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Dynamic Growth of an Interfacial Crack 
Between the Two Anisotropic Materials 
 
In this paper is considered behavior of the stress field around the tip of a 
crack that propagates dynamically along the interface between the two 
anisotropic materials. The emphasis is set on application and extension of 
the existing concept of the interfacial fracture mechanics to problem of a 
crack that propagates dynamically. The angular distribution of the stress is 
presented. The behavior of the oscillatory index, force resolution factor 
and energy factor in terms of the crack tip speed and ratio of materials' 
stiffnesses was studied. The oscillatory index value increases with increase 
of the crack propagating speed and it tends to infinity when the speed 
approaches the Rayleigh wave speed of the softer of the two materials. The 
force resolution factor strongly depends on the crack tip speed, but weakly 
on the stiffnesses ratio. The opposite is valid for the energy factor. In this 
work, the dynamic stress intensity factor was determined of the anisotropic 
bimaterial combination for several basic configurations. Result obtained in 
this paper can serve as a guide in materials mathematical modeling.. 
 
Keywords: Interface, crack, dynamic growth, anisotropy. 

 
 

1. INTRODUCTION 
 

Scientific explanation of the initiation and growth 
mechanisms of a crack on a bimaterial interface is 
fundamental for understanding the fracture process in 
materials like composites and ceramics. The very 
important mechanism of fracture of fiber-reinforced 
composites and whisker-reinforced ceramics is, for 
instance, debonding between the substrate and 
reinforcing phases. This failure process can be quasi-
static or dynamic, depending on the type of loading to 
which the composite structure is subjected. 

Due to complexity of the problem, there are only a 
few theoretical results of dynamic crack growth of some 
fracture problems. Those results provided insight in the 
dynamic behavior only in the immediate vicinity of the 
crack tip. In order to formulate a mechanism of 
initiation and dynamic crack growth at bimaterial 
interfaces, it is necessary to know the complete spatial 
structure of the stress and strain fields that surround the 
tip of a moving interfacial crack. 

Experimental investigations of deformation fields at 
the tip of the interfacial crack were carried out by 
Tippur and Rosakis (1991) and Rosakis et al. (1991) 
using an optical method of the Coherent Gradient 
Sensor (CGS) and very high-speed photography. The 
bimaterial system that they used was the PMMA 
(polymethylmetacylate)/Aluminum combination. The 
considered speeds were up to 90 % of Rayleigh's wave 
speed for PMMA. Guided by this investigation, Yang et 
al. (1991) obtained structure of the elastodynamic field 
in steady state growth conditions of an interfacial crack. 
Furthermore, Deng (1992) gave the asymptotic series 

representation of the stress field near the tip of a running 
interfacial crack in a bimaterial system under steady-
state conditions. Also, inspired by experiments of 
Tippur and Rosakis's (1991), Lo et al. (1992) have 
performed a numerical analysis of the same bimaterial 
system as was used in the experiments. In paper of Liu, 
Lambros and Rosakis (1993) is given the asymptotic 
structure of the near tip fields for a crack in bimaterial 
system, for the non-uniform crack growth. Using the 
programming package Mathematica®, Nikolic and 
Djokovic (2009), analyzed the structure of the strain 
field in terms of the non-uniform growth of crack on 
bimaterial interface. All of those analyses were related 
to the elastic isotropic body. 

For anisotropic bodies, the non-uniform crack 
growth in terms of Mode I is investigated by Willis 
(1992), while Nikolic et al. (2010), analyzed the 
structure of the stress field at the crack tip that 
dynamically propagates along the interface between two 
orthotropic materials. 

 
2. PROBLEM FORMULATION 
 
For the dynamic crack propagation case, shown in 
Figure 1, the equilibrium equations are substituted by 
the equations of motion, which are, in the absence of the 
volume forces, given as: 

2
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ijkl j
l i

u
C u

x x





 
                           (1) 

 The stiffness tensor Cijkl and the material density ρ 
have different values for materials 1 and 2. Superscripts 
(1) and (2) will be attached when distinction is necessary. 
It is assumed that material 1 has the lower value of the 
Rayleigh's wave speed cR, as well as that the crack 
propagates with the velocity )t(v  , which is smaller 

than cR. 
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Figure 1. Schematic representation of the dynamic crack 
growth along a bimaterial interface 

 The movable coordinate system ( ˆ ˆ,x y ) is fixed at 

the crack tip. Thus, for the movable system, equations 
(1) become: 

, 0jk kC u    ,  α, β = 1, 2                   (2) 

where , ˆ( ) ( ) x    . Elastic constants depend on the 

crack tip velocity v, in the following way: 

 2
1 1

ˆ
jk jk jkC C v                        (3) 

where δij is Kronecker's delta and ˆ ˆ
jk jkC C    . 

 For the orthotropic materials, for the planar 
problem, elastic constants are: 
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 are introduced, where p1 and 

p2 represent the solutions with the positive imaginary 
parts, of the characteristic equation of the fourth order: 

4 2 22 0p s p                           (5) 

where 
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 The roots p1 and p2 of the equation (5), are: 
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 Two Hermitian matrices necessary to the analysis, 
B and H are defined by: 

1i B AL ,  (1) (2) H B B .                  (9) 

 The matrices from equation (9) are defined in 
Nikolic at al. (2010) and for case of two orthotropic 
materials become: 
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where R is the Rayleigh's wave function, defined as: 
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 Rayleigh's wave speed cR is a solution of equation 
(11) for R=0. The matrix H, according to Nikolic at al. 
(2010), for the two orthotropic materials is defined by: 

11 12

12 22

H iH

iH H

 
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H .                      (13) 

 
3. CRACK TIP STRESS FIELD 
 
For analyzing the problem of a crack on the interface 
between the two anisotropic materials, the 3×3 matrix H 
is used, which depends on elastic constants of both 
materials and which has the modulus of elasticity 
dimensions. The structure of the stress field at the crack 
tip which propagates dynamically is described by 
equation, Yang et al. (1991): 

2e Hw Hw                            (14) 

where: w is the unit vector, e2πε is the Eigen value. The 
three obvious Eigen values pairs are: ( , ) w , ( , ) w  

and 3(0, )w . The oscillation index  ε is given by, Rice 

(1988): 
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                            (15) 

where β is one of the two Dundurs's parameters that is 
defined by: 

2
1 Im

2 Re
tr
        
   

H

H
.                   (16) 

where tr{} denotes the matrix trace. The Eigen vectors 
w and w3 are the complex and real variable, 
respectively, and all of these variables are dimensionless 
 The near tip stress field for an interface crack is a 
linear combination of the two types of fields, a coupled 
oscillatory field, defined by a complex stress intensity 
factor K, and a non-oscillatory field, scaled by a real 
stress intensity factor K3, Hutchinson and Suo (1992): 

1 2 3
3

1
Re( ) ( , ) Im ( ) ( , ) ( )

2
i i

ij ij ij ijKr Kr K
r

         


        

(17) 

where r and  are polar coordinates and i, j = x, y, z, 
1,2,3 ( )ij   are the angular functions which correspond to 

tensile tractions, in-plane shear tractions and anti-plane 
shear tractions across the interface, respectively, and are 
defined in the Appendix. The two stress intensity factors 
have different dimensions: K= [stress] [length] 1/2-iε and 
K3= [stress] [length] 1/2. The interfacial force, which has 
the components t={σyi}={σyx, σyy, σyz}, can be written 
by use of the Eigen vectors as: 

3 3t t t  t w w w ,                       (18) 

where: t, t i t3 are the force vector components, and 

2 1t t it   are the complex and t3 real variables, 

respectively. In the general case, the following hold 

yy yxt i    and 3 yzt  . When r→0, the force com-

ponents on the interface, ahead of the crack tip, are: 
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Considering that ln cos( ln ) sin( ln )i i rr e r i r      , 

the force component 2 1t t it   rotates with variation of 

r. The physical meaning of the unit vectors w and w3 is 
obvious: the projection of the t3 component onto w3 has 
the square root properties. In the plane whose axes are 
Re(w) and Im(w) the component t rotates and has the 
square root characteristics. 
 The crack opening displacement vector is: 
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 The relation between the two energy release rates K 
and K3 and the energy release rate is: 

2 2
3 3 32

( ) 1
( )

84cosh

T
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w H H w       (21) 

 For the case of the two orthotropic materials, with 
the two mutually perpendicular axes and interface in the 
direction of the x-axis, the matrix H components are, 
Wang et al. (1992):  
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where  1 denotes values for material 1, and  2 denotes 
values for material 2, and:  
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 Parameters  and  measure anisotropy in the sense 
that for  = 1 material has the cubic symmetry and for  
=  = 1 material is isotropic. 
 Dundurs parameter β for the case of orthotropic 
material is defined by: 

12

11 22

iH

H H
                       (23) 

the Eigenvectors have the form: 
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 The force components on the interface, are: 

11

22
yy xy

H
t i

H
   ,           3 zyt                 (25) 

 The complex component, as can be seen from 
equation (25), has the multiplier, Nikolic and Djokovic 
(2011): 

11

22

H

H
  ,                           (26) 

which for the majority of polymers ranges between 1 
and 2, and which is called the traction resolution factor, 
Djokovic i Nikolic (2012). 
 The relation between the energy release rate and K 
and K3 is: 

2 2
33 3(1)

66

1

44
G K H K

C


  ,                (27) 

where τ  is the dimensionless real parameter which is 
called the energy factor and it has the form, Djokovic i 
Nikolic (2012): 
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2266
11
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C H
H

   .                      (28) 

 Parameters ε, η and τ depend on the speed of the 
crack tip. In Figure 2 is shown the dependence of 
parameters ε, η and τ on the speed of the crack tip for  
material combination with identical densities and 
Poisson's ratio of 0.3.  
 From the Figure 2(a) one can see that, the 
oscillatory index, ε, increases with crack tip speed, v. In 
Figure 2(a) is shown the variation of the oscillatory 
index as a function of the stiffnesses ratio 

(2) (1)
66 66/C C  , where this ratio ranges from 1, for the 

case of the isotropic material, to 10, for the case of the 
large difference in stiffnesses. The oscillatory index 
increases with the increase of the difference in 
stiffnesses. It can be seen that for v ≈ 0.8 cR the dynamic 
oscillatory index is twice bigger than for the stationary 
case value. 
 Figure 2(b) shows that the traction resolution 
factor, η, weakly depends on the stiffnesses ratio but 
strongly depends on the speed of the crack tip. This 
means that the mode mixity changes with speed of the 
crack. This is significantly different from the behavior 
of the energy factor, τ, as seen from Figure 2(c). 
 In Figures 3 and 4 are shown the Mode I and Mode 
II angular stresses distribution for three different values 
of crack tip speed and two stiffness ratio, λ = 1 and  λ = 
10. 
 From Figure 3 one can see that, the maximum of 
the hoop stress, σθθ, under Mode I loading at high crack 
tip speed is at about 60° from the crack plane for the 
isotropic material (λ=1), what suggests that the dynamic 
branching of a crack has to be taken into account. For 
anisotropic material, for the case of the large difference 
in stiffnesses (λ=10), value of this stress is even higher, 
which means that the interfacial crack may have branch 
out, in terms of dynamic crack growth. Figure 3 shows 
also that, at high crack tip speed, in material below the 
interface, material 2, develops a significant radial stress, 
σrr,. This could be cause cracks on the substrate as the 
main crack propagates. Figure 4 shows that the effect of 
differences in the materials through an interface on the 
angular stress distribution is less pronounced under the 
Mode II loading. 
Dynamic stress intensity factors for a semi-infinite 
crack on an interface between two anisotropic materials 
are, Yang et al. (1991): 
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where t and t3 are defined in equation (25). Dynamic 
stress intensity factors for a central crack of length 2a 
subjected to remote uniform stresses on an interface 
between two anisotropic materials are, Yang et al. 
(1991): 

 

        
(a) 

 

 

(b) 

  
(c) 

Figure. 2. Dependence of: (a) the oscillatory index, ε, (b) the 
traction resolution factor, η  and (c) the energy factor, τ, on 
the crack propagation velocity. 
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Figure 3. Angular variation of stresses for a bimaterial 
combination for different values of crack tip speed under 
the Mode I loading 

In general case, for the crack that propagates 
dynamically in the homogeneous isotropic material, 
dynamic stress intensity factor, for the current crack of 
the length l and crack speed v can be written as, Freund 
(1990): 

 ( , ) ( ) ( ,0) d
I I IK l k K l , (31) 

where KI(l, 0) is the static stress intensity factor for 
Mode I, while kI(υ) is the universal dimensionless 
function which depends on crack speed and elastic 

constants. This factorization is valid for the other two 
Modes of crack growth, as well. 
Analogously to equation (31), for the crack that 
propagates dynamically along the interface, a 
relationship can be established between the stress 
intensity factor for the stationary crack K(l, 0) and 
dynamic complex stress intensity factor Kd(l, υ). It is 
assumed that the crack extension υt is small with respect 
to other relevant dimensions and that this is the only 
length in the problem. Based on linearity of the problem 
and dimensional analysis, one can write: 

0

0

1

2

( , ) ( ) [( ) ( ) ( ,0)
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
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id i

i

K l t t k K l

t k K l
,          (32) 

 
where ε0 is the static oscillatory index, ε is the 
oscillatory index for speed υ and k1(υ) and k2(υ) are the 
universal dimensionless functions that depend on crack 
speed and elastic constants. 
 
4. CONCLUSION 
 
In this paper is considered the behavior of the 
characteristic parameters of dynamic crack propagation 
along the interface between two anisotropic materials. 
The emphasis is on the application of the fracture 
mechanics concept for the interfacial crack that 
propagates dynamically, at high speed.  In this work is 
analyzed the behavior of three characteristic parameters 
of dynamic fracture, namely: the oscillatory index, the 
traction resolution factor and the energy factor 
depending on the speed of the crack tip and stiffnesses 
ratio.  

It was noted that the value of the oscillatory index 
increases with the speed of crack propagation and tends 
to infinity as velocity approaches the Rayleigh wave 
speed of the less stiffer of the two materials. The 
traction resolution factor strongly depends on the speed 
of the crack tip, but weakly on the stiffness ratio. This 
means that the mode mixity changes with speed. The 
energy factor acts contrary to the traction resolution 
factor, with increasing speed of the crack tip, i.e. it 
depends more on the stiffnesses ratio than the speed of 
the crack tip. 
 The angular stress distribution ahead of the crack 
tip along the interface between the two anisotropic 
materials for different values of crack tip speed are 
shown in this paper. Based on that, it can be concluded 
that dynamic crack growth along the interface between 
two anisotropic materials is followed by a series of 
events that are not encountered in homogeneous 
materials or in the case of steady state conditions of 
growth of the interfacial crack between isotropic 
materials. 
 In this paper are also given expressions for dymanic 
stress intensity faktors for anisotropic bimaterials for the 
two basic configurations on an interface, a semi-infinite 
crack and a central crack.  
 Results presented in this paper can serve as 
guidelines for micromechanical modeling of materials, 
because, for composite materials, analysis of dynamic 
crack propagation along the interface will help to model 
and to design against failure. 
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Figure 4. Angular variation of stresses for a bimaterial 
combination for different values of crack tip speed under 
the Mode II loading 
  

APPENDIX  

Angular functions in equation (17) for 0 ≤ θ ≤ π, have 
the form: 
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where: 
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2

21 2 2 1 2(1 )sinh ( ) 2 cosh ( )P               
2

22 2 2 1 2(1 ) cosh ( ) 2 sinh ( )P               

2 2

1
11

sin
1

v

C

    , 
2 2

2
66

sin
1

v

C

     

1 1ln   , 2 2ln    

1 1tan tan   , 2 2tan tan    
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NOMENCLATURE  

Cijkl the stiffness tensor 
cR the Rayleigh's wave speed 
v the velocity 
uk the displacements 
pi the roots of the eq. (5) 
B the Hermitian matrix defined in eq. (9) 

H 
the bimaterial Hermitian matrix defined in 
eq. (9) 

A, L matrices defined in eq. (10) 
R Rayleigh's wave function, eq. (12) 
w the unit vector 
K the complex stress intensity factor 
K3 the stress intensity factor for Mode III 
r, θ polar coordinates 
t the interfacial force 
G the energy release rate 
Kd,K3

d dynamic stress intensity factors 

Greek symbols (Times New Roman 10 pt, bold, italic) 

δij Kronecker delta 
ρ(i) the material density 
λi introduced variables 

αi 
the wave reduction factors defined in eq. 
(7) 

ε the oscillation index, eq. (15) 
β the Dundurs parameter, eq. (16) 
σij stresses 

1,2,3 ( )ij   

the angular functions which correspond 
to tensile tractions, in-plane shear 
tractions and anti-plane shear tractions 
across the interface 

δ(r) the crack opening displacement vector 

λ, ρ 
nondimensional elastic parameters 
which measure anisotropy 

η the traction resolution factor, eq. (26) 
τ the energy factor, eq. (28) 

Superscripts (Times New Roman 10 pt, bold, italic) 

(1),(2) values for material 1 and 2 
d dynamic 

 

 
ДИНАМИЧКИ РАСТ ПРСЛИНЕ НА 

ИНТЕРФЕЈСУ ИЗМЕДЈУ ДВА АНИЗОТРОПНА 
МАТЕРИЈАЛА 

 
Јелена М. Ђоковић, Ружица Р. Николић, Јожеф 

Вичан, Далибор Ђенадић 
 
У раду је разматрано понашање напонског поља које 
окружује врх прслине која се динамички шири дуж 
интерфејса између два анизотропна материјала. 
Акценат је стављен на примену и проширење 
постојећег концепта механике лома на интерфејсу 
на проблем прслине која пропагира великом 
брзином. Приказана је угловна расподела напона за 
прслину која пропагира динамички. Разматрано је 
понашање осцилаторног индекса, фактора 
резолуције силе и фактора енергије у зависности од 
брзине врха прслине и односа крутости материјала. 
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Вредност осцилаторног индекса расте са порастом 
брзине пропагирања прслине и тежи бесконачности 
када се брзина приближава Раyлеигх-евој таласној 
брзини мекшег материјала. Фактор резолуције силе 
јако зависи од брзине врха прслине али зато врло 
слабо од односа крутости. За фактор енергије важи 

обрнуто. Одређен је динамички фактор интензитета 
напона за анизотропну биматеријалну комбинацију 
за неколико основних конфигурација. Резултати 
добијени у овом раду могу да послуже као водич 
микромеханичком моделирању материјала. 

 


