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Conditions for Dynamic Balance of a 
Rigid Body With Heavy Foot 
 
The model of a rigid body and heavy foot joined by the revolute joint in the 
constant gravitational field is described. The rigid body moves in the 
vertical plane, whereas the heavy foot lies on the flat, very rough 
horizontal support. Conditions for the dynamic balance of this system are 
mathematically expressed by using the ZMP method. It is shown that they 
determine an area in the phase space in which the state of the system 
should be in order that its dynamic balance is kept. It is also shown by 
appropriate simulations of motion of the system in the dynamic balance 
that these conditions are not sufficient for the system to keep its upright 
posture, but are in connection with its controllability. It is briefly discussed 
what are the necessary conditions for this system in dynamic balance to 
keep its upright posture. 
 
Keywords: dynamic balance, upright posture, zero moment point, 
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1. INTRODUCTION  
 
We consider a rigid body of the mass m  joined by the 
revolute joint to the foot of the mass fm . The foot lies 

on the flat, horizontal, inertial and very rough support in 
the constant gravitational field of magnitude g


, Fig. 1. 

The system has a dynamically balanced posture at the 
initial instant, 0. It means that the zero moment point 
(ZMP) [2] coincides with the center of pressure (CoP) 
and both points are in the interior of the support area 
(the minimal convex surface comprising all contacts 
between the foot and support). We adopt that the 
support area is a rectangle. 

Let Axyz  be the Cartesian orthogonal coordinate 

frame with units vectors ,i j
 

 and k


, which is immobile 

with respect to the foot and whose coordinate beginning 
A  is somewhere on the revolute joint axis, Fig. 1. 

 
Fig. 1 The rigid body with heavy foot 

Control of the rigid body motion is done by the light 
linear actuator whose one end is connected to the rigid 
body by a spherical joint, and other to the foot also by a 
spherical joint. Friction in all joints is neglected. The 
actuator produces the corresponding reaction force that 
acts on the rigid body at the place of spherical joint 
where the rigid body is connected to the actuator. The 
action of this force reduced to the point A  defines the 

corresponding torque 

M  by which the rigid body 

motion is controlled. As long as the system posture is 
dynamically balanced, the foot will be at rest, while the 
rigid body will rotate around the axis z that is immobile 
with respect to the support. In this case, among all 

projections of the torque M


, only the projection  

z kM =M


 to the axis z  affects the rotation of the 

rigid body. Without loss of generality, we adopt that the 
projection zM  can be produced by wish in the 

corresponding limits. Other two projections xM  and 

yM  are balanced with corresponding projections of 

torques of the rigid body weight, and static and dynamic 
reactions [3] in revolute joint, with respect to the point 
A . 

Assumption 1: The torque y-M , which acts on the 

foot, can produce slipping of the foot. Since the support 
is very rough, we shall consider that the foot cannot slip 
as long as the normal reaction of the support exists. 

Assumption 2: The torque x-M , which acts on the 

foot, can produce rotation of the foot with respect to the 
axis x . However, we shall consider that the foot is wide 
enough along the z -axis so that the foot cannot start to 
rotate around axis x . 
 By these assumptions, the dynamic balance can be 
considered in one of the planes perpendicular to axis z . 
We choose Ax y  plane. Now, the definition of the 

dynamic balance 0 of the rigid body with heavy foot 
boils down to: 
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Dynamic balance: It is said that the rigid body 
with heavy foot is in dynamic balance if there is no 
rotation of the foot around any edge of the support area, 
which is parallel to the axis z, 

while the condition for the system to be in dynamic 
balance 0 to 

Condition for dynamic balance: For the dynamic 
balance, it is necessary and sufficient that the resultant 
of the normal reaction forces of the support acts at 
the point whose projection P along axis z to the plane 

Ax y  belongs to the support segment 1 2E E  (projection 

of the support area to the plane along z-axis) excluding 
the segment’s edges. 

It is obvious that for this system at first glance the 
state of rest of the foot is equivalent to dynamic balance 
of the system, since if the foot does not rotate, then it 
can be moved only vertically upward so that the contact 
with the support is lost and along with it the sense of the 
dynamic balance. 
 In this paper the mathematical model of the rigid-
body-with-heavy-foot system in dynamical balance is 
given, the conditions for the dynamic balance of this 
system is mathematically formulated, simulation results 
of the motion of the system in dynamic balance are 
shown and discussed, and necessary conditions for the 
system to keep the upright posture are explained. 
 
2. MATHEMATICAL MODEL OF THE SYSTEM IN 

DYNAMIC BALANCE. STATIC EQUILIBRIUM OF 
THE FOOT 

 
The system in dynamic balance realizes rotation around 
z -axis which is immobile with respect to the support. 
The system motion is described by the differential 
equation 

 z C sin zJ mg   M , (1) 

where zJ - moment of inertia of the rigid body with 

respect to axis z , C - the magnitude of position vector 

C


 of the projection C  of the mass center of the rigid 

body to the plane Ax y  Fig. 1 with respect to the pole 

A . The positive mathematical direction is taken as the 
positive direction of the angle  . 

 In order to express the conditions for dynamic 
balance mathematically, we need to find the reaction 

force AR


 of the foot in the joint in Ax y  plane. The 
reaction is found from the equation of motion of the 
mass center of the rigid body: 

 
 

C A

A C

,

,

ma G R G mg

R m a g g g j

  

    

  
     (2) 

The acceleration Ca


 of the mass center in movable 

coordinate frame C  attached to the body has the 

form: 

 2
C Ct Cn C Ca a a         

      (3) 

where Cta


 is tangential and Cna


 normal acceleration of 

the mass center. Expressed in the coordinate frame Axy  

the acceleration Ca


 is 

 
 
 

2
C C

2
C

cos sin

sin cos

C

C

a i

j

    

    

   

  

  


 
. (4) 

 
Fig. 2 The rigid body with heavy foot – a view along z-axis 

According to (2) the coordinates of the reaction force 

AR


 in Axy  are 

 
2

A C

2
A C

cos sin

sin cos

x C

y C

R m m

R m m mg

    

    

  

   

 
 

 (5) 

 In the dynamic balance the foot is at rest, and the 
center of pressure P  coincides with the zero moment 
point, which is placed in the support segment 

1 2E E 2l . In planar case, Fig. 3, the reaction forces of 

the support are reduced to the resultant PR


 at the point 

P . The equations of static equilibrium of the foot are 
given by 

    
f

P A f

P P C f z 0

R R m g o

R k m g k 

   


       

   
   

M
, (6) 

which in scalar form are 

 
P A

P A f

P P P P

x x

y y

z x y y x

R R

R R m g

R R 


 

 M

, (7) 

 
Fig. 3 The foot in static equilibrium 
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where o


- zero vector, P AP  


P Px yi j  
 

 

Pxi h j 
 

, and h  - height of the foot. 

 
3. CONDITIONS FOR DYNAMIC BALANCE OF THE 

SYSTEM 
 
The conditions for dynamic balance of the system can 
be defined now in the following way 

Condition for dynamic balance In order for the 
system to be in dynamic balance it is necessary and 
sufficient that the torque  

P P P P P P Pz x y y x x y xR R R hR     M  (8) 

acts at the joint A  such that the conditions  

 
 P

P A f

a) ,

b) 0
x

y y

l l

R R m g

  
  

 (9) 

are satisfied. 

 These conditions are equivalent to conditions CDB. 
They are sufficient for static equilibrium of the foot, but 
they are not necessary, since the foot can stay immobile 
even when Px l   and P 0yR  . Therefore, if the foot 

is at rest, the system need not be in dynamic balance, 
while if the system is in the dynamical balance then the 
foot surely is at rest. 

 Dynamic balance of the system is realized by acting 
of the controlling torque zM  such that the conditions 

(9) are satisfied. Hence, by changing one variable two 
conditions are to be satisfied which, therefore, are not 
mutually independent. For instance, if we define the 
change of the quantity Px  such that the point P  is in 

the support segment then the controlling torque zM  

and vertical reaction force PyR  are uniquely defined by 

equations (1), (5) and (7), and so it should be checked 
whether the reaction force PyR  satisfies the condition 

(9)b. Analogously, we can define the change of the 
vertical reaction force that is greater than zero, but it 
should be checked whether the condition (9)a is 
satisfied at that change. 
 We shall determine what conditions must be 
satisfied by motions of the system in order that 
condition (9)b is satisfied. According to (1), (5) and (7), 
we get that condition (9)b follows from 

 
2

P C

a) cos cos 0

b)   0x

a b c

k h

 
 

  

  
, (10) 

where a g , 2
m C C/b k gh k     ,   2

m 1c k k g h    , 

 2
z C/ 0k J m  , and  m f / 1k m m m   . If the 

support segment 1 2E E  is less than  C2 k h   then 

condition (10)b will be automatically satisfied if 
condition (9)a is satisfied. Condition (10)а is satisfied if 
the state  ,   of the system belongs to the region 

defined by the following conditions 
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
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   
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





, (11) 

2. For C
m

m

24
k k

k h


     

 
 


2

m C

2
m C 1

a) 0, / ,

b) / cos 1,

k g

k g

  

   

  

   




, (12) 

where 1  and 2 , 1 21 1      are roots of the 

quadratic equation obtained by equalizing left hand-side 
of inequality (10)а with zero, and 

       2 2 2 2
m m C C2 2 1 /k h k k k k k h k         .(13) 

 All system’s motions which satisfy either condition 
(11) or (12), while condition (10)b is satisfied, will 
satisfy that the normal reaction force is greater than 
zero, too. The obtained conditions are not necessary. To 
find the whole region in the state space where the 
reaction force PyR  is greater than zero one must 

consider the case C
m

2
k

h


  which corresponds to very 

heavy ( fm m ) or tall ( h  C ) foots or both. The all 

these foots are not natural, so that we have not 
considered this case. 

It can be seen that keeping the system in dynamic 
balance depends on its geometrical ,h l , kinematical 

,   and geometric-dynamical m C, ,k k   characteristics 

as well as the characteristic g  of the environment in 

which the system performs motion. 
 Look of the regions defined by conditions (11) is 
depicted in Fig. 4 for various foot masses and following 
parameters of the system and environment 

2

C

0.08 m, 1.22 m,
, 9.81m/s

70kg, 1.3, 1m

h l
g

m k 
 


  

 

 
Fig. 4 The regions in the phase space where the vertical 
reaction force is greater than zero for various foot masses 
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 As can be seen, the region increases with foot mass 
increase. The regions corresponding to the foot masses 
of 150kg and 250kg were obtained by the condition (11)
.2, while the other regions for lighter foot masses were 
obtained by the condition (11).1. The figure shows that 
the regions for real foot masses, which are around or 
less than 5kg, are practically identical with the region 
for the zero foot mass, so that the foot mass does not 
play important role in dynamical balance of humans. 
The region border depicted by the red line follows from 
condition (11).1b, while the region border depicted by 
the black line follows from condition (11).1c. 

Under the action of the torque zM  defined by (8), 
the system’s motion is described by the following 
differential equation  

 
   

 

2 2
C P m C

C C P

sin cos

cos sin
x

x

g h k g

k h

      


    
  


 

 
  (14) 

A sufficient condition for the system to be in 
dynamic balance can now be worded in the following 
way 

Sufficient condition for dynamic balance: In order 
for the system rigid body with heavy foot to be in 
dynamic balance it is sufficient that  P ,x l l   , the 
differential equation (14) describes motions of the 
system, and the phase trajectory belongs to the region 
defined by conditions (11) and (12) 
 
4. SIMULATION OF MOTION OF THE SYSTEM IN 

DYNAMIC BALANCE 
 

We shall show by simulation of motion of the system in 
dynamic balance that the system can lose dynamic 
balance if we only keep the zero moment point inside 
the support segment, not worrying in which state the 
system is. We shall also show by simulation that the 
system can be in dynamic balance not keeping upright 
posture [4]. The simulations have been done using 
Runge-Kutta fourth order method with integration step 
of 0.01s. 

For further consideration, in accordance with 
defined conditions, the following parameters of the 
system and environment are adopted 

 f 2

C

0.08m, 0.13m, 2kg
, 9.81m/s

70kg, 1.4, 1m

h l m
g

m k 
  


  

. (15) 

Let the system be at the initial instant in the state 

 0 00.1 rad, 0 rad/s    , (16) 

and let the position of the point P  on the support 

segment 1 2E E  be defined by 

 P 0.1mx   (17) 

Obviously, this function satisfies condition (9)a. Then, 
the time history of the quantities P P P, , , ,x y yR R    and 

zM  will be 

As can be seen from the figure, the vertical reaction 
force changes its sign, and system loses dynamic 
balance. From the instant when the vertical reaction 

force changes the sign for the first time, the simulation 
does not correspond to the real motion of the system, 
but the motion which the system would perform if the 
foot was attached to the support. The real motion of the 
system after the loss of the dynamic balance would 
perform by separation of the foot from the support 
vertical upward. 

 

Fig. 5 The time history of quantities P P P, , , ,x y yR R    and 

zM  - the system loses dynamic balance at the instant 

when the vertical reaction force changes its sign for the 
first time 
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 Let the position of the point P  on the support 

segment 1 2E E  now be defined by 

 P 0.1 sin [m]x    . (18) 

The following results are obtained. 

 

Fig. 6 The time history of quantities P P P, , , ,x y yR R    and 

zM  - the system is in dynamic balance but does not keep 

the upright posture 

 In this case, the system surely falls to the support, 
although it has been in dynamic balance all the time. 
Furthermore, if the foot and the support were 
constructed such that the rigid body could make full 
circle, the prescribed change (18) of the projection P  of 

ZMP would provide system to stay in dynamic balance, 
since conditions (9) are satisfied. 
 If the position of the point P  changes according to 

    P

0.04
0.11 sin 15 arctan 50 [m]x  


         (19) 

the time histories of quantities Px Px Py, , , ,R R    and 

zM  are 

 

Fig. 7 The time history of quantities P P P, , , ,x y yR R    and 

zM  - the system keeps upright posture and comes back 

to the zero state 
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 It can be seen that the system stays in dynamic 
balance and comes back to the zero state, while the 
controlling torque zM  tends to zero, and the zero 

moment point tends to the projection of the mass center 
of the rigid body to the support. 
 
5. DYNAMIC BALANCE AND UPRIGHT POSTURE 

OF THE SYSTEM 
 
Let us consider more precisely the question whether the 
dynamic balance and upright posture can always be 
kept. 

Let the system be in dynamic balance and have the 
upright posture at the initial instant. As long as the 
system is in dynamic balance, its motion is described by 
differential equation (14). Assume that the dynamical 
balance is kept such that the angular velocity   is not 

constantly zero nor asymptotically tends to zero. In 
order that the system may keep the upright posture, the 
angular velocity   must change its sign. Let us 

consider the instant when   is zero and when   is 

negative. At that instant the acceleration of the rigid 
body is defined by 

 
 

C Px m

C C Px

sin

cos sin

k
g

k h

  
    




 
  (20) 

Lest the system continue to fall, the angle   should 

increase, and, keeping in mind that the angular velocity 
is zero, the angular acceleration should be positive. The 
denominator in equation (20) is always positive 
according to condition (10)b, and for the acceleration to 
be positive it is necessary and sufficient to be  

 C Px m msin k lk      (21) 

If the projection C sin   of the mass center of the 

rigid body to x -axis is greater than mlk , the system 

acceleration in dynamic balance cannot become non-
negative and the system continues to fall. An analogous 
consideration goes when the angle   is positive. 

Therefore, if the projection of the mass center to the 
x -axis is out of the interval  m m,k l k l  the dynamic 

balance and upright posture cannot be kept 
simultaneously, since by keeping the dynamic balance 
the upright posture is inevitably lost. 
 
6. CONCLUSION 
 
The mathematical model of a rigid body with heavy foot 
is given, and the conditions for the system to be in 
dynamic balance are mathematically defined. 
Simulations of motion of the system when the system 
loses dynamic balance although the zero moment point 
is inside the convex support area, when the system is in 
dynamic balance but does not keep upright position, and 
when the system is in dynamic balance, keeps its 
upright position and tends to the posture which 
corresponds to the maximum of its potential energy are 
shown. 

It has been shown that dynamic balance implies the 
static equilibrium of the foot. In addition to being inside 
the convex support area, the zero moment point cannot 
change its position in the area arbitrarily since dynamic 
balance can be violated by separation of the foot from 
the support vertically upward. 

Dynamic balance can be kept even when the system 
does not keep its upright posture. However, the upright 
posture of the system in dynamic balance cannot be kept 
anyway if the vertical projection of the mass center of 
the rigid body to the support is out of the segment 
obtained by homothetic increase of the support segment; 
the center of homothety is the projection of the foot 
joint to the support, while the homothety ratio is the 
coefficient mk . For real foot masses the coefficient mk  

is approximately 1, so that the foot mass has practically 
no influence on dynamic balance of humans. 

At the instant when the system loses its dynamic 
balance, the foot is at the limit of its static equilibrium. 
Losing the static equilibrium of its foot the system gets 
additional degrees of freedom. In that case, the number 
of degrees of freedom is greater than the number of 
control quantities, and the system is no more completely 
controllable [5]. Hence, the conditions for dynamic 
balance of the system can be considered as necessary 
conditions for its complete controllability [4].  
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УСЛОВИ ЗА ДИНАМИЧКИ БАЛАНС КРУТОГ 

ТЕЛА С ТЕШКИМ СТОПАЛОМ 
 

Милош Живановић, Михаило Лазаревић 
 
Описан је модел крутог тела и тешког стопала 
спојених обртним зглобом у константном 
гравитационом пољу. Круто тело се креће у 
вертикалној равни, док тешко стопало лежи на 
равној, врло храпавој хоризонталној подлози. 

Услови за динамички баланс овог система 
математички су изражени користећи методу тачке 
нула момента. Показује се да они одређују област у 
фазном простору у којoj стање система треба да 
буде да би се динамички баланс система одржаo. 
Такође се погодном симулацијом кретања система у 
динамичком балансу показује да ови услови нису 
довољни да систем одржи усправан став, већ да су у 
вези с његовом управљивошћу. Укратко се разматра 
који су неопходни услови да би овај систем у 
динамичком балансу задржао усправан став. 

 


