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Analysis of the Minimum Required 
Coefficient of Sliding Friction at 
Brachistochronic Motion of a 
Nonholonomic Mechanical System 
 
The paper analyzes the problem of brachistochronic motion of a 
nonholonomic mechanical system, using an example of a simple car model. 
The system moves between two default positions at an unaltered value of 
the mechanical energy during motion. Differential equations of motion, 
containing the reaction of nonholonomic constraints and control forces, 
are obtained on the basis of general theorems of dynamics. Here, this is 
more appropriate than some other methods of analytical mechanics 
applied to nonholonomic systems, where the provision of a subsequent 
physical interpretation of the multipliers of constraints is required to solve 
this problem. By the appropriate choice of the parameters of state as 
simple a task of optimal control as possible is obtained in this case, which 
is solved by the application of the Pontryagin maximum principle. 
Numerical solution of the two-point boundary value problem  is obtained 
by the method of shooting. Based on the thus acquired brachistochronic 
motion, the active control forces are determined as well as the reaction of 
constraints. Using the Coulomb laws of friction sliding, the minimum value 
of the coefficient of friction is determined to avoid car skidding at the 
points of contact with the ground. 
 
Keywords: Brachistochrone, Nonholonomic mechanical system, 
Pontryagin’s maximum principle, Coulomb friction, Optimal control. 

 
 

1. INTRODUCTION  
 

As is well known the classical brachistochrone problem 
was proposed by Johann Bernoulli in 1696 for the case 
of a particle moving in a vertical plane under the 
influence of its own gravity in a homogeneous field of 
gravity. Much later, the generalization of the classical 
brachistochrone problem was carried out within the 
calculus of variations [1] and [2]. A detailed review of 
literature related to the problems of brachistochronic 
motion can be found in [3] and [7]. The problems 
considered in the present paper involve a review of 
references on the Bernoulli’s case of the classical 
brachistochrone extended to the system of rigid bodies. 
Paper [4] considers the Bernoulli’s brachistochrone 
problem extended to the multibody system in the form 
of a closed kinematic chain without external constraints. 
Paper [5] considers a special case of the multibody 
system whose motion is limited by external constraints. 

The brachistochronic motion of a multibody system 
in a stationary field of potential forces,  and Coulomb 
friction, for a special case, was solved in [6] where it 
has been shown that there is a complete analogy 
between the brachistochronic motion of a mechanical 
system with 2-DOF, whose metric tensor is constant, 
and the brachistochronic motion of a particle acted on 

by the forces of viscous and Coulomb friction. 
 Considerations of the brachistochronic motion of a 

nonholonomic rheonomic mechanical system acted 
upon not only by control forces but also by both 
potential and non-potential forces can be found in [7]. 
The results obtained in [6] were extended in [8], where 
the brachistochronic motion of a mechanical system 
with unilateral constraints was considered. 

This paper, using the example of a nonholonomic 
mechanical system with limited reactions of constraints, 
presents the procedure of creating the differential 
equations of motion where both reactions of 
nonholonomic constraints and control forces figure, 
based on the general theorems of dynamics [9]. 
Applying the general theorems of dynamics, one 
obtains, on one hand, more suitable relations in 
determining the reactions of constraints and control 
forces, while, on the other hand, physical interpretation 
of the multipliers of constraints is unnecessary as in the 
case of applying some other equations of analytical 
mechanics that refer to nonholonomic mechanical 
systems [10]. This paper also provides the procedure for 
solving brachistochronic motion of a nonholonomic 
mechanical system in a plane at the steady value of 
mechanical energy during motion, when initial and end 
positions are specified [14].  

The formulated brachistochrone problem, with a 
corresponding choice of the quantities of state, was 
solved, in this case, as the simplest problem of optimal 
control by applying the Pontryagin maximum principle 
[11] and [12].  Simultaneously, control forces were also 
determined so as to realize the brachistochronic motion. 
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The Coulomb laws of sliding friction were the basis for 
specifying the minimum required value of the 
coefficient of sliding friction, so that the mechanical 
system moves in accordance with the nonholonomic 
bilateral constraints. Thus determined value of the 
coefficient of sliding friction prevents the occurrence of 
the system slipping during the entire motion.  

The numerical procedure for solving the two-point 
boundary value problem is based on the shooting 
method [13]. Also, estimates are provided for the 
intervals of parameters’ values being determined. 

 
2. DESCRIPTION OF A NONHOLONOMIC SYSTEM 

MODEL 
 

In order to generate differential equations of motion of a 
nonholonomic mechanical system, using the example of 
a simplified vehicle model (see Fig. 1.), taken 
completely from [10], it is necessary first to introduce 
two Cartesian reference coordinate systems: the 
stationary coordinate system Oξηζ , whose coordinate 

plane Oξη  coincides with the horizontal plane of 

vehicle motion, and a movable coordinate system Axyz , 

which is rigidly attached to the vehicle body, so that the 
coordinate plane Axy coincides with the plane Oξη . 

The axis of the movable coordinate system Ax is 
defined by the direction of a normal to the axis of the 
vehicle rear axle and point C, where C Ax  . Point C  
represents the center of mass of the vehicle body, while 
point  A is the center of mass of the front axle, and 

2BC l and 1CA l are given. Unit vectors of the 

movable coordinate system axes are i , j,
 

and 

k,


respectively. A simplified vehicle model consists of a 

vehicle body of mass 1M , and a front axle of mass 2M , 

where moments of inertia are known 1J and 2J around 

the main central axes of inertia perpendicular to the 
plane Axy , respectively, having in mind that is 

1 2J J . The mass of rear axle and the mass of wheels 

are disregarded. The vehicle configuration relative to 
the system Oξη is defined by a set of  Lagrangian 

coordinates  1 2 3 4q ,q ,q ,q , where 1
Bq ξ  and 

2
Bq η are Cartesian coordinates of the point B, 

3q φ is the angle between the axis Oξ and axis Ax , 

while 4q θ is the angle between the axis Ay and the 

vehicle front axle axis.  
Further analysis refers to the case when point  A 

cannot move in the direction of the front axle axis, 
while point B of the vehicle cannot move in the 
direction of the rear axle axis (lateral slipping of the 
front and rear axle is prevented). Due to the imposition 
of constraints to the motion, there occur horizontal 

reactions sin cosA A AR R θi R θj  
  

 and B BR R j
 

, 

respectively. Such vehicle motion is limited by two 
ideal independent nonholonomic constraints 

 
   

sin + cos 0,

sin + cos 0.

B B

A A

ξ φ η φ=

ξ φ+θ η φ+θ =





 
 

 (1)             

The consequence of the imposed constraints to the 

vehicle motion is that velocityV


of the point B has the 
direction of the axis Ax , so that relations (1) can be 
expressed in the following form 

 cos sin    tanB B
V

ξ V φ,    η V φ, φ θ,
l

      (2) 

where V V i 
 

and 1 2l l l  .  

During motion, the vehicle is acted on by the control 

force  1 1F F t
 

along the axis Ax , as well as by the 

drag, proportinate to the first degree of the velocity of 
point C , with the coefficient of proportionality 2k , 

where 2 2 CF k V 
 

. During motion, the vehicle front 

axle is acted on by the control moment  1 1L L t , 

around the vertical axis perpendicular to the plane of 
motion, the resistance moment 2L , proportionate to the 

relative angular velocity of axle rotation, where 

2 1L k θ  , and the resistance moment 3L , proportionate 

to the relative angle of the front axle rotation around the 
vertical axis, where 3 3L k θ . 

Now, the differential equations of vehicle motion, 
based on the theory of change in momentum and 
moment of momentum for a movable axis that passes 
through point B and is perpendicular to the plane of 
motion [9], have the form  

 , ,   s sB
R B B

dLdK
F V K M

dt dt

    
 (3) 

that is 

22
2 1 1 2

2
2 1 2 2

22
2 1 2 2

sin

cos

cos

A

A B

A

M
M V l l φ F k V R θ,

M

M
M φV l l φ R θ+ R k l φ,

M

M
J φ M l l φV R l θ - k l φ,

M


        
  

       
  
    
 

 

  

  

 (4) 

where  1 2 1 1 2,  M M M J J J J    and

2 2
1 2 2J M l M l J    . The vectors of vehicle angular 

velocity and angular acceleration areω= φk
  and 

ε = φk
  , respectively.  

The differential equation of vehicle front axle 
rotation around the axis that passes through point A, and 
is perpendicular to the plane of motion, has the form 

  2 1 1 3J φ θ L k θ k θ.      (5) 

Solving the system of equations (4) and (5), the 
reactions of nonholonomic constraints are obtained, as 
well as the control force and control moment, so as to 
realize the brachistochronic motion, in function of 
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introduced quantitities of state and corresponding 
derivatives 

  

 

 

 

   

2
2 2 1 2 2

1 1 1 1 2 2 1 2

2
1 2 2 2

1 2 1 3

1
,

cos

1
,

tan
,

.
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B

R J φ Ml M l φV k l φ
l θ

R M l φV M l l J φ k l l φ
l

θ
F t MV k V J φ k l φ

l

L t J φ θ k θ k θ





 
    

 

     

     

   

  

  

  

 
 

 (6) 

Also, during vehicle brachistochronic motion the 
law of the conservation of mechanical energy holds 

               
  2 2

0,  2 0,Φ V φ MV J φ T      (7) 

where 0T is vehicle kinetic energy at initial time moment 

0 0t  .  

 

 

a) 

 

b) 

Figure 1. a) Simplified vehicle model; b) front axle. 

 

3. BRACHISTOCHRONIC MOTION AS THE 
PROBLEM OF OPTIMAL CONTROL 
 

In this section, using the example of a simplified model 
of a vehicle with constrained motion, we will formulate 
the problem of brachistochronic motion as the problem 
of optimal control. The equations of state that describe 
the motion of the considered system in state space can 
be defined in the form 

 1 1 2cos sin ,B Bξ u φ,   η u φ,   φ u      (8) 

where controls 1u and 2u represent the vehicle point B 

velocity and angular velocity vehicle, respectively.  

Relative angle of the front axle rotation θ can be 
given on the basis of (2). 

The quantities of state ,  B Bξ η  and φ  were 

determined at the initiation time moment 

      0 0 0 00,  0,  0,  0,B Bt ξ t η t φ t     (9) 

while quantities of state ,  B Bξ η  and φ at the vehicle 

final time moment 

      , , , .f B f B f f ft t ξ t a η t b φ t φ     (10) 

The brachistochrone problem of vehicle motion, 
described by differential equations (8), consists in 
determining the controls 1u and 2u , as well as their 

corresponding quantities of state ,  B Bξ η and φ , so that 

the vehicle starting from the initial state (9) moves into 
the final state (10), with unchanged value of mechanical 
energy (7), in a minimum time. This can be expressed in 
the form of condition, so that the functional 

 

0

,

t f

t

Ι dt   (11) 

in the interval 0 ,  ft t    has a minimum value.  

In order to solve the problem of optimal control, 
formulated using the Pontryagin maximum principle 
[11] and [12], we will create Pontryagin’s function in 
the form as follows  

 0 1 1 2 1 2cos sin ,  ,ξ η φH λ λ u φ λ u φ λ u + μΦ u u    (12) 

where 0 const. 0  ,  ξ ηλ , λ λ  and φλ  are coordinates of 

conjugate vector, where it can be taken that  0 1λ   , 

while μ is a multiplier corresponding to (7). Based on 

Pontryagin’s function (12), the conjugate system of 
differential equations is 

  10,  0, sin cos .ξ η φ ξ ηλ λ λ u λ φ - λ φ      (13) 

If controls belong to an open set, as in this case, the 
conditions for determining optimal control can be 
expressed in the form 

2
0,  0,   ,  =1,2,3.i j

opti i j opt

H H
u u i j

u u u

   
          u u

 (14) 

Applying the Theorem 1 [11], it follows directly that 
the value of  Pontryagin’s function on the optimal 

trajectory equals zero, for 0 ,  ft t t      

 1 1 2 1 21 cos sin ,  0,ξ η φλ u φ λ u φ λ u μΦ u u       (15) 

having in mind, based on (13), that const.ξλ  and 

const.ηλ   
Now, based on (14) and (15), we obtain the value of 

a multiplier μ , as well as the control functions in the 

following form 
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 0

1
0

0
2

21
, cos sin ,

4

2
.

ξ η

φ

T
μ u λ φ λ φ

T M

T
u λ

J

   


 (16) 

Based on relation (15) determined at the initial time 
moment, and based on (9), (14) and (16), we obtain the 
value of coordinate φλ at the initial time moment 

  
2

0
0

1
 .

2
ξ

φ
λ

λ t J
T M


 
   
 
 

 (17) 

Determining the reactions of constraints and control 
forces (6), relations (16) are obtained by differentiation 
with respect to time (w.r.t.), having in mind (13). The 
shooting method was used in numerical procedure for 
solving the corresponding two-point boundary value 
problem, based on (8), (9), (10), (13), (16) and (17), 
[13].  

The application of shooting method requires 
specified intervals of the values of parameters to be 
determined. The global estimates for the interval of 
value of the conjugate vector coordinate ξλ  can be given 

on the basis of (13), (14) and (16)  

 0 0
.              

2 2ξ
M M

λ
T T

    (18) 

Shooting consists in determining the unknown 
coordinates of conjugate vector ξλ  and ηλ , having in 

mind (16) and (17), as well as a minimum required time 

ft , so that the vehicle starting from initial state (9) 

moves into the final state (10).  
The two-point boundary value problem was solved 

for the following values of parameters 

 

 
2

0 2

1

2
2 1

2
2

1 2

1 2 3

kgm
1000 , rad,

2s
1000kg,

110kg, 1500kgm ,

30kgm ,

0.75m, 1.65m,  5m, 5m,

Ns
0.5Nsm, 100 , 100Nm.

m

f
π

T φ t

M

M J

J

l l a b

k k k

 



 


   

  

 (19) 

The estimates for the intervals of values of the 
conjugate vector coordinates ξλ  and ηλ  can be given on 

the basis of (16), (18) and (19)  

 
0.745 0745,

0.745 0.745.        

ξ

η

λ

λ

  

  
 (20) 

In accordance with (11), the time of the vehicle 
brachistochronic motion, as well as the conjugate vector 
coordinates, for the given values of the system 
parameters (19), are 6.2223s, 0.5124f ξt λ   and 

 0.5124ηλ  . 

 

 

Figure 2. Quantities of state      ,  ,  ξ η φB Bt t t and  θ t .  

 

 

Figure 3. Optimal controls  1u t and  2 .u t  



FME Transactions VOL. 42, No 3, 2014 ▪ 203
 

 

Figure 4. Reactions of constraints    ,  A BR t R t , and 

control forces    1 1,  .F t L t  

4. CONDITIONS FOR CONSTRAINTS BASED ON 
COULOMB SLIDING FRICTION 

 
Differential equations of vehicle motion (4) were 
obtained assuming that equations of nonholonomic 
bilateral constraints (1) are satisfied at any time 
moment. Having this in mind, the necessary dynamic 
conditions for realizing such motion [10], and based on 
the Coulomb laws of sliding friction, are  

 2 2
1 1 1 2 2,    ,B AR F N μ R N μ     (21) 

where 1μ
and 2μ

 are the coefficients of sliding friction 

between rear and front wheels, respectively, and 
stationary surface. Normal reactions of rear and front 
axle stationary surface are 1

3065.6NN  and 

2
7823.5NN  , respectively.  

The diagrams below, based on above considerations, 
show the laws of minimum required values of the 

coefficients of sliding friction 1μ
and 2μ

 in function of 

time. 

 

Figure 5. Diagrams  1 1μ μ  t  and  2 2 .μ μ  t  

Based on above considerations, it can be inferred 
(see Fig. 5.) that a minimum required value of the 
coefficient of sliding friction, between stationary 

surface and vehicle wheels, is * 0.16μ  . 

 
5. CONCLUSIONS 
 
In this paper, using the example of a simplified vehicle 
model (see Fig. 1.) with constrained motion (1), we 
have presented the procedure of generating differential 
equations of motion (4) and (5), based on the general 
theorems of dynamics [9].  

The formulated brachistochrone problem, with a 
corresponding choice of the equations of state (8), was 
solved, in this case, as the simplest problem of optimal 
control. Applying the Pontryagin maximum principle 
[11] and [12], the problem of optimal control was 
solved (see Fig. 2. and Fig. 3.), with a given estimate of 
the interval of conjugate vector coordinates (18). 

Thereafter, the reactions of constraints were 
determined, as well as the control forces for realizing 
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the brachistochronic motion, as shown in Fig. 4.  The 
performed numerical procedure for solving the two-
point boundary value problem is based on the shooting 
method [13].  

Applying the Coulomb laws of sliding friction, 
minimum required values for the coefficient of sliding 
friction were determined, so as to prevent slipping of 
both vehicle rear and front axle, as presented in Fig. 5. 

 Authors consider that results obtained in this paper 
can be extended to the case when the coefficients of 
sliding friction are below minimum required values. In 
that case, as well as in the case when control forces are 
constrained, the problem of optimal control becomes 
considerably more complex, which will be the subject 
of future studies. 

ACKNOWLEDGMENT 

Authors gratefully acknowledge the support of Ministry 
of Education, Science and Technological Development 
of the Republic of Serbia under the project ON 17400 
and TR 35006. 

REFERENCES 

[1] Elsgolc, L.E.: Calculus of Variations, Pergamon 
Press, Oxford, 1963. 

[2] Gelfand, I.M. and Fomin, S.V.: Calculus of 
Variations, Prentice, Hall, Englewood Cliffs, 1964. 

[3] Šalinić, S.: Contribution to the brachistochrone 
problem with Coulomb friction, Acta Mech., 
208(1–2), pp. 97–115, 2009. 

[4] Čović, V. and Lukačević, M.: Extension of the 
Bernoulli’s case of a brachistochronic motion to the 
multibody system in the form of a closed kinematic 
chain, Facta Univ., Mech. Autom. Control Robot., 
2(9), pp. 973–982, 1999. 

[5] Čović, V. and Vesković,  M.: Extension of the 
Bernoulli’s case of brachistochronic motion to the 
multibody system having the form of a kinematic 
chain with external constraints, Eur.J. Mech. A, 
Solids 21, pp. 347–354, 2002. 

[6] Čović, V. and Vesković, M.: Brachistochronic 
motion of a multibody system with Coulomb 
friction, Eur. J. Mech. A, Solids 28(9), pp. 882–
890, 2009. 

[7] Obradović, A., Čović, V., Vesković, M. and Dražić, 
M.: Brachistochronic motion of a nonholonomic 
rheonomic mechanical system, Acta Mech., 214 (3–
4), pp. 291–304, 2010. 

[8] Šalinić, S., Obradović, A. and Mitrović, Z.: On the 
brachistochronic motion of mechanical system with 

unilateral constraints, Mechanics Research 
Communications, 45, pp. 1-6, 2012. 

[9] Pars, L.A.: Treatise on analytical dynamics, 
Heinemann, London, 1968. 

[10] Soltakhanov, Sh. Kh., Yushkov, M.P. and    
Zegzhda, S.A.: Mechanics of non-holonomic 
systems, Berlin: Springer-Verlag, 2009. 

[11] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, 
R.V. and Mishchenko, E.F.: The Mathematical 
Theory of Optimal Processes, Wiley, New Jersey, 
1962. 

[12] Leitmann, G.: An introduction to optimal control, 
McGraw-Hill, New York, 1966. 

[13] Stoer, J. and Bulirsch, J.: Introduction to Numerical 
Analysis, second ed. Springer, New York and 
London,1993. 

 

 
АНАЛИЗА МИНИМАЛНО ПОТРЕБНОГ 

КОЕФИЦИЈЕНТА ТРЕЊА КЛИЗАЊА ПРИ 
БРАХИСТОХРОНОМ КРЕТАЊУ 

НЕХОЛОНОМНОГ МЕХАНИЧКОГ СИСТЕМА  
 
Радослав Радуловић, Александар Обрадовић, 

Бојан Јеремић 
 
Анализира се проблем брахистохроног  кретања 
механичког система на примеру једног упрошћеног 
модела возила. Систем се креће између два задата 
положаја при неизмењеној вредности механичке 
енергије у току кретања. Диференцијалне једначине 
кретања, у којима фигуришу реакције нехолономних 
веза и управљачкe силe, добијају се на основу 
општих теорема динамике. Овде је то подесније 
уместо неких других метода аналитичке механике 
примењених на нехолономне системе, у којима је 
неопходно дати накнадно физичко тумачење 
множитеља веза да би се овај проблем решио. 
Подесним избором величина стања, добија се, 
најпростији могућ у овом случају, задатак 
оптималног управљања, који се решава применом 
Понтрјагиновог принципа максимума. Нумеричко 
решавање двотачкастог граничног проблема врши се 
методом шутинга. На основу тако добијеног 
брахистохроног кретања одређују се активне 
управљачке силе, а уједно и реакције веза. 
Користећи Кулонове законе трења клизања, 
одређује се минималнo потребна вредност 
коефицијента трења клизања, да не би дошло до 
проклизавања возила у тачкама контакта са 
подлогом. 
 

 


