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Analysis of the Minimum Required
Coefficient of Sliding Friction at
Brachistochronic Motion of a
Nonholonomic Mechanical System

The paper analyzes the problem of brachistochronic motion of a
nonholonomic mechanical system, using an example of a simple car model.
The system moves between two default positions at an unaltered value of
the mechanical energy during motion. Differential equations of motion,
containing the reaction of nonholonomic constraints and control forces,
are obtained on the basis of general theorems of dynamics. Here, this is
more appropriate than some other methods of analytical mechanics
applied to nonholonomic systems, where the provision of a subsequent
physical interpretation of the multipliers of constraints is required to solve
this problem. By the appropriate choice of the parameters of state as
simple a task of optimal control as possible is obtained in this case, which
is solved by the application of the Pontryagin maximum principle.
Numerical solution of the two-point boundary value problem is obtained
by the method of shooting. Based on the thus acquired brachistochronic
motion, the active control forces are determined as well as the reaction of
constraints. Using the Coulomb laws of friction sliding, the minimum value
of the coefficient of friction is determined to avoid car skidding at the
points of contact with the ground.

Keywords: Brachistochrone, Nonholonomic mechanical system,
Pontryagin’s maximum principle, Coulomb friction, Optimal control.

1. INTRODUCTION

As is well known the classical brachistochrone problem
was proposed by Johann Bernoulli in 1696 for the case
of a particle moving in a vertical plane under the
influence of its own gravity in a homogeneous field of
gravity. Much later, the generalization of the classical
brachistochrone problem was carried out within the
calculus of variations [1] and [2]. A detailed review of
literature related to the problems of brachistochronic
motion can be found in [3] and [7]. The problems
considered in the present paper involve a review of
references on the Bernoulli’s case of the classical
brachistochrone extended to the system of rigid bodies.
Paper [4] considers the Bernoulli’s brachistochrone
problem extended to the multibody system in the form
of a closed kinematic chain without external constraints.
Paper [5] considers a special case of the multibody
system whose motion is limited by external constraints.
The brachistochronic motion of a multibody system
in a stationary field of potential forces, and Coulomb
friction, for a special case, was solved in [6] where it
has been shown that there is a complete analogy
between the brachistochronic motion of a mechanical
system with 2-DOF, whose metric tensor is constant,
and the brachistochronic motion of a particle acted on
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by the forces of viscous and Coulomb friction.

Considerations of the brachistochronic motion of a
nonholonomic rheonomic mechanical system acted
upon not only by control forces but also by both
potential and non-potential forces can be found in [7].
The results obtained in [6] were extended in [8], where
the brachistochronic motion of a mechanical system
with unilateral constraints was considered.

This paper, using the example of a nonholonomic
mechanical system with limited reactions of constraints,
presents the procedure of creating the differential
equations of motion where both reactions of
nonholonomic constraints and control forces figure,
based on the general theorems of dynamics [9].
Applying the general theorems of dynamics, one
obtains, on one hand, more suitable relations in
determining the reactions of constraints and control
forces, while, on the other hand, physical interpretation
of the multipliers of constraints is unnecessary as in the
case of applying some other equations of analytical
mechanics that refer to nonholonomic mechanical
systems [10]. This paper also provides the procedure for
solving brachistochronic motion of a nonholonomic
mechanical system in a plane at the steady value of
mechanical energy during motion, when initial and end
positions are specified [14].

The formulated brachistochrone problem, with a
corresponding choice of the quantities of state, was
solved, in this case, as the simplest problem of optimal
control by applying the Pontryagin maximum principle
[11] and [12]. Simultaneously, control forces were also
determined so as to realize the brachistochronic motion.
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The Coulomb laws of sliding friction were the basis for
specifying the minimum required value of the
coefficient of sliding friction, so that the mechanical
system moves in accordance with the nonholonomic
bilateral constraints. Thus determined value of the
coefficient of sliding friction prevents the occurrence of
the system slipping during the entire motion.

The numerical procedure for solving the two-point
boundary value problem is based on the shooting
method [13]. Also, estimates are provided for the
intervals of parameters’ values being determined.

2. DESCRIPTION OF A NONHOLONOMIC SYSTEM
MODEL

In order to generate differential equations of motion of a
nonholonomic mechanical system, using the example of
a simplified vehicle model (see Fig. 1.), taken
completely from [10], it is necessary first to introduce
two Cartesian reference coordinate systems: the

stationary coordinate system OCn( , whose coordinate
plane O&n coincides with the horizontal plane of
vehicle motion, and a movable coordinate system Axyz,

which is rigidly attached to the vehicle body, so that the
coordinate plane Axy coincides with the plane O& .

The axis of the movable coordinate system Axis
defined by the direction of a normal to the axis of the
vehicle rear axle and point C, where C € Ax . Point C
represents the center of mass of the vehicle body, while
point A is the center of mass of the front axle, and

BC= l, and CA= lyare given. Unit vectors of the
movable coordinate system axes are ;] and
lg, respectively. A simplified vehicle model consists of a
vehicle body of mass M, and a front axle of mass M,
where moments of inertia are known J;andJ, around

the main central axes of inertia perpendicular to the
plane Axy, respectively, having in mind that is
Ji >>J, . The mass of rear axle and the mass of wheels
are disregarded. The vehicle configuration relative to
the system Olnis defined by a set of Lagrangian
coordinates (ql,qz,q3,q4), where ql =¢p and

q2 =ngare Cartesian coordinates of the point B,
q3 =@ is the angle between the axis O¢ and axis Ax,

while q4 =@ 1is the angle between the axis Ay and the

vehicle front axle axis.

Further analysis refers to the case when point A
cannot move in the direction of the front axle axis,
while point B of the vehicle cannot move in the
direction of the rear axle axis (lateral slipping of the
front and rear axle is prevented). Due to the imposition
of constraints to the motion, there occur horizontal

reactions RA =—R,sinfi +Rycosj and Ry =Rzj,
respectively. Such vehicle motion is limited by two
ideal independent nonholonomic constraints
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—stingo-FﬁBcosgo =0,

. 1
—& ysin(p+6)+i 4eos (9 +60) = 0. M

The consequence of the imposed constraints to the

vehicle motion is that velocity V of the point B has the
direction of the axis Ax, so that relations (1) can be
expressed in the following form

fB:Vcosgo, ng =Vsing, gb:?tane, 2)

where V=V -iand [ =] +1,.
During motion, the vehicle is acted on by the control
force F; = F{ (¢) along the axis Ax, as well as by the

drag, proportinate to the first degree of the velocity of
point C , with the coefficient of proportionality #,,

where Fz =—k217C. During motion, the vehicle front

axle is acted on by the control momentl; =1L (t) ,
around the vertical axis perpendicular to the plane of
motion, the resistance moment L, , proportionate to the
relative angular velocity of axle rotation, where
L, = klé , and the resistance moment L3, proportionate
to the relative angle of the front axle rotation around the
vertical axis, where L3 = k30 .

Now, the differential equations of vehicle motion,
based on the theory of change in momentum and
moment of momentum for a movable axis that passes
through point B and is perpendicular to the plane of
motion [9], have the form

K - dlg 5 = -
a;—t: RS, TtB"rVBXK:Mg, (3)

that is
: M
M{V—(lz+7211j¢2}:171—k2V—RAsin0,
. My ). .
M (/)V—f— 12 +711 [} :RACOSH+RB—]€2[2§0, (4)
M, ). .
J ¢+M(12 +7211j¢V:RAlcost9-k2122¢),

where M = My +M,, J = J;(J; >>J,)and
J* :M1122 +M 212 +J . The vectors of vehicle angular
velocity and angular acceleration are®= (plg and
& = ¢k , respectively.

The differential equation of wvehicle front axle

rotation around the axis that passes through point 4, and
is perpendicular to the plane of motion, has the form

o (¢+6) = 1~y - k0. (5)

Solving the system of equations (4) and (5), the
reactions of nonholonomic constraints are obtained, as
well as the control force and control moment, so as to
realize the brachistochronic motion, in function of
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introduced quantitities of state and corresponding
derivatives

R, = ! J¥ i+ (Ml + Moyl ) gV +hyl36) |,
[cos@

1 . . .
RB :7[M111(0V+(M11112 —J)¢7+k21112¢7:|, (6)
F(t)= MV+k2V+—taI;9 [J*¢+k2122¢},
Li(1)=, (¢+é)+klé +k30.

Also, during vehicle brachistochronic motion the
law of the conservation of mechanical energy holds

®(V, ¢) =MV +J*p* -2 =0, (7)

where T, is vehicle kinetic energy at initial time moment
tO = 0 .

Figure 1. a) Simplified vehicle model; b) front axle.

3. BRACHISTOCHRONIC MOTION AS THE
PROBLEM OF OPTIMAL CONTROL

In this section, using the example of a simplified model
of a vehicle with constrained motion, we will formulate
the problem of brachistochronic motion as the problem
of optimal control. The equations of state that describe
the motion of the considered system in state space can
be defined in the form

Ep =ujcosp, g =using, ¢=u, )

where controls u; and u, represent the vehicle point B
velocity and angular velocity vehicle, respectively.
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Relative angle of the front axle rotationé can be
given on the basis of (2).

The quantities of state (g, #p and ¢ were
determined at the initiation time moment

to =0, Ep(10)=0, n5(10) =0, 0(t)=0, (9

while quantities of state {p, g and gat the vehicle
final time moment

t=tr,<p (tf)za, ng (tf) =b, go(tf) =¢r. (10)

The brachistochrone problem of vehicle motion,
described by differential equations (8), consists in
determining the controls u;and u,, as well as their
corresponding quantities of state g, #gand ¢, so that

the vehicle starting from the initial state (9) moves into
the final state (10), with unchanged value of mechanical
energy (7), in a minimum time. This can be expressed in
the form of condition, so that the functional

i
= j d, (11)
10

in the interval [to , ¢ f] has a minimum value.

In order to solve the problem of optimal control,
formulated using the Pontryagin maximum principle
[11] and [12], we will create Pontryagin’s function in
the form as follows

H = Ay + Azuy COS @+ A1y SN g + A1y +ud(uy, uy),(12)

where 4y =const.<0, 4, 4, and 4, are coordinates of

conjugate vector, where it can be taken that Ay =-1,
while u is a multiplier corresponding to (7). Based on

Pontryagin’s function (12), the conjugate system of
differential equations is

}Lf:O, in=0,i =u1(iésin¢-lncos¢). (13)

If controls belong to an open set, as in this case, the
conditions for determining optimal control can be
expressed in the form

2
[G_H] o | TH <0, 0123 04)
ou; Lopt 5”55“1' Lot

Applying the Theorem 1 [11], it follows directly that
the value of Pontryagin’s function on the optimal

trajectory equals zero, for V¢ e [to, t f}
—1+ Jettg €OS @+ Zyuy Sin @+ Ay + u® (uy, uy ) =0, (15)

having in mind, based on (13), that 4 = const.and
Ay = const.

Now, based on (14) and (15), we obtain the value of
a multiplier u, as well as the control functions in the

following form
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1 2Ty .

=———, uy=——(A:cosp+ 4, sing),

T NV (% cosp+ 2 sino)
2T

=20,

J* (7

(16)

%)

Based on relation (15) determined at the initial time
moment, and based on (9), (14) and (16), we obtain the
value of coordinate iq, at the initial time moment

a7

Determining the reactions of constraints and control
forces (6), relations (16) are obtained by differentiation
with respect to time (w.r.t.), having in mind (13). The
shooting method was used in numerical procedure for
solving the corresponding two-point boundary value
problem, based on (8), (9), (10), (13), (16) and (17),
[13].

The application of shooting method requires
specified intervals of the values of parameters to be
determined. The global estimates for the interval of

value of the conjugate vector coordinate A can be given
on the basis of (13), (14) and (16)

[, . i as)
27, 27,

Shooting consists in determining the unknown
coordinates of conjugate vector 4: and A,?, having in

mind (16) and (17), as well as a minimum required time
lr, 80 that the vehicle starting from initial state (9)

moves into the final state (10).
The two-point boundary value problem was solved
for the following values of parameters

kgm2 T
Ty —lOOOS—z,w(tf)—Erad,

M, =1000kg,

_ _ 2
M, =110kg, J; =1500kgm?, (19)
J, =30kgm?,

L =0.75m,l, =1.65m, a =5m, b = 5m,

ky = 0.5Nsm, ky =100 &y =100Nm.
m

The estimates for the intervals of values of the
conjugate vector coordinates A: and /1,1 can be given on

the basis of (16), (18) and (19)
—0.745 < J- <0745,

(20)
-0.745< 2, <0.745.

In accordance with (11), the time of the vehicle
brachistochronic motion, as well as the conjugate vector
coordinates, for the given values of the system
parameters (19), are 7, =6.2223s, 4g =0.5124 and

Ay =0.5124.
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Figure 2. Quantities of state ¢ (t), 75 (t), ¢(t)and o(t).
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Figure 4. Reactions of constraints R, (t), Rg (t), and

control forces F(t), L;(t).
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4. CONDITIONS FOR CONSTRAINTS BASED ON
COULOMB SLIDING FRICTION

Differential equations of vehicle motion (4) were
obtained assuming that equations of nonholonomic
bilateral constraints (1) are satisfied at any time
moment. Having this in mind, the necessary dynamic
conditions for realizing such motion [10], and based on
the Coulomb laws of sliding friction, are

VRE +F <N, [Ry|< Ny, 20

where 4 and 45 are the coefficients of sliding friction

between rear and front wheels, respectively, and
stationary surface. Normal reactions of rear and front

axle stationary surface are N, =3065.6N and

N, =7823.5N, respectively.

The diagrams below, based on above considerations,
show the laws of minimum required values of the

coefficients of sliding friction ,ul* and ,uz in function of

time.
0.15 - -
*
7
0.10 -
* O
= .
g k
0.05
0.00 - ‘ ‘ ‘ o
0 1 o 3 4 5 6

Figure 5. Diagrams = (t) and 5 = 5 (t).

Based on above considerations, it can be inferred
(see Fig. 5.) that a minimum required value of the
coefficient of sliding friction, between stationary

surface and vehicle wheels, is ,u* >0.16.

5. CONCLUSIONS

In this paper, using the example of a simplified vehicle
model (see Fig. 1.) with constrained motion (1), we
have presented the procedure of generating differential
equations of motion (4) and (5), based on the general
theorems of dynamics [9].

The formulated brachistochrone problem, with a
corresponding choice of the equations of state (8), was
solved, in this case, as the simplest problem of optimal
control. Applying the Pontryagin maximum principle
[11] and [12], the problem of optimal control was
solved (see Fig. 2. and Fig. 3.), with a given estimate of
the interval of conjugate vector coordinates (18).

Thereafter, the reactions of constraints were
determined, as well as the control forces for realizing
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the brachistochronic motion, as shown in Fig. 4. The
performed numerical procedure for solving the two-
point boundary value problem is based on the shooting
method [13].

Applying the Coulomb laws of sliding friction,
minimum required values for the coefficient of sliding
friction were determined, so as to prevent slipping of
both vehicle rear and front axle, as presented in Fig. 5.

Authors consider that results obtained in this paper
can be extended to the case when the coefficients of
sliding friction are below minimum required values. In
that case, as well as in the case when control forces are
constrained, the problem of optimal control becomes
considerably more complex, which will be the subject
of future studies.
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AHAJIMN3A MUHUMAJIHO IIOTPEBHOT
KOE®UIINJEHTA TPEIbA KJIM3ABA ITPH
BPAXUCTOXPOHOM KPETABY
HEXOJIOHOMHOI' MEXAHNYKOI' CUCTEMA

Panocnas PagynoBuh, Anexcanagap Oopagosuh,
Bojan Jepemnh

Ananu3upa ce mpobsieM OpaxHUCTOXPOHOT  KpeTama
MEXaHHUYKOI CUCTEMa Ha MPUMEPY jeAHOT ympomrheHor
Mmojena Bosmwia. Cuctem ce kpehe msmeljy nBa 3amata
MOJNIoXKaja NP HEU3MEHCHO] BPEAHOCTH MEXaHUUKe
eHepruje y TOKy KpeTama. Judepennyjaine jeqHaunHe
KpeTama, Y KojuMa (GUrypuIny peakiuje HeXOJIOHOMHHIX
Be3a M yIpaBjhadke cmie, Mo0Hjajy ce Ha OCHOBY
ommTHX Teopema auHamuke. OBIE je TO TOAECHH]e
YMECTO HEKHX JIPYyTUX METOJa AHAIUTHYKE MEXaHUKE
MIPUMEHEHUX Ha HEXOJIOHOMHE CHUCTEME, y KojuMma je
HEONXOJHO JaTH HAaKHaJAHO (U3MYKO TyMmauerme
MHOXXHTEJba Be3a Ja OM ce OBaj MpoOJIeM pPEemuo.
IMomecHnM wu300pOM BeJIMYMHA CTama, 100Hja ce,
HajIIpocTUju  MOTryh 'y OBOM ciydajy, 3amarak
OINTHUMAJIHOT YIIpaBJbama, KOjU C€ pellaBa MPHUMEHOM
[oHTpjaruHOBOr MpUHLOMNA MakcuMyma. Hymepuuko
pelIaBame JBOTaYKaCTOr IPAHMYHOT MpodieMa BPLIX ce
MeTofoM InyTHHra. Ha ocHOBy Tako jmoOujeHor
OpaxuCTOXpOHOT KpeTama ofnpelyjy ce aKkTHBHE
yOpaBjbadke CHIIE, a YjeAHO H peaklHje Be3a.
Kopucrehn KymonoBe 3akoHe Tpema KIH3ama,
ompehyje ce MHHHUMaTHO TMOTpeOHA  BPEIHOCT
KoeHUIMjeHTa Tpema KiIn3ama, Ja He OU JouUIo 10
NpOKIM3aBaba BO3WIA Yy Taykama KOHTakTa ca
TIOZIJIOTOM.
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