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An Exact Analytical Solution for the 
Second Order Slip-Corrected Reynolds 
Lubrication Equation 
 
We derive a general slip-corrected compressible Reynolds lubrication 
equation, valid for any choice of the slip velocities, and show that it 
possesses the exact analytical solution. It is obtained by a suitable 
transformation of the dependent variable, and it yields both the pressure 
distribution in the bearing and the mass flow rate through it. It can be 
usefully applied for testing the other, experimental or numerical results 
obtained under the same or similar physical conditions, against this 
solution.  
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1. INTRODUCTION  
 

New fabrication techniques developed during the last 
decade or so, in particular the production of micro-scale 
devices, have led to an intense application of micro-
electro-mechanical systems (MEMS) technologies in 
our everyday life [1]. On the other hand MEMS 
technologies have brought several new problems to the 
scientific community. In particular, in fluid mechanics it 
turns out that the behaviour of flow in a micro-scale 
device is not necessarily the same as the one 
experienced in the macroscopic world. For example, in 
the context of compressible gas dynamics rarefaction 
effects must be accounted for, and their presence can be 
recognized by the values attained by the Knudsen 

number Kn. As a rule of thumb, for 210Kn   the 
continuum hypothesis hold and the flow is described by 
the Navier-Stokes equations using conventional no-slip 

boundary conditions. In the range 2 110 10Kn   the 
Navier-Stokes equations are still valid, provided slip 
boundary conditions are implemented at the walls of the 
flow boundaries (slip-flow regime). In the range 

110 10Kn    (transitional flow regime) the Navier-
Stokes equations break down, and some “higher-order”, 
more complex, Burnett equations are necessary, or the 
individual particle-based direct simulation Monte Carlo 
(DSMC) approach is to be employed. Finally, for 

10Kn  .the flow has to be treated as a free molecular 
flow amenable to the methods of kinetic theory of gases. 

Most MEMS devices in use today operate in the 
slip-flow regime. That is why the most of the literature 
referring to these problems is devoted to the modelling 
of the slip boundary conditions at the walls (for an 
excellent review on these problems s. [2]). We note in 
passing at this point that there are several attempts in the 
literature to modify the existing slip-boundary 

conditions in a purely empirical way, so as to encounter 
all regimes mentioned above – the entire Knudsen 
number regime [3]. 

Roughly speaking all rarefied gas flows appearing in 
MEMS devices can be divided into the pressure driven 
and the shear driven flows. Typical pressure driven flow 
is a flow through a channel or a pipe. In contrast to the 
classical, incompressible flow case with no-slip 
boundary conditions, such a flow in rarefied gas 
dynamics context is characterized by a nonlinear 
pressure drop in the direction of flow. The nonlinear 
first order differential equation governing the pressure 
distribution in a channel or a pipe can be readily derived 
from the basic flow equations and solved analytically 
exactly for the so-called second-order slip boundary 
conditions [4]. 

Typical shear driven flows are the Coutte flow or 
any other flow appearing in a problem of gas 
lubrication. The pressure distribution in a gas lubricated 
bearing is governed by the so-called Reynolds equation. 
Under certain conditions it can be readily derived from 
the basic flow equations for both no-slip and slip 
boundary conditions [5-7]. This equation is also 
nonlinear. To the best of our knowledge only one exact 
analytical solution of this equation exists and it is 
presented in [8]. It was found by suitably transforming 
the independent variable in the slip-corrected Reynolds 
equation. 

In this paper it is shown that the same slip-corrected 
Reynolds equation can be also analytically solved by 
appropriate transformation of the dependant variable 
(pressure) and by the direct integration of the derived 
differential equation in the closed form by quadratures. 
The validity of the solution is proved by comparison 
with numerical results available in the literature. 
 
2. DERIVATION OF THE GENERAL SLIP-

CORRECTED REYNOLDS EQUATION 
 
For completeness of the presentation we will first 
briefly derive a general Reynolds equation – the 
equation valid for an arbitrary model of the slip 
velocity. We will consider the lubrication problem 
depicted in Fig. 1. 
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Figure 1. Microbearing geometry  

Within the well known approximations made at the 
derivation of the Reynolds equation [5,6], the extremely 
simplified Navier-Stokes equations expressing the 
balance between the pressure forces and highest viscous 
forces only, reads: 

 
2

2

1 d

d

u p

xy 





 (1) 

where  p x is the pressure and .const   is the gas 

viscosity, while the other denotations clearly seen in 
Fig.1. The equation (1) should be solved with the 
following boundary conditions: 

      0 10 : ; : ,y u u x y h x u u x     (2) 

where 0 )(u x and 1 )(u x  are arbitrary slip velocities. 

The solution of equation (1) with boundary conditions 
(2) is easily found to be: 

 
2 2 2
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d d

2 d 2 d

h p y h p y
u u u u

x x hh 

 
      

 
. (3) 

This solution is further used in the continuity equation 

that expresses the constancy of the mass flow rate M  
through the bearing: 

      
1

0 0

d d .
h

M u y x h x u const        (4) 

where y h   and  x  is the variable gas density. 

Inserting (3) into (4) one gets an equation governing the 
pressure distribution in the bearing. At that, when the 
independent variable x is replaced by  h x  (s. Fig.1) 

and the equation of state for an ideal gas  Rp T  , 

where R is the gas constant and T is the temperature 
(presumably constant) is utilized, it reads 

 
3

0 1d d

12 R d d 2R

u +uh h p
M = p + hp

T x h T
  (5) 

For the solution of this equation two boundary 
conditions are available (s. Fig.1): i i e:h h p p p   ; 

e e:h h p p  , where indices i and e refer to inlet and 

exit bearing cross sections respectively. Any type of 
integration of this equation (analytical or numerical) as 
a result yields not only the already mentioned pressure 

distribution, but also the mass flow rate M , which is 

not know beforehand. In what follows it is instructive to 
write (5) and the belonging boundary conditions in non-
dimensional form. We introduce the non-dimensional 
quantities in the following way (s. Fig.1): X x l , 

eH h h , eP p p , 0 0 wU u u , 1 1 wU u u , ( wu  
is the velocity of the infinite plate positioned at 0y  ), 

so that the equation (5) with its boundary conditions 
becomes: 
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h
    ; 1: 1H P   (7) 

In there w
2

e e

6 u l

p h


   is the bearing number and 

e e w
C 2R

p h u
M

T
  is the mass flow rate in a Couette flow. 

Before proceeding further we will evaluate the sum 
of the slip velocities 0 1U U for the case of the second 

order boundary conditions. For the problem considered 
herein they are [2]: 
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 (8) 

where, in addition to denotations already used earlier,

 


 is the molecular free path, and A1 and A2 are some 

constant corrective factors (first and second order slip 
coefficients). For an isothermal flow 

 

is simply 
inversely proportional to the pressure, thus depend on x 
only [9]. The first and second order slip coefficients, 1A  

and 2A , are differently defined by several authors in 

the literature. Schamberg [10] predicted theoretical 
values for the slip coefficients as 1A 1 , 2A 5 12 , 

Deissler [11] as 1A 1 , 2A 9 8 , Hsia and Domoto 

[12] as 1A 1 , 2A 1 2 , while Beskok et al. [4] found 

that 1A 1 , 2A 1 2  . The review of the second order 

velocity slip boundary conditions are presented by 
Barber and Emerson [2] and Lockerby et al. [13] and 
according to them there is no consensus concerning the 
values of A1 and A2. 

Careful evaluation of slip velocities (8) by using the 
general velocity field (3) yields now the following 
expression for the desired sum of the non-dimensional 
slip velocities: 

  2 2
0 1 1 2

6 d d
1 A 2A

d d

H P
U U H Kn Kn

X H
   


 (9) 

where Kn  is the local value of the Knudsen number: 

 eKn
Kn

h PH


   (10) 
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and e e eKn h  is its value at the exit cross section. If 

the upper boundary in Fig. 1 is in the form of an 
inclined plate, we will have:  id d 1H X H   , and 

the equation (6) will finally attain the form: 

 3i
1 2

C

1 d
1 6 A 2A

d

.

H P
H P Kn Kn

H

M
PH

M


    

 



(11) 

 
3. ANALYTICALLY EXACT SOLUTION OF THE SLIP-

CORRECTED REYNOLDS LUBRICATION 
EQUATION 
 
Suitable transformation of the dependent variable P 

that enables us to get analytically exact solution of 
equation (11) with the boundary conditions (7) reads: 

 
1

Π
PH

  (12) 

A simple physical meaning can be given to the new 
dependent variable  Π H . It follows from (10) that 

eΠ Kn Kn , i.e. it is the ratio between the local value 

of the Knudsen number and its exit value. Now the 
equation (11) is transformed into: 

   2i
e

1 d
1 1

d

H Π
H Π F Kn Π Π mΠ

H

           
(13) 

where 

    e e 1 2 e6 A 2AF Kn Π Kn Π Kn Π   (14) 

and Cm M M   . At the same time boundary conditions 

(7) become: 

 i i1 : 1H H Π H   ;   

 1 : 1H Π  . (15) 

We tested the form of equation (13) against some other 
models of slip velocities existing in the literature and 
widely used [2] and obtained the same form of the 
equation for  Π H , with 

 
   eF Kn Π F Kn  varying 

from model to model. However, in all cases tested 

 0 0F   and, as expected, the equations (11) and (13) 

reduce to their well known form for a no-slip 
compressible flow through a bearing.  

 Equation (13) can be written in the form in which 
variables H  and Π are separated: 
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
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 (16) 

and its solution can be obtained by quadratures. For 
example, when applying the second of boundary 
conditions (15) we get: 
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where t is dummy variable. 

Application of the first of boundary conditions (15) in 
(17) leads to: 
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The expression (18) serves for the determination of m 
by iterations, provided other parameters ( i e,  , H Kn ) 

are known, while (17) serves for the determination of 

 Π H , and thus  P H . 

For  eF Kn   given by the second order slip 

velocity (14) the integral (17) can be found as: 
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where  1 1 e iC 6A 1Kn H    and 

 2
2 2 e iC 12A 1Kn m H    . There are two possible 

solutions for integral (19). First, if 2
1 2C 4C 0   the 

solution is 
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 (20) 

where parameter m  is found by putting the first of 
boundary conditions (15) in into eq. (20) 

 

 
2 1

22 2 i 2 11 2
2

2 i 1 i

2C C 1
1

2C C C 1C 4C
ln

C C

m
m

h

h h

 
   

      
   

  

 
2 2

2 1 1 2 2 i 1 1 2

2 2
2 1 1 2 2 i 1 1 2

2C C C 4C 2C C C 4C
ln

2C C C 4C 2C C C 4C

h

h

         
  
         
  

(21) 

For the case 2
1 2C 4C 0   the solution of eq. (19) is 
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Now parameter m  is found by putting the first of 
boundary conditions (15) into eq. (22)  
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The pressure distribution, which is obtained by eqs. 
(20) and (21) or by eqs. (22) and (23), is defined by the 
bearing number  , the reference Knudsen number 

eKn , and the ratio of the inlet and exit microbearing 

height iH . First, parameter m is determined from eqs. 

(21) or (23) iteratively by supposing the initial value for 

m taking into account whether 2
1 2C 4C  is positive or 

negative. Although variable Π could not be explicitly 
expressed from eqs. (20) and (22), correlation between 
Π and H  is completely defined by eqs. (20) and (22). 
According to the boundary conditions (15), the value of 
Π is between i1Π H  at the bearing inlet and 1Π   
at the bearing outlet. For the Π  values in that range, 
appropriate values of H are found from eq. (20) or (22) 
while the coordinate X  is determined from the channel 
cross section varying function. Then, for each pair of 
Π and H  the pressure is defined as  1P ΠH . 

In Fig. 2 the pressure distribution is presented for 
bearing number 1  . Results are obtained for the ratio 
of the inlet and outlet microbearing height i 2H   and 

three eKn values ( e 0.1Kn  , e 0.2Kn 
 
and e 0.5Kn  ). 

The presented results show the reliability of obtained 
analytical solution for the slip flow regime ( e 0.1Kn  ), 

as well as for the part of the transitional regime 
( e 0.2Kn  , e 0.5Kn  ). The second order boundary 

condition defined by Schamberg [10] leads to the best 
fit of the analytical solution with the numerical solution 
of the Boltzman equation obtained by Fukui and 
Kaneko [15] in the slip regime ( e 0.1Kn  ), while for 

the beginning of the transition flow regime ( e 0.2Kn  ) 

Deissler [11] boundary condition is the most 
appropriate. For the higher Knudsen number value 
( e 0.5Kn  ) the analytical solution obtained with Hsia 

and Domoto [12] slip coefficients value is in good 
agreement with the numerical solution of the Boltzmann 
equation. Thus, it is confirmed that the analytical 
solution is valid even for a higher Knudsen number 
value up to e 0.5Kn  .  

For all results presented in Fig. 2
 
 Beskok et al. [4] 

boundary condition gives pronounced deviation from 
the Fukui and Kaneko [15] results.  

In Figs. 2 the analytical solutions which correspond 
to the Maxwell first order boundary condition are also 
depicted. It is obvious that Schamberg [10], Daissler 

[11] and Hsia and Domoto [12] second order boundary 
conditions provide higher accuracy then the Maxwell 
[14] first order boundary condition. 
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Figure 2. Pressure distribution in the microbearing 
obtained with presented analytical solution and different 
slip coefficients in the boundary conditions and with 
Boltzmann equation [15] for Λ=1, Hi=2

 
and: a) Kne=0.1, b) 

Kne=0.2, c) Kne=0.5. 
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4. CONCLUSION 
 
This paper presents a new approach to the derivation of 
the analytical solutions of the compressible slip 
corrected Reynolds lubrication equation and the 
classical compressible Reynolds lubrication equation for 
continuum flow conditions. The first analytical solution 
of the isothermal steady compressible quasi-
unidirectional lubrication problem was first reported in 
the open literature in [8]. It was achieved by the proper 
change of independent variable. Here presented new 
approach is based on the suitable transformation of the 
dependent variable (pressure). The obtained differential 
equation written in the form in which variables H  and 
Π are separated (eq. 16) can be transformed in the 
differential equation with separated variables presented 
by equation (2.14) in [8]. This indicates that despite the 
fact that final analytical solutions obtained by 
transformations of the dependent and independent 
variable don’t have the same form, the both solutions 
give the same result. Beside results presented in Fig. 2, 
more extensive validation of this analytical solution was 
already presented in [8] by comparison of the 
analytically obtained results with available numerical 
results. Namely, the slip flow results for a wide range of 
Knudsen number and the continuum flow conditions, 
provided by the general analytical solution from this 
paper and [8], are in excellent agreement with Fukui and 
Kaneko [15] numerical solution of the Boltzmann 
equation. 
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ТАЧНО АНАЛИТИЧКО РЕШЕЊЕ 
РЕЈНОЛДСОВЕ ЈЕДНАЧИНЕ 

ПОДМАЗИВАЊА ЗА СТРУЈАЊЕ ГАСА СА 
КЛИЗАЊЕМ 

 
Невена Д. Стевановић, Владан Д. Ђорђевић 

 
Изведена је општа Рејнолдсова једначина 
подмазивања за услове струјања са клизањем 
применом општих граничних услова клизања другог 
реда и показано је да она има тачно аналитичко 
решење. Решење је добијено тансформацијом 
зависно променљиве што је довело до могућности 
аналитичког прорачуна расподеле притиска и 
масеног протока у микролежају. На тај начин, 
поређењем са датим аналитичким решењем 
омогућена је провера експерименталних и 
нумеричких резултата за струјање гаса у 
микролежајима. 

 


