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Dynamic Growth of an Interfacial Crack
Between the Two Anisotropic Materials

In this paper is considered behavior of the stress field around the tip of a
crack that propagates dynamically along the interface between the two
anisotropic materials. The emphasis is set on application and extension of
the existing concept of the interfacial fracture mechanics to problem of a
crack that propagates dynamically. The angular distribution of the stress is
presented. The behavior of the oscillatory index, force resolution factor
and energy factor in terms of the crack tip speed and ratio of materials'
stiffnesses was studied. The oscillatory index value increases with increase
of the crack propagating speed and it tends to infinity when the speed
approaches the Rayleigh wave speed of the softer of the two materials. The
force resolution factor strongly depends on the crack tip speed, but weakly
on the stiffnesses ratio. The opposite is valid for the energy factor. In this
work, the dynamic stress intensity factor was determined of the anisotropic
bimaterial combination for several basic configurations. Result obtained in
this paper can serve as a guide in materials mathematical modeling..
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1. INTRODUCTION

Scientific explanation of the initiation and growth
mechanisms of a crack on a bimaterial interface is
fundamental for understanding the fracture process in
materials like composites and ceramics. The very
important mechanism of fracture of fiber-reinforced
composites and whisker-reinforced ceramics is, for
instance, debonding between the substrate and
reinforcing phases. This failure process can be quasi-
static or dynamic, depending on the type of loading to
which the composite structure is subjected.

Due to complexity of the problem, there are only a
few theoretical results of dynamic crack growth of some
fracture problems. Those results provided insight in the
dynamic behavior only in the immediate vicinity of the
crack tip. In order to formulate a mechanism of
initiation and dynamic crack growth at bimaterial
interfaces, it is necessary to know the complete spatial
structure of the stress and strain fields that surround the
tip of a moving interfacial crack.

Experimental investigations of deformation fields at
the tip of the interfacial crack were carried out by
Tippur and Rosakis (1991) and Rosakis et al. (1991)
using an optical method of the Coherent Gradient
Sensor (CGS) and very high-speed photography. The
bimaterial system that they used was the PMMA
(polymethylmetacylate)/Aluminum combination. The
considered speeds were up to 90 % of Rayleigh's wave
speed for PMMA. Guided by this investigation, Yang et
al. (1991) obtained structure of the elastodynamic field
in steady state growth conditions of an interfacial crack.
Furthermore, Deng (1992) gave the asymptotic series
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representation of the stress field near the tip of a running
interfacial crack in a bimaterial system under steady-
state conditions. Also, inspired by experiments of
Tippur and Rosakis's (1991), Lo et al. (1992) have
performed a numerical analysis of the same bimaterial
system as was used in the experiments. In paper of Liu,
Lambros and Rosakis (1993) is given the asymptotic
structure of the near tip fields for a crack in bimaterial
system, for the non-uniform crack growth. Using the
programming package Mathematica®, Nikolic and
Djokovic (2009), analyzed the structure of the strain
field in terms of the non-uniform growth of crack on
bimaterial interface. All of those analyses were related
to the elastic isotropic body.

For anisotropic bodies, the non-uniform crack
growth in terms of Mode I is investigated by Willis
(1992), while Nikolic et al. (2010), analyzed the
structure of the stress field at the crack tip that
dynamically propagates along the interface between two
orthotropic materials.

2. PROBLEM FORMULATION

For the dynamic crack propagation case, shown in
Figure 1, the equilibrium equations are substituted by
the equations of motion, which are, in the absence of the
volume forces, given as:

quk

Ox;0x; P4 o

Cijki

The stiffness tensor Cjjy and the material density p
have different values for materials 1 and 2. Superscripts
M and @ will be attached when distinction is necessary.
It is assumed that material 1 has the lower value of the
Rayleigh's wave speed cg, as well as that the crack
propagates with the velocity v =/(t), which is smaller

than cg.
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Figure 1. Schematic representation of the dynamic crack
growth along a bimaterial interface

The movable coordinate system (x, ) is fixed at

the crack tip. Thus, for the movable system, equations
(1) become:

Cajkﬂuk’aﬂ 20, (l,ﬁ: 1, 2 (2)

where () , =0() /0%, . Elastic constants depend on the

crack tip velocity v, in the following way:
A 2
Cojip =Cojikp =PV k014013 (3)

where &;; is Kronecker's delta and c Bjka = : ajkp -

For the orthotropic materials, for the planar
problem, elastic constants are:

Gi Gy 0
Cp Cp 0 | 4)
0 0 Ce

_ (Ci1/Coo)ri + v}
(C12/Ce6 +Dpy

The following variables: 4

2 2

4= (Cp2/Co)i + 1)
(Ci2/Ce6 + D12

p» represent the solutions with the positive imaginary
parts, of the characteristic equation of the fourth order:

are introduced, where p; and

pre2sep?+£2 =0 )

/Cll
=aqa, [—,
S=aap 5

2 2\ 2 2
=22 +(C1iCo | Cos)a = (1+C1p /Cee)
2
2\/(C1 1Cn [ ey

2 2
PV g, = /1_/"’ _ 7)
G Css

The roots p; and p, of the equation (5), are:

where

(6)

and

230 = VOL. 42, No 3, 2014

i\/f[\/(s+l)/2 i\/(s—l)/Z] if 5>1
\/f[i\/(l—s)/Z +i\/(1+s)/2} if ~1<s<l

Two Hermitian matrices necessary to the analysis,
B and H are defined by:

P> Pr =

B=iAL"!, H=B"Y +B®@. 9)

The matrices from equation (9) are defined in
Nikolic at al. (2010) and for case of two orthotropic
materials become:

L
A= A
-4 1
P 1_%
L = Ces (10)
Co_Cn 14 Gia +ip21
Cos  Cos Cosa  Ces
and
Cp 2 [20+9) [ Cn a3 Ci/Cy
1 Ces g Ces ¢
B= 2
C()GR _l[i_az Clz/C66J ﬁ 26(1«}—5‘)
Ces 4 Ces

)]

where R is the Rayleigh's wave function, defined as:

2 2
R:%[ﬁg_prazzj_[&j a_2. (12)
Cos \ Ces Ces ) &

Rayleigh's wave speed cy is a solution of equation
(11) for R=0. The matrix H, according to Nikolic at al.
(2010), for the two orthotropic materials is defined by:

H iH
H:( .11 l 12) (13)
—ify, Hpy

3. CRACK TIP STRESS FIELD

For analyzing the problem of a crack on the interface
between the two anisotropic materials, the 3x3 matrix H
is used, which depends on elastic constants of both
materials and which has the modulus of elasticity
dimensions. The structure of the stress field at the crack
tip which propagates dynamically is described by
equation, Yang et al. (1991):

Hw = ¢ Hw (14)

where: w is the unit vector, ™ is the Eigen value. The
three obvious Eigen values pairs are: (&,w), (—&,W)
and (0,w;). The oscillation index ¢ is given by, Rice
(1988):
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where £ is one of the two Dundurs's parameters that is

defined by:
1 |(muY
=— |[-—t . 16
p 2 r{[ReHj } (16)

where tr{} denotes the matrix trace. The Eigen vectors
w and w; are the complex and real wvariable,
respectively, and all of these variables are dimensionless
The near tip stress field for an interface crack is a
linear combination of the two types of fields, a coupled
oscillatory field, defined by a complex stress intensity
factor K, and a non-oscillatory field, scaled by a real
stress intensity factor K;, Hutchinson and Suo (1992):

oy = \/2177 [Re(Kr”’ )55(0,6) + Im(Kr*)62(0,6) + K6 (.9)]
(17)

where r and 0 are polar coordinates and i, j = x, y, z,

~1 2 3(6’) are the angular functions which correspond to

tens1le tractions, in-plane shear tractions and anti-plane
shear tractions across the interface, respectively, and are
defined in the Appendix. The two stress intensity factors
have different dimensions: K= [stress] [length] " i and
K;= [stress] [length] 2 The interfacial force, which has
the components t={oy;}={0y, 0y, 0y}, can be written
by use of the Eigen vectors as:

t=tW+IW+5LW;, (18)

where: t, 71 t; are the force vector components, and
t=t,+it; are the complex and t; real variables,

respectively. In the general case, the following hold
t#0,, +io, and t; # o, . When r—0, the force com-

ponents on the interface, ahead of the crack tip, are:
ris
1(r)= , L(r) = (19)
N27mr : N27zr

iclnr

Considering that r* =e =cos(eInr)+isin(elnr),

the force component ¢ =t, +it, rotates with variation of

r. The physical meaning of the unit vectors w and ws is
obvious: the projection of the t; component onto w; has
the square root properties. In the plane whose axes are
Re(w) and Im(w) the component t rotates and has the
square root characteristics.
The crack opening displacement vector is:
Kréw Kr®w

o(r) = (H+H) + +K3w,
(1+2ig)coshme (1-2ig)coshze

(20)

The relation between the two energy release rates K
and Kj and the energy release rate is:

:v—vT(H+ﬁ)w|

2 1 —
oo s K| +§w§(H+H)w3K32 (1)
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For the case of the two orthotropic materials, with
the two mutually perpendicular axes and interface in the
direction of the x-axis, the matrix H components are,
Wang et al. (1992):

Hy, =[2n</les11szz L +[2”</I\/511522 L
1 1
H,, =[2’ZW«M1322 l +{2nW,1slls22 L
Hy, :]'_121 :i[\jsnszz +512]1 _[\/311322 ‘le}2 (22)

Hy3 =Hy =Hy =H3y, =0

where [ ]; denotes values for material 1, and [ ], denotes
values for material 2, and:

s —i K ——1 K ——1 Si) = Yo _ _Ya
1n= > S22 = > S66 = > S;p = >
E, E, G, E, E,

PO TIR - (£
Sy K 2

>

2\/511522 2Gy,

Parameters A and p measure anisotropy in the sense
that for A = 1 material has the cubic symmetry and for 1
= p=1 material is isotropic.

Dundurs parameter £ for the case of orthotropic
material is defined by:

iH,,
NH

the Eigenvectors have the form:

| |H
w= _i i9lso s
2\ H,, 2

The force components on the interface, are:

fH“
t=0,, +i|—0,, =0, 25
sz Xy 3 7y ( )

The complex component, as can be seen from
equation (25), has the multiplier, Nikolic and Djokovic
(2011):

B = (23)

={0,0,1} (24

=L (26)

which for the majority of polymers ranges between 1
and 2, and which is called the traction resolution factor,
Djokovic i Nikolic (2012).

The relation between the energy release rate and K
and Kj is:

(1) — K[+~ H33K3 , 27)

4C66 4

where 7 is the dimensionless real parameter which is
called the energy factor and it has the form, Djokovic i
Nikolic (2012):
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) Hi
7=Ce (Hy ——). (28)
Hy,

Parameters ¢, # and 7 depend on the speed of the
crack tip. In Figure 2 is shown the dependence of
parameters ¢, # and 7 on the speed of the crack tip for
material combination with identical densities and
Poisson's ratio of 0.3.

From the Figure 2(a) one can see that, the
oscillatory index, &, increases with crack tip speed, v. In
Figure 2(a) is shown the variation of the oscillatory
index as a function of the stiffnesses ratio

A2=C2 /Cl, where this ratio ranges from 1, for the

case of the isotropic material, to 10, for the case of the
large difference in stiffnesses. The oscillatory index
increases with the increase of the difference in
stiffnesses. It can be seen that for v~ 0.8 ¢y the dynamic
oscillatory index is twice bigger than for the stationary
case value.

Figure 2(b) shows that the traction resolution
factor, n, weakly depends on the stiffnesses ratio but
strongly depends on the speed of the crack tip. This
means that the mode mixity changes with speed of the
crack. This is significantly different from the behavior
of the energy factor, , as seen from Figure 2(c).

In Figures 3 and 4 are shown the Mode I and Mode
IT angular stresses distribution for three different values
of crack tip speed and two stiffness ratio, A =1 and 1=
10.

From Figure 3 one can see that, the maximum of
the hoop stress, agy, under Mode I loading at high crack
tip speed is at about 60° from the crack plane for the
isotropic material (A=1), what suggests that the dynamic
branching of a crack has to be taken into account. For
anisotropic material, for the case of the large difference
in stiffnesses (A1=10), value of this stress is even higher,
which means that the interfacial crack may have branch
out, in terms of dynamic crack growth. Figure 3 shows
also that, at high crack tip speed, in material below the
interface, material 2, develops a significant radial stress,
0, This could be cause cracks on the substrate as the
main crack propagates. Figure 4 shows that the effect of
differences in the materials through an interface on the
angular stress distribution is less pronounced under the
Mode 1II loading.

Dynamic stress intensity factors for a semi-infinite
crack on an interface between two anisotropic materials
are, Yang et al. (1991):

0

1
K¢ =—\E cosh 7z& j (-%) 2 HR)dz
T

0
1
Kd = —\/Zj (-%) 24,(R)dz
T —00

where ¢ and #; are defined in equation (25). Dynamic
stress intensity factors for a central crack of length 2a
subjected to remote uniform stresses on an interface
between two anisotropic materials are, Yang et al.
(1991):

(29)
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Figure. 2. Dependence of: (a) the oscillatory index, &, (b) the
traction resolution factor, n and (c) the energy factor, 1, on
the crack propagation velocity.
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Figure 3. Angular variation of stresses for a bimaterial
combination for different values of crack tip speed under
the Mode | loading

In general case, for the crack that propagates
dynamically in the homogeneous isotropic material,
dynamic stress intensity factor, for the current crack of
the length / and crack speed v can be written as, Freund
(1990):

K} (1,v) =k, (0K, (1,0), 31)

where Ki(I, 0) is the static stress intensity factor for
Mode I, while kfv) is the universal dimensionless
function which depends on crack speed and elastic

FME Transactions

constants. This factorization is valid for the other two
Modes of crack growth, as well.

Analogously to equation (31), for the crack that
propagates dynamically along the interface, a
relationship can be established between the stress
intensity factor for the stationary crack K(/, 0) and
dynamic complex stress intensity factor K(, v). It is
assumed that the crack extension vf is small with respect
to other relevant dimensions and that this is the only
length in the problem. Based on linearity of the problem
and dimensional analysis, one can write:

K (1,0) = (t) “[(vt)* k, (L)K(1,0) +

_ _ ; (32)

+(v1) " ky (0)K(1,0)]
where ¢, is the static oscillatory index, & is the
oscillatory index for speed » and k(v) and k,(v) are the
universal dimensionless functions that depend on crack
speed and elastic constants.

4. CONCLUSION

In this paper is considered the behavior of the
characteristic parameters of dynamic crack propagation
along the interface between two anisotropic materials.
The emphasis is on the application of the fracture
mechanics concept for the interfacial crack that
propagates dynamically, at high speed. In this work is
analyzed the behavior of three characteristic parameters
of dynamic fracture, namely: the oscillatory index, the
traction resolution factor and the energy factor
depending on the speed of the crack tip and stiffnesses
ratio.

It was noted that the value of the oscillatory index
increases with the speed of crack propagation and tends
to infinity as velocity approaches the Rayleigh wave
speed of the less stiffer of the two materials. The
traction resolution factor strongly depends on the speed
of the crack tip, but weakly on the stiffness ratio. This
means that the mode mixity changes with speed. The
energy factor acts contrary to the traction resolution
factor, with increasing speed of the crack tip, i.e. it
depends more on the stiffnesses ratio than the speed of
the crack tip.

The angular stress distribution ahead of the crack
tip along the interface between the two anisotropic
materials for different values of crack tip speed are
shown in this paper. Based on that, it can be concluded
that dynamic crack growth along the interface between
two anisotropic materials is followed by a series of
events that are not encountered in homogeneous
materials or in the case of steady state conditions of
growth of the interfacial crack between isotropic
materials.

In this paper are also given expressions for dymanic
stress intensity faktors for anisotropic bimaterials for the
two basic configurations on an interface, a semi-infinite
crack and a central crack.

Results presented in this paper can serve as
guidelines for micromechanical modeling of materials,
because, for composite materials, analysis of dynamic
crack propagation along the interface will help to model
and to design against failure.
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APPENDIX

Angular functions in equation (17) for 0 < 0 < &, have

the form:
pa— 2 — — 1 —
(1+2a12 _0‘3) a P, =n(l+a;)coshe(n—6,)—2¢,sinhe(r —-6,)
T(Pllcosel c0s7+ ~ pv2 sin2 @ ~ pv2 sin @
n=l-——rn=1-—-
. . Hl Cll CGG
1 1 +H,sing sin5-)+
611(0,6)=~—— 2 &=¢cly, & =¢clny,
11 Dcoshre | 7, P
+T2(P21cosgzcos72+ tanf, =, tan @, tan b, = o, tan 4
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NOMENCLATURE

Ciu the stiffness tensor

the Rayleigh's wave speed

the velocity

the displacements

the roots of the eq. (5)

the Hermitian matrix defined in eq. (9)

the bimaterial Hermitian matrix defined in
eq. (9)

matrices defined in eq. (10)

Rayleigh's wave function, eq. (12)

the unit vector

the complex stress intensity factor

the stress intensity factor for Mode 111

polar coordinates

t the interfacial force

G the energy release rate

K* K dynamic stress intensity factors

AXNIT RA ;N ORI S <9
~

=N
S

Greek symbols (Times New Roman 10 pt, bold, italic)

0y Kronecker delta

p" the material density

Ai introduced variables

o the wave reduction factors defined in eq.
’ (7)

& the oscillation index, eq. (15)

B the Dundurs parameter, eq. (16)

o stresses

the angular functions which correspond
5123 g) to tensile tractions, in-plane shear
Y tractions and anti-plane shear tractions
across the interface
o(r) the crack opening displacement vector
nondimensional elastic parameters

%P which measure anisotropy
n the traction resolution factor, eq. (26)
T the energy factor, eq. (28)

Superscripts (Times New Roman 10 pt, bold, italic)

(1),(2) values for material 1 and 2
d dynamic

JAUHAMMAWYKU PACT TIPCJIMHE HA
NHTEP®EJCY UBSME/IJY IBA AHU30TPOITHA
MATEPHUJAJIA

Jeaena M. Boxkosuh, Pyxuna P. Hukounh, Joxed
Buuan, laau6op Benaguh

VY pazy je pa3MaTpaHo MOHAMIamkE HATIOHCKOT 1T0Jba Koje
OKPYXyje BpX IPCIMHE KOja ce NUHAMUYKU LIMPU YK
uaTepdejca m3mel)y OBa aHWU3OTPOIIHA MaTepHjaa.
AKIIeHaT je CTaBJbeH HA NPUMEHY H NPOIIUPEHE
nocrojeher koHuenTa MexaHuke JomMa Ha HHTEpdejcy
Ha TIpoOleM MpclIMHE KOja MpOoIarupa BEJUKOM
Op3unoMm. [IprkaszaHa je yrjioBHa pacrojena HaroHa 3a
NpPCIIMHY KOja Iporarupa JUHaMH4yKd. Pasmarpano je
NOHAlllalke  OCIWIATOPHOr  MHAEKca,  (akropa
pesoiynuje cuiie U (pakTopa eHepruje y 3aBUCHOCTH O]
Op3uHEe BpXa NPCIMHE U OJHOCA KPYTOCTH Marepujasa.
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BpenHocT ocnmiaTopHOr MHIEKCA pacTe ca I0pacToM
Op3uHe mpomarvpama IPCIUHE U TEXKH OECKOHAYHOCTH
Kajga ce Op3uHa mpuOiiMkaBa Payieurx-eBoj TaaacHo]
Op3uHK Mekiuer Marepujana. Gakrop pe3oiyluje cuie
JaKo 3aBUCH O] Op3WHE Bpxa MPCIUHE ajid 3aTO BPJIO
cabo o1 oHOCAa KPYTOCTH. 3a (akTop eHEepruje BaxKH
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06pHyT0. Onpehen je AuHaMUUKK (pakTOp MHTEH3UTETA
HallOHA 32 aHW30TPOIHY OMMaTepujaHy KOMOHHAIIH]Y
3a HEKOJMKO OCHOBHUX KoH(purypauuja. Pesynratu
JNOOMjeHH y OBOM pajy MOTY Ja MOCIYyKe Kao BOAWUY
MHKPOMEXaHUYKOM MOJICTIHPAby MaTepHjaa.
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