixed coordinate system, we adopt that 
the rotation is performed for angle - about axis in the 
same direction as referent axis of coordinate frame and 

substitute  sin / 2 by  sin / 2  in Rq̂ expression. 
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In case of prismatic joints, translation described by 

translational vector  x y zt t t  T i j k
 

will be 

represented by dual quaternion: 

 
 T x y zˆ 1 t t t

2


   q i j k , (54) 

Translations for value a along axis parallel to x,y,z axis 
of fixed frame will be respectively: 

 
 T ,x,aˆ 1 a 0 0

2


   q i j k , (55) 

  T ,y ,aˆ 1 0 a 0
2


   q i j k . (56) 

  T ,z ,aˆ 1 0 0 a
2


   q i j k . (57) 

Consider a manipulator with n degrees of freedom, 
and let nR be a number of rotational joints. Dual 
quaternion which defines orientation of the end-effector 
for given joint inputs is given by following equation: 

 
R R R R R0,n 1 2 3 nˆ ˆ ˆ ˆ ˆ   q q q q q , (58) 

where
Ri

q̂ is dual quaternion representing transformation 

provided by i-th rotational joint. This transformation can 
be represented in unit quaternion space as following: 

 R R R R R0,n 1 2 3 n   q q q q q . (59) 

To verify these results, we can transform dual 
quaternion 0,nq into rotation matrix using (30). 

To determine position of the end-effector, we 
consider radius vector of the end-effector p as the sum 
of vectors along respective segments moving together 
with segments. Dual quaternion vector transformations 
given in subparagraph 3.2 are used. Equations (47) and 
(49) are applied successifully to define correspondent 
transformations provided by rotational and prismatic 
joints. Special attention should be paid to the order of 
applied successive vector position transformations and 
especcially to the case where rotation is followed by 
translation. 

 
4. SIMULATION RESULTS PERFORMED ON HUMAN 

CENTRIFUGE (3 DOF MANIPULATOR) 
 

To demonstrate presented direct kinematics algorithm in 
dual quaternion space, human centrifuge (Figure 9) will 
be considered. Human centrifuge is dynamic flight 
simulatior which purpose is to simulate as closely as 
possible real flight conditions and to provide an 
effective pilot training [21]. This device can be modeled 
as 3 DoF manipulator with rotational joints [22]. Main 
motion is rotation of the centrifuge arm about vertical, 
planetary axis. Arm carries gondola which is able to 
rotate about two axes, pitch and roll. These two axes 
intersect in the center of the gondola. Pilot seat is 
considered as end-effector and it is assumed to be 
placed in the center of the gondola. First, a reference 
fixed frame is determined and rotational axis are defined 
(Figure 10). 

 
Figure 9. Human centrifuge 

 
Figure 10. Human centrifuge: Rotational axes in initial 
position (a view from above) 

By usage of Rodrigues’ approach [3], following 
rotational matrices and position vector of the end-
effector are obtained: 

 

1 1
0

1 1 1

c s 0

s c 0

0 0 1

 
   
  

R , (60) 

 

2 2
1

2

2 2

c 0 s

0 1 0

s 0 c

 
   
  

R , (61) 

 
2

3 3 3

3 3

1 0 0

0 c s

0 s c

 
   
  

R , (62) 

 

1 2 1 3 1 2 3 1 3 1 2 3
0

3 1 2 1 3 1 2 3 1 3 1 2 3

2 2 3 2 3

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

   
     
  

R . (63) 

    
n

T0
E 0,k kk k k k 1 1 1 1

k 1

q a c a s 0


    r A ρ e .(64) 

This rotational matrices and position vector are given 
for the purpose of comparison with method given here. 
Planetary, roll and pitch rotations in dual quaternion 
space are given by: 

 
    

R1 rot 0 1 1 1ˆ ˆ z , cos ,sin 0, 0,1   q q , (65) 

 

   

  
R2 rot 1 2 rot 0 2

2 2

ˆ ˆ ˆz , y ,

cos , sin 0,1,0

 

 

   

 

q q q
, (66) 

 

   

      
R3 rot 2 3 rot 0 3

3 3

ˆ ˆ ˆz , x ,

cos ,sin 1,0,0

 

 

  



q q q
, (67) 
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2R R R0,3 11 1 31 0,3 0,3ˆ ˆ ˆ ˆ     q q q q q q . (68) 

Here, rotational axis z0 is parallel to z axis of fixed 
frame, z1 is parallel to y axis, and  z2 is parallel to x axis 
axis of fixed frame. Dual quaternion representing 
orientation of the end-efector is: 

 

3 2 1 1 2 3

2 1 3 3 1 2
0,3

1 3 2 1 2 3

2 3 1 1 2 3

c c c s s s

c c s c s s

c c s s c s

c c s c s s

     
     
     
     

 
 

   
 

  

q
, 0,3

0

0

0

0



 
 
 
 
 
 

q . (69) 

Using (30), equality of results obtained by (63) and 
(69) can be obtained. 

Since end-effector is placed in the center of the 
gondola where roll and pitch axis intersect, rotation of 
the second and the third axis will not affects its position. 
Vector position in initial position of the robot in 

Cartesian space is given by vector  T1a 0 0p  and 

in dual quaternion space by: 

 
     1 1ˆ 1,0,0,0 0,a ,0,0 1 a    p i . (70) 

After rotation of the centrifuge arm, by the usage of 
(40), a new position of the end-effector in dual 
quaternion space is: 

 
 

R R

' *
1 1 1 1 1 1ˆ ˆ ˆ ˆ 1 0,a c , a s ,0      p q p q , (71) 

or in Cartesian space with respect to fixed frame: 

  T'
1 1 1 1a c a s 0p . (72) 

This example shows the simplicity and compactness 
of presented direct kinematics algorithm. Comparing 
this approach with Rodrigues’ approach applied to this 
particular manipulator [3], [23], forward kinematics 
algorithm presented here proved to be simpler and 
computational cost is smaller. This approach is 
particularly advantageous in overcoming the problem of 
singularity. Namely, in previous work [23] it is 
determined that this manipulator has a singular position 
in 2 / 2q   . In this position first and third axes align 

and from (63), (11), (12) and (13) it can be seen that it is 
impossible to determine or control orientation by the 
means of three Euler angles. If we notice that axes of 
this manipulator are directed in the same manner as 
zy'x'' sequence of Euler angles in (8), from directions of 
rotational axes it can be concluded that 2q   . In this 

singular position, one degree of freedom is lost and only 
the difference    can be controlled. This results in 

numerical ill-conditioning and unpredictable behaviour 
causing potentially damage situation. On the other hand, 
from (69) it can be seen that all terms of quaternion 
representing this orientation are determined.  
 
5. CONCLUSION  

 
In this paper, compact overview of mathematical 
constructs used most often for representation of the 
position and attitude in robotics is given. Advantages of 

robot kinematic modelling in quaternion and dual 
quaternion space stemmed from singularity free, 
numerically stable and suitable for interpolation 
representation of attitude. Vector transformations using 
dual quaternions are presented. These transformations 
are used as foundation for new, simple and compact 
direct kinematic algorithm in dual quaternion space. 
Developed algorithm is demonstrated on human 
centrifuge which is modelled as 3 DoF manipulator with 
rotational joints. According to the results from the 
section 4, it can be concluded that the advantage of 
presented quaternion based algorithm, with respect to 
Rodrigues’ approach, is smaller computational cost. 
Also, it can be seen that in application of presented 
quaternion algorithm the problem of singularity, innate 
to the matrix representation of Euler angles, and 
particularly important to control of actuators in robotics 
does not appear. 
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НАПРЕДНИ КВАТЕРНИОНСКИ 

АЛГОРИТАМ ДИРЕКТНЕ КИНЕМАТИКЕ 
РОБОТА УКЉУЧУЈУЋИ ПРЕГЛЕД 

РАЗЛИЧИТИХ МЕТОДА КИНЕМАТИКЕ 
РОБОТА  

Јелена Видаковић, Михаило Лазаревић, 
Владимир Квргић, Зорана Данчуо, Горан Ференц 

 
Формулисање одговарајућих и ефикасних 
алгоритама кинематике робота је од суштинског 
значаја за анализу и развој серијских манипулатора. 
Кинематичко моделовање манипулатора се 
најчешће врши у Декартовом простору. Међутим, 
услед недостатака најзаступљенијих математичких 
оператора за дефинисање оријентације као што су 
Ојлерови углови и ротационе матрице, намеће се 
потреба за једнозначним, компактним, рачунски 
ефикасним методом за одређивање оријентације.  
Као решење овог проблема предлажу се јединични 
кватерниони као и развој кинематичких модела у 
простору дуалних кватерниона. У овом раду је дат 
преглед геометријских описа и трансформација које 
се могу применити у оквиру наведених простора 
како би се решили проблеми кинематике робота. 
Посебан акценат је на различитим математичким 
формализмима који се користе за дефинисање 
оријентације крутог тела, као што су ротационе 
матрице, Ојлерови углови, оса и угао ротације, 
јединични кватерниони, као и на њиховој узајамној 
вези. Предности кинематичког моделирања у 
простору кватерниона су истакнуте. Особине 
јединичних и дуалних кватерниона се анализирају 
са становишта роботике. Такође, дат је нови 
алгоритам директне кинематике робота у простору 
дуалних кватерниона. Овај алгоритам је примењен 
на хуманој центрифуги која је моделирана као 
троосни манипулатор. 

 

 


