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Advanced Quaternion Forward
Kinematics Algorithm Including
Overview of Different Methods for
Robot Kinematics

Formulation of proper and efficient algorithms for robot kinematics is
essential for the analysis and design of serial manipulators. Kinematic
modeling of manipulators is most often performed in Cartesian space.
However, due to disadvantages of most widely used mathematical
constructs for description of orientation such as Euler angles and
rotational matrices, a need for unambiguous, compact, singularity free,
computationally efficient method for representing rotational information is
imposed. As a solution, unit quaternions are proposed and kinematic
modeling in dual quaternion space arose. In this paper, an overview of
spatial descriptions and transformations that can be applied together
within these spaces in order to solve kinematic problems is presented.
Special emphasis is on a different mathematical formalisms used to
represent attitude of a rigid body such as rotation matrix, Euler angles,
axis-angle representation, unit quaternions, and their mutual relation.
Benefits of kinematic modeling in quaternion space are presented. New
direct kinematics algorithm in dual quaternion space pertaining to a
particular manipulator is given. These constructs and algorithms are

demonstrated on the human centrifuge as 3 DoF robot manipulator.

Keywords: robot, orientation, direct kinematics, quaternion, dual

quaternion.

1. INTRODUCTION

Robot kinematics pertains to the motion of bodies in a
robotic mechanism without regard to the forces/torques
that cause the motion. Since robotic mechanisms are by
their very essence designed for motion, kinematics is
the most fundamental aspect of robot design, analysis,
control and simulation [1]. Special emphasis in the
study of robot kinematics is on geometry of the
structure of robotic system which is modelled as multi-
degree of freedom kinematic chain. A kinematic chain
is an assemblage of rigid bodies-links, connected by
joints providing pure rotation or translation [2], [3].

In general, a rigid displacement may consist of both
translation and rotation of the object [4]. Thus, a rigid
body in three-dimensional space generally has six
degrees of freedom; its location is completely described
by its position and orientation-the pose of a rigid body.
It is of greatest importance in robotic systems to know
the correct location of the end-effector in every
moment. The actuated joint variables and their time
derivatives can be obtained by reading of sensors
installed on the joints. Direct kinematics problem is to
find end-effector position and orientation relative to the
base when positions of all joints are given [5]. During
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the development of kinematics, a number of mathematic
theories, tools and algorithms have been introduced and
implemented [4], [6]. In this paper, two different spaces,
Cartesian space and quaternion space, are used for
overview of mathematical constructs representing rigid
transformation.

Orientation of the rigid body can be described in
several different ways. A rotation is a displacement in
which at least one point of the rigid body remains in its
initial position and not all lines in the body remain
parallel to their initial orientations [1]. Psyhically, a
rotation may be explained as reorientation of a body
without changing the body’s size and shape [7]. All
mathematical formalisms used to describe attitude of the
rigid body are derived from Euler’s rotation theorem.

According to Euler’s rotation theorem, any
rotational movement of a rigid body in three-
dimensional space such that a point of the rigid body
remains fixed troughout the movement is equivalent to a
single rotation about particular axis passing through the
fixed point. The axis of rotation is represented by a unit
vector u called Euler axis [8]. Hence, any rotation in
three dimensional space can be represented via unit
vector indicating the direction of a rotational axis and a
scalar @ (angle of rotation). This rotation representation
is called axis-angle representation (Figure 1). From
axis-angle representation another representation-
rotation vector, or Euler vector is derived. Rotation
vector is represented by a vector directed towards the
rotational axis whose magnitude is value of angle of
rotation 6, v =6u .
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Figure 1. Axis-angle representation

Besides the axis-angle and rotational vector
representations, several sets of three-parameter
representations have been reported in the literature.
These three-parameter representations are called
minimal representations. Perhaps, the most commonly
used minimal representation is set of Euler angles [9].

Figure 2. Proper Euler angles

In linear algebra, the Euler theorem states that in
three-dimensional space, any two Cartesian coordinate
systems with a common origin can be put to
coincidence by a finite rotation about certain axis
passing through the origin. This approach is used in
mechanics of rigid body. Frame can be attached to the
rigid body and moving together with it, it defines
orientation of the body. This frame is called local and it
is described by three basis vectors. Orientation of these
basis vectors can be described by means of their
direction cosines with respect to the basis of the fixed
frame. These parameters can be composed into 3 x 3
matrix called a rotation matrix [1]. A rotation matrix
may also be referred to as a direction cosine matrix,
because the elements of this matrix are the cosines of
the unsigned angles between the body-fixed axes and
the axes of the fixed frame.

Combining mathematical constructs for position in
the form of position vector in homogeneous coordinates
and orientation represented by rotational matrix yields
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4x4 homogeneous transformation matrix. This real
orthonormal matrix is widely used in robotics
community [10].

The most popular mathematical constructs
describing attitude of a rigid body possess certain
disadvantages. Euler angles suffer from wrist
singularities which are unfortunate consequence of
using minimal representation [11]. Rotational matrix
can be numerically unstable [12]. These disadvantages
are overcome by usage of unit quaternions. The relevant
functions of the unit quaternions have no singularities
and they are numerically stable end efficent. When used
to integrate incremental changes in attitude over time,
they are more accurate than Euler angles [9].
Counterpart for homogenous transformation matrix in
quaternion space is dual quaternion. Dual quaternions
inherit advantages of wunit quaternions while
representing rigid transforms [13].

Although quaternions constitute an elegant
representation of rotation, they are not used as much as
other constructs in robotics community [14]. Main
reason for this is lack of physicality, i.e. physical
meaning of four quaternion parameters is not apparent
which is the case with, for an example, Euler angles. On
the other hand, extracting the angle and axis of rotation
is simple.

The purpose of this paper is to provide simple
explanation of possibilities of usage of unit and dual
quaternions for spatial descriptions and transformations
in robotics. Their relation with corresponding constructs
in Cartesian space is given. Features of unit and dual
quaternions are considered as much as necessary to be
used in robot kinematics relations and algorithms. New
direct kinematics algorithm in dual quaternion space is
presented and demonstrated on human centrifuge which
is modelled as 3 DoF robot manipulator.

It is important to say that all mathematical
formalisms described in this paper apply only to
coordinate systems of determined orientation. Here,
right handed frames are used.

2. SPATIAL DESCRIPTIONS AND
TRANSFORMATIONS IN CARTESIAN SPACE

To identify the location of a body in Cartesian space, a
reference coordinate system should be established. This
reference coordinate system is called world coordinate
system or fixed coordinate system and here it is denoted
by Op; y; z. After defining a reference coordinate
system, the position and orientation of the rigid body are
fully described by the position of the origin of the local

frame O; x;y;z; and the orientation of its axes.
2.1 Position of the local frame origin

The position of the origin of coordinate frame i relative
to coordinate frame j can be denoted by the 3 x 1 vector:
j Jpx iy i\

D; :( pi bi pi ) . (D

The components of this vector are the Cartesian
coordinates of the position vector of the frame origin

O; with respect to reference j-th frame.
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Figure 3. Fixed and local coordinate system

2.2 Attitude presentations: Rotational matrix

The orientation of coordinate frame i relative to coor-
dinate frame j can be determined by defining the basis

vectors of local frame (X;,;,Z;) with respect to the
basis vectors of the fixed frame(fc B y j,?, j) . A rotation

matrix R, is a matrix whose multiplication with a
vector rotates the vector while preserving its length [9].
The elements of /R, are dot products of basis vectors
of the two coordinate frames:

cos(x;,x;) cos(x;,y;) cos(x;z;)
'R, = cos(y;,X;) cos(y;,y;) cos(y;.z)|. (2)

COS(?.‘,,)AC,-) COS(Z:I-,_}AI,-) cos(ﬁj,ﬁ,-)

The columns of this matrix are unit vectors of local
frame with respect to the fixed frame:

jRi:|:j'£i jj’i jéi:l' ©)

If ‘pe R’ and 7 pPe R are coordinate  vectors

representing positions of the same point in three-
dimensional space with respect to the frames i and j and
the origins of the two frames coincides, then following
relation holds:

‘p="R'p. “)

In this paper, notation is adopted in which if reference
frame is fixed frame, superscript j is denoted by 0 or
denoting superscript is simply omitted.

Rotation matrices are square matrices with real
entries. More specifically, they can be characterized as

orthogonal matrices(RT = R_]) with determinant 1.
The set of all such matrices of size 3 forms a special
orthogonal group SO(3).

The following three rotation matrices rotate vector in
space about the x, y, or z axis respecitvely:
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R ,=|0 cos@ -—sin0]|, %)
_0 sin@ cos@
[ cos® 0 sind]

Ryﬂ = 0 1 0 |, (6)
| —sin 6 0 cos 9_
[cos® —sin® 0]

R, ,=|sin@ cos@ O0|. @)
| 0 0 1]

Other rotation matrices can be obtained from (5),
(6) and (7) using successive matrix multiplication. The
result of multiplication is another rotational matrix
representing one resultant rotation which produces the
same effect as sequential application of the original
rotation matrices.

The rotation matrix /R, contains nine elements,

while only three parameters are required to define the
orientation of a body in space. Therefore, six auxiliary
relationships exist between the elements of the matrix
[1]. This redundancy can introduce numerical problems
in calculations and often increase computational cost of
an algorithm [12].

2.3 Attitude presentations: Euler angles

The most common way to represent the attitude of a
rigid body in minimal representation is a set of three
Euler angles ¢, 6, and y, known respectively as spin,
nutation, and precession. These are popular because
they are easy to understand and easy to use [9].

In the Euler angle representation, three rotations in
sequence about the coordinate axis of either a fixed or a
moving coordinate frame can describe any rotation
provided that two successive rotations are not
performed about parallel axes. If these elemental
rotations are performed about the axes of the fixed
frame, they are called extrinsic rotations. Otherwise, if
the frame about which axes rotations are performed is
local frame, these elemental rotations are called
intrinsic. These two sets can be classified in two groups,
called proper Euler angles and Tait—Bryan angles also
known as roll, pitch and yaw (RPY angles). In the case
of proper Euler angles (Figure 2), the first and third
rotational axis are the same (e.g. x-y-x, or z-y -z"). RPY
angles represent rotations about three different axes
(e.g. x-y-z, or x-y -z"). Here, superscripts 'and " are used
in the case of intrinsic rotations to denote axes of
moving frame after first and second rotation
respectively.

Traditionally, rotational matrices have been used to
represent Euler angles because the basic rotation
matrices for rotation about the x, y, and z axes are
simple and well-known [15]. Let us consider RPY
convention in which elemental rotations are performed
about z, y’ and x" axis, with angles y , 6 , and ¢. The
function that maps this transformation to its

corresponding rotation matrix R,,:R> — S0O(3) is:
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R, =R01(Z:U/)R01‘(y',9) Rot(x”,(o). (8)

Here Rot (z,y) Rot(y'ﬂ) Rot(x",go) , are given by (7),

(6), (5) and following rotational matrix is obtained:

cycl cysOsp—sycp cysOcop+syse
R =|sycl sysOsp+cycep sysOcp—cyse|.

Xyz

-s6 cOso clco
©)

Here and throughout the paper, abbreviations ¢ and s are
used to denote cosine and sine of an angle. If orientation
of end-effector is given in the form of rotation matrix:

R=\ry nrp ;. (10)

RPY angles are obtained from following equations:
y =atan(ry, 1), an
HzatanZ(—r31,cost//r11+sint//r21), (12)

@ =atan2(sinyry; —cosyrys,—sinyry; +cosyry,) . (13)

The conversion from a general rotation to Euler
angles is ambiguous since the same rotation can be
obtained with different sets of Euler angles [15].
Another disadvantage of this method is singularities
found in the various Euler angle representations which
occur in problem of gimbal lock situation [9]. A gimbal
is a physical device consisting of spherical concentric
hoops with pivots connecting adjacent hoops, allowing
them to rotate within each other [16]. A gimbal is
constructed by aligning three rings and attaching them
orthogonally. Gimbals are often seen in gyroscopes used
by the aeronautical industry. Gimbal lock is loss of one
degree of freedom which occurs when two rotational
axis align (Figure 4). This phenomenon can be
considered mathematically through rotation matrix
representation of Euler angles (9). If angle 6 is n/2,
angles w and ¢ cannot be determined, only their
difference can be determined.

Figure 4. Gimbal with three degrees of freedom and gimbal
lock situation in which one degree of freedom is lost

It is very important to avoid gimbal lock situation
because the unpredictability could potentially cause
fatal consequences [17].

In robotics, gimbal lock is commonly referred to as
"wrist flip" or wrist singularity and it happens when two
axes align, for example first and third or fourth and
sixth axis. As joints rotate and approach to wrist flip, the
singularity will cause numerical ill-conditioning. In
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order to maintain constant orientation, second (or fifth)
axis makes a spin of 360° or 180°. This high velocity
motion could cause damages and should be avoided.

Another problem using Euler angles is that they are
less accurate than unit quaternions when used to
integrate incremental changes in attitude over time [9].
This creates a problem in relating the angular velocity
vector of a body to the time derivatives of Euler angles,
which in some way limits their usefulness in modelling
robotic systems.

2.4 Homogeneous transformations matrix using D-H
convention

Given the above considerations, a  general
transformation of any vector ' p given with respect to a
moving frame i into its representation in reference frame
j denoted by / p can be described by following vector

equation:
"p="p+'R'p. (14)

where / p, 1s position vector of the origin of the moving

frame with respect to reference frame (1). The same
applies to position vector of the arbitrary point M of the
robotic segment.

Zi

M
P
z.
! % Vi

: 0.V

]p )2]‘ i

g jPi Xi
’%f A

0/- Y Vi

xJ.

Figure 5. Transformation of vector from one coordinate
system to another

Using homogeneous coordinates, by which position
vector of a point is given as [5]:
*

p=[p. p, p. 1], (15)

equation (14) can be written if the following compact
matrix form:

*

Ip =T, 'p (16)

where:

IT = o . (17)
000 : 1

This 4x4 matrix is homogenous transformation matrix
which maps homogenous position vector from one
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coordinate system to another. If several transformations
are performed successively, transformation matrix
describing total transformation is obtained by
multiplication of transformation matrices describing
those  successive  transformations. = Homogenous
transformation matrix describing rotation of angle 6.
provided by revolute joint whose axis is z; is denoted
by:

T, (z,6;) . (18)

while homogenous transformation matrix describing
translation for d; provided by prismatic joint whose

axis is z; is denoted by :
Ttruns (Zi > di ) . ( 1 9)

Denavit and Hartenberg showed that general
transformation between two coordinate systems requires
knowledge of the 4 parameters [18]. These parameters
called the Denavit-Hartenberg parameters (DH
parameters) became standard for describing the robot
kinematics. Figure 6 shows the DH parameters for the
case of two joints. Within this convention, z axis is in
the direction of the joint axis, x axis is parallel to the
normal vector z,1Xz,, and y axis follows from the x and
z axis to establish right-handed coordinate system.

(z,,,,l,): a"

Joint n

)

Figure 6. Frames and parameters in D-H convention

D-H parameters are:
* a, - the distance between the axis z,_; and z,,
* a, - the angle between joint axes z,_; and z,,
* d, - the offset along z,_; to the x,
* 6, - the angle between the joint axes x,,.; and x,,.
Since joints used in manipulators provide usually
rotation or translation, only one parameter is variable,
while other three are constant. In general, homogeneous
transformation matrix  based on D-H convention
describing motion of link n provided by actuator in joint

n-1 with respect to frame attached to joint n-1, Y T

obtained by matrix multiplication:
T (z H)T (z d )T (xn,an)T (xn,an),(ZO)

rot n=1>"n trans n=1>"n trans rot
cl, -sbca, sOsa, a,ch,
n—-1 sgn ceﬂ can _cgn San an Sen
T = 21)
0 sa, ca d

n n

0 0 0 1
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2.5 Rodrigues’ approach

Conversion from angle and vector representation of
orientation to rotation matrix may be achived using
Rodrigues’ rotational formula [3]:

2
R=I+(1—cosq)(ed) +sinqed, (22)

where ¢ is angle of rotation about axis determined by

unit vectoré,e? is skew symmetric matrix of vector &
and I is 3x3 identity matrix. In order to obtain general
transformation matrix in the form of (22) that would
apply for revolute as well for prismatic joint j,

additional parameter K,?J is introduced so that it has

value 1 for rotation and 0 for translation, and following
equation is obtained:

P _— i 2 . /
J 1AJ.:I+§{(1—cosq])(e?) +smq1e?}, 23)

Position of the centre of mass C; of the i-th segment
w.r.t. to fixed frame is given by equation:
. i
0C; =1¢; = 2(pkk +&eerdi )+ P » 24
k=1

where py =0,0,,; and O,C; =p; are suitable
position vectors (Figure 7). Parameter &; has value 0 for

rotation and 1 for translation; ¢ is translational or
angular displacement.

Figure 7. Rodrigues’ approach: representative vectors in
open chain robot mechanism

Position vector of the end-effector tip w.r.t. to fixed
frame is:

rp =2 Ay, {(pkk + &1 e )} ) (25)
k=1

where 4, = %4,74,---*'4, . 1t is important to say

that all vectors are given with respect to local frame
CiginiSi -

3. SPATIAL DESCRIPTIONS AND
TRANSFORMATIONS IN QUATERNION SPACE

3.1. Unit quaternions

The quaternion representation of orientation due to
Hamilton, while largely superseded by the simpler
vector representations of Gibbs and Grassmann is
extremely useful for problems in robotics that result in
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representational singularities in the vector/matrix
notation [1]. Unit quaternion is a convenient and
compact mathematical notation for describing the
attitude of rigid bodies in three dimensions.

Quaternions are hyper complex numbers that can be
written as the linear combination a+bi+cj+dk with

i? = j2 =k*=-1. Here a represents real part, while b,
c and d are imaginary parts or the componests of pure
quaternion [19]. They can be also interpreted as
quadruple ¢ =(g,.9,.95.9,) or via vector and scalar

representation ¢ =(s,v). Late formulation is very

suitable for rotation description.
Expressing rotations in 3D via unit quaternions
instead of matrices has following advantages [20]:

e Concatenating rotations is computationally faster
and numerically more stable.

e Since gimbal lock is innate to the matrix
representation of Euler angles, this problem does
not appear in the quaternion representation.

e Unambiguousness

e Extracting the angle and axis of rotation is simple

e Interpolation is more straightforward.

As indicated before, from Euler rotational theorem it
can be concluded that any rotation in three dimensional
space can be described by unit vector indicating the
direction of rotational axis and a rotational angle 6.
Using extension of Euler formula, this transformation in
unit quaternion space becomes:

lg(utl:+ll‘,j+u7k:)
q= ez ’ : - =

=[cos(0/2).5in(0/2) w1, ) |= (59, 26)
= [cos g,sin g(ux,uy,uz )}

z

2arccos(q; ),

| q, / sin(arccos ;)
N /Yy
S /

AN / q, / sin(arccosq,)

[ NV

X q5 / sin(arccosg;)

Figure 8. Visualisation of unit quaternion parametres
through relation with axis-angle presentation

. =~ 0 . L .
hereinafter, & =3. Thus, if rotation is given in the
axis-angle form where rotational axis is defined by unit
vector #=ui+u j+uk and by angle of rotation 6,

quaternion representing this rotation is:
q:(cosé,sing(ux,uy,uz)):(s,v). 27

To define pure rotation, quaternions must satisfy |g| =1,
i.e. pure rotation is defined by unit quaternions.

There is an extensive review of  quaternion
mathematic features in the literature [10]. In this paper,
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only basic quaternion operations required for deriving
kinematic algorithms in robotics are considered.

For given wunit quaternionsg; :(sj,vl) and

q,= (sz,vz) , quaternion addition is defined as:

q9,+4; = (s,,v])+(s2,v2)= (574529, +v,), (28)
and quaternion product is defined as:
q,®q, :(sjs2 —VV,,8,V, +8,0, 4y, ><v2). 29)

Quaternion multiplication is associative and distributive
across addition, but not commutative.

Two successive pure rotations represented by unit
quaternion representatives ¢, and ¢, can be achieved
by a single rotation about an appropriately chosen axis.
Unit quaternion corresponding to this transformation is
obtained from quaternion productq; ®g¢q,, analogously
to the resultant rotational matrix representing total
rotation in Cartesian space is obtained by successive
rotational matrix multiplication.

For a given unit quaternion ¢=(q,.9,.95.9,),
corresponding rotational matrix R(q) is obtained by

following formula:

G-a-ai+a  2a0as-aa)  2(a:9,+ 954

2apa5+a00) -a3+ai-ai+ai (4590 a:,)
243+ ai+ai

(30)

2(4274 _9391) 2(4344 +9291) -q

3.2. Dual quaternions

Dual Quaternions (DQ) were proposed by William
Kingdom Clifford in 1873. and they can be considered
as extension of quaternions since they represent both
rotations and translations of rigid body-it’s spatial
displacement [12]. The dual-quaternion model is an
accurate, computationally efficient, robust, and flexible
method of representing rigid transforms and should not
be overlooked [16]. They can be defined as quaternions
whose parameters are dual numbers and thus are
represented by eight-dimensional vector:

q= (s,x,y,z,sg,xg,yg,zg)z qteq, = (§,)2,)3,2).(31)

where ¢ is dual factor, £=0, &#0. Since spatial
displacements of a rigid body in three-dimensional
space have six degrees of freedom, dual quaternions are
subject to two constraints:

a;+q5+q; +q; =1, (32)

9191 +9292: + 93935 + 4494, =0 (33)

Some important operations with dual quaternions
(from the robotics point of view) are presented bellow.
Dual quaternion multiplication is defined as:

in ®‘}2 :(‘II +3q15)®(‘12 +3q25): ) (34)
=q,9q,+¢(q, 945, +4,, ®4q;
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Dual conjugate of ¢ is given by:

q=q9-¢q,. (3%

A second conjugation operator of dual quaternion is
defined as [13]:

q :((s,—x,—y,—z,—sg,xg,yg,z‘g )) (36)

If wvector p is defined in Cartesian space
as p=p,i+p,j+p.k, representation of this vector in

unit quaternion space is:
p=0+pi+p,j+pk, (37)
and in in dual quaternion space:
p=1+e(pi+p,j+p.k), (38)
or:
p=p+ep, =(1,0.00)+£(0.p,.p,.p.). (39

Representing pure rotation
Rotation of the vector p about axis a for angle o is
represented in dual quaternion space by following
equation:

Al

P =4 ®pDqy, (40)

where dual quaternion of transformed vector p in the
form:

Al

p=1+e(pivp,jvp k), (41)
is obtained from:

s =1+ o5, =1 =
:R(coslgc_,singg(ax,fl a )),‘IRs:(O’OJO’O). 42)

vz

Representing pure translation

Dual quaternion vector corresponding to translation

described by translation vector T’ = (txi +hj+ tzk) is:

qar :(”0'0’0)%(0,&,5,5)=

c : (43)
= 1+3(txi+tyj+tzk)

Dual quaternion representing vector p after translation
defined by T'is:

P =4 ®p®qr, (44)

from which dual quaternion vector of transformed
vector p is obtained in the form:

Al

p=1+e(plivp j+p k). (45)

A pure translation of a vector can be represented as
vector addition of a given vector p and translational
vector 7T, thus translation of the wvector in dual
quaternion space can be represented with another
identity:

FME Transactions

P :]+8(<p x+tx)i+<p y+ty)j+(p Z+tz)k). (46)

Representing rigid transformations

Let us assume that vector p was rotated about axis a for
an angle « and after that translated by translation vector
T. This transformation is described in dual quaternion
space in a following manner:

P =dr®(@:®p®az)®a; ., 47
where ¢, is given by (42). Special attention should be

paid that t}T is dual quaternion describing pure

translation defined by translational vector T'-which is
rotated vector T

T =(4: 9T ®4dy). (48)

If we assume transformation in which translation
given by T is performed first, and rotation given by ¢,

second, transformated vector 13 will be obtained from
following:

Al

P =0 ®(ir ©p®d;)®d . (49

3.3. Direct kinematics algorithm in quaternion space

In this paragraph, it will be considered how vector
transformations in dual quaternion space described
before are related to direct kinematics algorithm.

To define an efficient kinematic algorithm, a
suitable reference frame should be established, as well
as local frames moving together with robot segments.
Rotations are described by following dual quaternion:

dr =qr + &4z, =(cos§,sin5(ax,ay,az)),
, (50)
dre =(0,0,0,0)

where o is value of joint angle for rotational axis
represented by vector a in three dimensional space.
These vectors are determined with respect to the fixed
frame for a robot in a initial position. Rotations for
angle o about axis parallel to x,y,z axis of fixed
coordinate system will be described respectively:

dRra =(cos§,sin07(1, 0,0)), (51)
éR,y,a :(cos&,sin&(O, 1, 0)) , (52)
T (cos a,sin 67(0, 0, 1)) . (53)

As stated before, we consider clockwise rotations. That
mentioned if the axis of rotation is in opposite direction
of unit axis of fixed coordinate system, we adopt that
the rotation is performed for angle -a about axis in the
same direction as referent axis of coordinate frame and

substitute sin(a/2)by —sin(a/2) in gy expression.

VOL. 42, No 3, 2014 = 195



In case of prismatic joints, translation described by

translational vector T =(txi+ty j+tzk) will  be

represented by dual quaternion:
. £, ., .
ir :1+3(txt+ty]+tzk), (54)

Translations for value a along axis parallel to x,y,z axis
of fixed frame will be respectively:

dr ca :1+§(ai+0j+0k), (55)
dr.a :1+§(0i+aj+0k). (56)
dr .. :1+§(0i+0j+ak). (57)

Consider a manipulator with n degrees of freedom,
and let nz be a number of rotational joints. Dual
quaternion which defines orientation of the end-effector
for given joint inputs is given by following equation:

Go.n, =41, ®4, ©45, --- O, , (58)

where éik is dual quaternion representing transformation

provided by i-th rotational joint. This transformation can
be represented in unit quaternion space as following:

Qon, =41, ¥4, 43, ---®4,, . (59)

To verify these results, we can transform dual
quaternion ¢, , into rotation matrix using (30).

To determine position of the end-effector, we
consider radius vector of the end-effector p as the sum
of vectors along respective segments moving together
with segments. Dual quaternion vector transformations
given in subparagraph 3.2 are used. Equations (47) and
(49) are applied successifully to define correspondent
transformations provided by rotational and prismatic
joints. Special attention should be paid to the order of
applied successive vector position transformations and
especcially to the case where rotation is followed by
translation.

4. SIMULATION RESULTS PERFORMED ON HUMAN
CENTRIFUGE (3 DOF MANIPULATOR)

To demonstrate presented direct kinematics algorithm in
dual quaternion space, human centrifuge (Figure 9) will
be considered. Human centrifuge is dynamic flight
simulatior which purpose is to simulate as closely as
possible real flight conditions and to provide an
effective pilot training [21]. This device can be modeled
as 3 DoF manipulator with rotational joints [22]. Main
motion is rotation of the centrifuge arm about vertical,
planetary axis. Arm carries gondola which is able to
rotate about two axes, pitch and roll. These two axes
intersect in the center of the gondola. Pilot seat is
considered as end-effector and it is assumed to be
placed in the center of the gondola. First, a reference
fixed frame is determined and rotational axis are defined
(Figure 10).

196 = VOL. 42, No 3, 2014

]
/II/II/I//I/,

%
o \ \ 2
a
Moy,

Figure 10. Human centrifuge: Rotational axes in initial
position (a view from above)
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By usage of Rodrigues’ approach [3], following
rotational matrices and position vector of the end-
effector are obtained:

¢ —s; 0

Ri=|s; ¢ 0], (60)
0 0 I
_CZ 0 _SZ_

"R,=10 1 o0 |, (61)
s, 0 ¢
(10 0]

Ry=0 ¢; -s;, (62)
_0 53 ¢ |

CiCy —81C3 =CySyS83  Sp83 =CpS,C3

0
R; =|5s,c, cjc3—5;5,8;5 —¢;5;3—5;5,¢3 |.(63)

S €83 C)C3

0 N T
g = Z[Ao,k:l{(pkk +&rqiey )} = [alc] as; 0] (64)
k=1
This rotational matrices and position vector are given
for the purpose of comparison with method given here.
Planetary, roll and pitch rotations in dual quaternion
space are given by:

é]R :érot (Z()’gl):(cose_I’Sine_] (0’ 0’1))’ (65)

éZR = émt (21’92 ) = érot (y0’_92 ) =
_ _ s (66)
= (cos 0,,—sin 6, (0,1,0))
q

(x0’93 ) =
, (67)

é3k = érot (22’03) = bror
= (cos(@),sin(@)(],0,0))
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903 =41, @4z, @43, =qp;+54) 3, - (68)

Here, rotational axis z, is parallel to z axis of fixed
frame, z, is parallel to y axis, and z, is parallel to x axis
axis of fixed frame. Dual quaternion representing
orientation of the end-efector is:

08,00, 58,5057,
8,085, + c0,57,57,
8,050, + 58,0057,
c8,c8,50, + 0,505,

993 = 993: = . (69)

S D S S

Using (30), equality of results obtained by (63) and
(69) can be obtained.

Since end-effector is placed in the center of the
gondola where roll and pitch axis intersect, rotation of
the second and the third axis will not affects its position.
Vector position in initial position of the robot in

Cartesian space is given by vector p = [a ;0 O]T and

in dual quaternion space by:
p=(1,0.0.0)+¢£(0,a;,0,0)=1+¢(aji). (70)

After rotation of the centrifuge arm, by the usage of
(40), a new position of the end-effector in dual
quaternion space is:

p =4, ®p®q, =1+£(0,a,c0,,a,56,,0), (1)
or in Cartesian space with respect to fixed frame:

p'=[a101 a;s; ()]T. (72)

This example shows the simplicity and compactness
of presented direct kinematics algorithm. Comparing
this approach with Rodrigues’ approach applied to this
particular manipulator [3], [23], forward kinematics
algorithm presented here proved to be simpler and
computational cost is smaller. This approach is
particularly advantageous in overcoming the problem of
singularity. Namely, in previous work [23] it is
determined that this manipulator has a singular position
in gy =+7/2. In this position first and third axes align

and from (63), (11), (12) and (13) it can be seen that it is
impossible to determine or control orientation by the
means of three Euler angles. If we notice that axes of
this manipulator are directed in the same manner as
zy'x" sequence of Euler angles in (8), from directions of
rotational axes it can be concluded that 8 = —¢, . In this
singular position, one degree of freedom is lost and only

the difference (y —¢) can be controlled. This results in
numerical ill-conditioning and unpredictable behaviour
causing potentially damage situation. On the other hand,
from (69) it can be seen that all terms of quaternion
representing this orientation are determined.

5. CONCLUSION
In this paper, compact overview of mathematical

constructs used most often for representation of the
position and attitude in robotics is given. Advantages of

FME Transactions

robot kinematic modelling in quaternion and dual
quaternion space stemmed from singularity free,
numerically stable and suitable for interpolation
representation of attitude. Vector transformations using
dual quaternions are presented. These transformations
are used as foundation for new, simple and compact
direct kinematic algorithm in dual quaternion space.
Developed algorithm is demonstrated on human
centrifuge which is modelled as 3 DoF manipulator with
rotational joints. According to the results from the
section 4, it can be concluded that the advantage of
presented quaternion based algorithm, with respect to
Rodrigues’ approach, is smaller computational cost.
Also, it can be seen that in application of presented
quaternion algorithm the problem of singularity, innate
to the matrix representation of Euler angles, and
particularly important to control of actuators in robotics
does not appear.
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HAIIPEJJHU KBATEPHUOHCKH
AJI'OPUTAM JUPEKTHE KUHEMATUKE
POBOTA YK/bYUYYJYRHU NPEI'JIEJ|
PASJIMMUTUX METOJA KUHEMATHUKE
POBOTA

Jesena BunaxoBuh, Muxauno Jlazapesuh,
Baagumup Kspruh, 3opana Januyo, I'opan @epenig

dopmysucambe  oarosapajyhmx — u  edukacHux
anropuTaMa KHHEMaTHKe podoTa je ol CYLITHHCKOT
3HaYaja 3a aHAJIM3Y U Pa3BOj CEPUjCKUX MAHHUITYJIATOPA.
KuHemMaTHyko  MOJENIOBak€  MaHUIIyjJaropa  ce
Hajuemhe Bpmm y [lexkapToBoMm mpocropy. Melytum,
yClIe[ HEJOCTATaKa Haj3acTYIUBCHUjUX MaTeMaTHYKHX
ormeparopa 3a AehHHHCAmE OpHjeHTalMje Kao IITO Cy
OjnepoBu YIJIOBH M pOTalMOHE MaTpuue, Hamehe ce
motpeba 3a jeAHO3HAUYHUM, KOMIIAKTHHM, PAadyHCKH
epuKacCHIM MeToIoM 3a onpehuBame opujeHTanuje.
Kao pememe oBor mnpodiema Hpeiaxy ce jeJUHUYHH
KBaTePHHOHU Ka0 M Pa3BOj KMHEMAaTHYKUX MOZena y
IPOCTOPY AyaJHUX KBaTepHHOHA. Y OBOM pany je AaT
nperiie/l TeOMETPHjCKHUX OMKca U TpaHchopMaija Koje
Cce€ MOry IPUMEHUTU y OKBUPY HABEAEHUX IIPOCTOpa
Kako O ce pemnian npoOieMH KHHeMaTHKe polora.
IMoceban akueHAT je HAa Pa3IMYUTAM MaTEeMATHYKUM
dbopmMamu3MuMa KOjH Ce KOpPHUCTE 3a Je(UHUCAEC
OpHjeHTalyje KPYTOr Tela, Kao IITO Cy POTAlMOHE
Matpure, OjIepoBH YIIOBH, Oca W yrao poTarwje,
JeIMHUYHH KBaTEPHUOHH, KA0 W HAa HUXOBO] y33jaMHO]
Be3d. [IpemHOCTH KHHEMATHYKOr MOJEIHpama Yy
MPOCTOpPY KBaTepHHOHa Ccy wuctakHyTte. Ocobune
JEAMHUYHMX M IyaJIHUX KBaTEPHUOHA CE aHaIM3HPajy
ca craHoBumTa poboTtuke. Takohe, nmar je HOBH
aITOPUTaM JMPEKTHE KHHEMATHKe poboTa y MmpocTopy
NyaJlHUX KBarepHHOHa. OBaj airopuraMm je NpUMEHEH
HAa XyMaHO] LEHTPU(PYrH KoOja je MOJeIUpaHa Kao
TPOOCHH MaHHITYJIATOP.
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