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1. INTRODUCTION

Conditions for Dynamic Balance of a
Rigid Body With Heavy Foot

The model of a rigid body and heavy foot joined by the revolute joint in the
constant gravitational field is described. The rigid body moves in the
vertical plane, whereas the heavy foot lies on the flat, very rough
horizontal support. Conditions for the dynamic balance of this system are
mathematically expressed by using the ZMP method. It is shown that they
determine an area in the phase space in which the state of the system
should be in order that its dynamic balance is kept. It is also shown by
appropriate simulations of motion of the system in the dynamic balance
that these conditions are not sufficient for the system to keep its upright
posture, but are in connection with its controllability. It is briefly discussed
what are the necessary conditions for this system in dynamic balance to
keep its upright posture.

Keywords: dynamic balance, upright posture, zero moment point,
controllability, rigid body..

Control of the rigid body motion is done by the light

We consider a rigid body of the mass m joined by the
revolute joint to the foot of the mass m, . The foot lies

on the flat, horizontal, inertial and very rough support in
the constant gravitational field of magnitude §, Fig. 1.

The system has a dynamically balanced posture at the
initial instant, 0. It means that the zero moment point
(ZMP) [2] coincides with the center of pressure (CoP)
and both points are in the interior of the support area
(the minimal convex surface comprising all contacts
between the foot and support). We adopt that the
support area is a rectangle.

Let Axyz be the Cartesian orthogonal coordinate

frame with units vectors 1, ] and K , which is immobile

with respect to the foot and whose coordinate beginning
A is somewhere on the revolute joint axis, Fig. 1.
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Fig. 1 The rigid body with heavy foot
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linear actuator whose one end is connected to the rigid
body by a spherical joint, and other to the foot also by a
spherical joint. Friction in all joints is neglected. The
actuator produces the corresponding reaction force that
acts on the rigid body at the place of spherical joint
where the rigid body is connected to the actuator. The
action of this force reduced to the point A defines the

corresponding torque m by which the rigid body
motion is controlled. As long as the system posture is
dynamically balanced, the foot will be at rest, while the
rigid body will rotate around the axis z that is immobile
with respect to the support. In this case, among all

projections of the torque 9 , only the projection
Mm, = M-k to the axis z affects the rotation of the

rigid body. Without loss of generality, we adopt that the
projection M, can be produced by wish in the

corresponding limits. Other two projections 21, and

9, are balanced with corresponding projections of

torques of the rigid body weight, and static and dynamic
reactions [3] in revolute joint, with respect to the point
A.

Assumption 1: The torque — , which acts on the

foot, can produce slipping of the foot. Since the support

is very rough, we shall consider that the foot cannot slip

as long as the normal reaction of the support exists.
Assumption 2: The torque —91 , which acts on the

foot, can produce rotation of the foot with respect to the
axis X.However, we shall consider that the foot is wide
enough along the z -axis so that the foot cannot start to
rotate around axis X.

By these assumptions, the dynamic balance can be
considered in one of the planes perpendicular to axis z .
We choose XAy plane. Now, the definition of the

dynamic balance 0 of the rigid body with heavy foot
boils down to:
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Dynamic balance: It is said that the rigid body
with heavy foot is in dynamic balance if there is no
rotation of the foot around any edge of the support area,
which is parallel to the axis z,

while the condition for the system to be in dynamic
balance 0 to

Condition for dynamic balance: For the dynamic
balance, it is necessary and sufficient that the resultant
of the normal reaction forces of the support acts at
the point whose projection P along axis z to the plane

XAy belongs to the support segment ﬁz (projection

of the support area to the plane along z-axis) excluding
the segment’s edges.

It is obvious that for this system at first glance the
state of rest of the foot is equivalent to dynamic balance
of the system, since if the foot does not rotate, then it
can be moved only vertically upward so that the contact
with the support is lost and along with it the sense of the
dynamic balance.

In this paper the mathematical model of the rigid-
body-with-heavy-foot system in dynamical balance is
given, the conditions for the dynamic balance of this
system is mathematically formulated, simulation results
of the motion of the system in dynamic balance are
shown and discussed, and necessary conditions for the
system to keep the upright posture are explained.

2. MATHEMATICAL MODEL OF THE SYSTEM IN
DYNAMIC BALANCE. STATIC EQUILIBRIUM OF
THE FOOT

The system in dynamic balance realizes rotation around
z -axis which is immobile with respect to the support.
The system motion is described by the differential
equation

‘]z¢=mngSin(p+mza (1)

where J, - moment of inertia of the rigid body with
respect to axis z, p. - the magnitude of position vector
P of the projection C of the mass center of the rigid
body to the plane XAy Fig. 1 with respect to the pole

A . The positive mathematical direction is taken as the
positive direction of the angle ¢ .

In order to express the conditions for dynamic
balance mathematically, we need to find the reaction

force F—QA of the foot in the joint in XAy plane. The

reaction is found from the equation of motion of the
mass center of the rigid body:

+ 2

The acceleration a. of the mass center in movable
coordinate frame C&n attached to the body has the
form:

8. =8, +8c, = —PPA — 9 p i 3)
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where &, is tangential and &, normal acceleration of
the mass center. Expressed in the coordinate frame AXy

the acceleration &, is

8. =(~@o; cosp+¢’ p. sin go)f +
+(=@pc sinp - p.cosp) |

“)

1 5] 141 |-

7 x

h
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Fig. 2 The rigid body with heavy foot — a view along z-axis

According to (2) the coordinates of the reaction force
ﬁA in Axy are

= —M@p, cosp + Mg’ p. sing

RAx
L - ®)
R,y =—M@p. sing — Mg~ p.. cos g +mg

In the dynamic balance the foot is at rest, and the
center of pressure P coincides with the zero moment
point, which is placed in the support segment

ﬁz =2l . In planar case, Fig. 3, the reaction forces of

the support are reduced to the resultant ﬁp at the point

P . The equations of static equilibrium of the foot are
given by

R,~R,+m.g=0
(5 xRy)-K +(pg, xm,G)-k —9m, =0}’ ©
which in scalar form are
R, =R,
Ry =R, +mg (7

Fig. 3 The foot in static equilibrium
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where 0- zero vector, =AP= P + pPy] =

ppxr —hj,and h - height of the foot.

3. CONDITIONS FOR DYNAMIC BALANCE OF THE
SYSTEM

The conditions for dynamic balance of the system can
be defined now in the following way

Condition for dynamic balance In order for the
system to be in dynamic balance it is necessary and
sufficient that the torque

9:nz :prRPy _pPyRPx :prRPy +hRPx (8)
acts at the joint A such that the conditions

a) Prx € (_Isl)

b) R, =R ©)
) Py — Ay+mfg>0

are satisfied.

These conditions are equivalent to conditions CDB.
They are sufficient for static equilibrium of the foot, but
they are not necessary, since the foot can stay immobile

even when | pr| =1 and R, =0. Therefore, if the foot

is at rest, the system need not be in dynamic balance,
while if the system is in the dynamical balance then the
foot surely is at rest.

Dynamic balance of the system is realized by acting
of the controlling torque 21, such that the conditions
(9) are satisfied. Hence, by changing one variable two
conditions are to be satisfied which, therefore, are not
mutually independent. For instance, if we define the
change of the quantity p,, such that the point P is in

the support segment then the controlling torque I,
and vertical reaction force R, are uniquely defined by

equations (1), (5) and (7), and so it should be checked
whether the reaction force R,, satisfies the condition

(9)b. Analogously, we can define the change of the
vertical reaction force that is greater than zero, but it
should be checked whether the condition (9)a is
satisfied at that change.

We shall determine what conditions must be
satisfied by motions of the system in order that
condition (9)b is satisfied. According to (1), (5) and (7),
we get that condition (9)b follows from

a) acos’@+hbcosp+c>0

, (10)
b) |pp|<kpc—h>0

where a=g, b=k _gh/p.+kpo.¢’,
k=J,/(mp)>0, and k,

c=(kk-1)g—hg’,
=(m+m;)/m=>1. If the

support segment E,E, is less than 2(kp.—h) then

condition (10)b will be automatically satisfied if
condition (9)a is satisfied. Condition (10)a is satisfied if

the state (@,¢) of the system belongs to the region
defined by the following conditions
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2
I Forke|| |k + ] Ak <2
2. K., h

k.
a) gbze[Oradz/sz,k(pg/pC) [ ) g/pc, Vo
b) ¢ €[k,.k,)-g/pc A cospe-1.4,)U(4,.1].(11)
c) ¢* 2k g/p. A cosgoe[—l,ﬂl)

2. Forkzki A ko <—%

m

a) ¢’ €[0,k,)-9/p., Vo

, 12
b) 9" >k g/ p. A coswe[—l,/il) (12

where A4, and 4,, —1< A, <4, <1 are roots of the

quadratic equation obtained by equalizing left hand-side
of inequality (10)a with zero, and

K, =[h(kk-2)+2(kk-1)(iCpt -1*) [/ (k2 pc) 13)

All system’s motions which satisfy either condition
(11) or (12), while condition (10)b is satisfied, will
satisfy that the normal reaction force is greater than
zero, too. The obtained conditions are not necessary. To
find the whole region in the state space where the
reaction force R, is greater than zero one must

. 2 .
consider the case k> % which corresponds to very

heavy (m; Zm) or tall (h£, pc) foots or both. The all

these foots are not natural, so that we have not
considered this case.

It can be seen that keeping the system in dynamic
balance depends on its geometrical h,l, kinematical

@, ¢ and geometric-dynamical k,k _,p. characteristics
as well as the characteristic g of the environment in

which the system performs motion.

Look of the regions defined by conditions (11) is
depicted in Fig. 4 for various foot masses and following
parameters of the system and environment

h=0.08m, 1<1.22m,

., g=9.81m/s’
m=70kg, k=13, p.=1lm
@ [rad/s]
| mf =250kg k
8l m; =150kg
4}~ m;=50kg
5 m; =25kg —
m; =5kg
o m; =0kg RPy >0
-2
a
f \ f
_ N
-g"pi -3/2%pi - i 0 pi’2 pi 3/2'pi  2*pi

gp[rad]

Fig. 4 The regions in the phase space where the vertical
reaction force is greater than zero for various foot masses
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As can be seen, the region increases with foot mass
increase. The regions corresponding to the foot masses
of 150kg and 250kg were obtained by the condition (11)
.2, while the other regions for lighter foot masses were
obtained by the condition (11).1. The figure shows that
the regions for real foot masses, which are around or
less than Skg, are practically identical with the region
for the zero foot mass, so that the foot mass does not
play important role in dynamical balance of humans.
The region border depicted by the red line follows from
condition (11).1b, while the region border depicted by
the black line follows from condition (11).1c.

Under the action of the torque 21, defined by (8),
the system’s motion is described by the following
differential equation

(g + h(pz)pc SINY + Ppy (kmg _pc¢2 COS¢)

. 14
¢ pc(kpe +heosp+ p,, sing) (14)

A sufficient condition for the system to be in
dynamic balance can now be worded in the following
way

Sufficient condition for dynamic balance: In order
for the system rigid body with heavy foot to be in

dynamic balance it is sufficient that p, e(-I,1), the
differential equation (14) describes motions of the
system, and the phase trajectory belongs to the region
defined by conditions (11) and (12)

4. SIMULATION OF MOTION OF THE SYSTEM IN
DYNAMIC BALANCE

We shall show by simulation of motion of the system in
dynamic balance that the system can lose dynamic
balance if we only keep the zero moment point inside
the support segment, not worrying in which state the
system is. We shall also show by simulation that the
system can be in dynamic balance not keeping upright
posture [4]. The simulations have been done using
Runge-Kutta fourth order method with integration step
of 0.01s.

For further consideration, in accordance with
defined conditions, the following parameters of the
system and environment are adopted

h=0.08m, 1=0.13m, m, =2kg

. g=981mis. (15
m=7T0kg, k=14, p.=Im ~ ° .15

Let the system be at the initial instant in the state
¢, =—-0.1rad, ¢@,=0radss, (16)

and let the position of the point P on the support
segment E E, be defined by

Pex =0.1m a7

Obviously, this function satisfies condition (9)a. Then,
the time history of the quantities ¢,@, p,,,R;,, R, and
M, will be

As can be seen from the figure, the vertical reaction
force changes its sign, and system loses dynamic
balance. From the instant when the vertical reaction
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force changes the sign for the first time, the simulation
does not correspond to the real motion of the system,
but the motion which the system would perform if the
foot was attached to the support. The real motion of the
system after the loss of the dynamic balance would
perform by separation of the foot from the support
vertical upward.
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Fig. 5 The time history of quantities ¢, ¢, o, R, ,R,, and

Py >
Emz - the system loses dynamic balance at the instant

when the vertical reaction force changes its sign for the
first time
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Let the position of the point P on the support
segment E,E, now be defined by

Pp =—0.1-sinp[m]. (18)
The following results are obtained.
0.1 —_
AN

2\ / \
N / \
-4:9_'. 1"* "'f \
£.18 N

0 1 4 ] ] 1

3.2 -"n\
1.07 /N
R — — =
TN/ 7/
o \/

2 4 L] 2 1i
]
P[]
i VA A i
byt IV RN |
Lo 7 / 7
. 7 N Vi
L 2 4 & B i
]
B [¢]

(1] 2 4 & 2 1d
o]
R, [eaN]
o i i i
e il I Il
g |' [ [
poiod) SR I I I — Y I
s IV VAR VALV NV
(1] 2 4 & 2 1d
o]
O, [daNen]

6.2:

. i I
12 aAr ]I

S|
s LI NAVR N
S ] |

“0 2 4 3
1fs]

r—

Fig. 6 The time history of quantities ¢, ¢, p,,, R, ,R,, and

zmz - the system is in dynamic balance but does not keep
the upright posture

In this case, the system surely falls to the support,
although it has been in dynamic balance all the time.
Furthermore, if the foot and the support were
constructed such that the rigid body could make full
circle, the prescribed change (18) of the projection P of
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ZMP would provide system to stay in dynamic balance,
since conditions (9) are satisfied.
If the position of the point P changes according to

o, = _0.11.Sin(ls.w)_%.arctan(SO'gb) [m] (19)
v

the time histories of quantities @,¢,p, R
M, are
e [=d]
0

40,01

Px >

Ry, and

T —

20,03
0,05 ,f‘rf
=008

01
[1]

0.0E
0.0

oo/ 1\
0.0 "If II"
0,01 / ]IL

001 1\“ -

1]

0.11

oo

0.02 ‘\'

o3 N

]

&, [daN]

224 N

}b 2 4 & g 10
1]

Fig. 7 The time history of quantities ¢, ¢, p,,,R,,,R,, and

fmz - the system keeps upright posture and comes back

to the zero state
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It can be seen that the system stays in dynamic
balance and comes back to the zero state, while the
controlling torque 9, tends to zero, and the zero

moment point tends to the projection of the mass center
of the rigid body to the support.

5. DYNAMIC BALANCE AND UPRIGHT POSTURE
OF THE SYSTEM

Let us consider more precisely the question whether the
dynamic balance and upright posture can always be
kept.

Let the system be in dynamic balance and have the
upright posture at the initial instant. As long as the
system is in dynamic balance, its motion is described by
differential equation (14). Assume that the dynamical
balance is kept such that the angular velocity ¢ is not

constantly zero nor asymptotically tends to zero. In
order that the system may keep the upright posture, the
angular velocity ¢ must change its sign. Let us
consider the instant when ¢ is zero and when ¢ is

negative. At that instant the acceleration of the rigid
body is defined by

¢: pC Slnw—'—prkm - g (20)
Pc(kpe +hcosp+ p,, sing)

Lest the system continue to fall, the angle ¢ should

increase, and, keeping in mind that the angular velocity
is zero, the angular acceleration should be positive. The
denominator in equation (20) is always positive
according to condition (10)b, and for the acceleration to
be positive it is necessary and sufficient to be

_pC Sin¢<prkm<|km (21)

If the projection —p.sing of the mass center of the

rigid body to X-axis is greater than Ik_, the system

acceleration in dynamic balance cannot become non-
negative and the system continues to fall. An analogous
consideration goes when the angle ¢ is positive.

Therefore, if the projection of the mass center to the
X -axis is out of the interval [k I,k 1] the dynamic

balance and upright posture cannot be kept
simultaneously, since by keeping the dynamic balance
the upright posture is inevitably lost.

6. CONCLUSION

The mathematical model of a rigid body with heavy foot
is given, and the conditions for the system to be in
dynamic balance are mathematically defined.
Simulations of motion of the system when the system
loses dynamic balance although the zero moment point
is inside the convex support area, when the system is in
dynamic balance but does not keep upright position, and
when the system is in dynamic balance, keeps its
upright position and tends to the posture which
corresponds to the maximum of its potential energy are
shown.
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It has been shown that dynamic balance implies the
static equilibrium of the foot. In addition to being inside
the convex support area, the zero moment point cannot
change its position in the area arbitrarily since dynamic
balance can be violated by separation of the foot from
the support vertically upward.

Dynamic balance can be kept even when the system
does not keep its upright posture. However, the upright
posture of the system in dynamic balance cannot be kept
anyway if the vertical projection of the mass center of
the rigid body to the support is out of the segment
obtained by homothetic increase of the support segment;
the center of homothety is the projection of the foot
joint to the support, while the homothety ratio is the
coefficient k. For real foot masses the coefficient K

is approximately 1, so that the foot mass has practically
no influence on dynamic balance of humans.

At the instant when the system loses its dynamic
balance, the foot is at the limit of its static equilibrium.
Losing the static equilibrium of its foot the system gets
additional degrees of freedom. In that case, the number
of degrees of freedom is greater than the number of
control quantities, and the system is no more completely
controllable [5]. Hence, the conditions for dynamic
balance of the system can be considered as necessary
conditions for its complete controllability [4].
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YCJIOBU 3A JUHAMUWYKHU BAJIAHC KPYTOTI'
TEJIA C TELIKUM CTOITIAJIOM

Mmunowm Kusanosuh, Muxauno Jlazapesnh

Omucan je Mozen KpPyTOT Tela M TEUIKOr CTomaja
CIIOJEeHUX  OOpTHHUM  3rJI000M Y  KOHCTAaHTHOM
rpaBuTaliioHoM TnoJby. Kpyro Teno ce kpehe y
BEPTHKAJIHO] pPaBHH, JIOK TEIIKO CTONAJ0 JIeKH Ha
pPaBHOj, BpJIO XpamaBoj XOPH3OHTAIHO] ITOJUIO3H.
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VYcnoBn 3a  IUHAMHYKM  0ajaHC OBOI  cuUCTeMa
MaTeMaTH4Kl Cy U3paXKeHU Kopuctehu Meromy Tadke
HyJa MoMeHTa. [lokasyje ce ma onu oapeljyjy obnact y
($a3HOM MPOCTOPY y KOjOj CTame cucTeMa Tpeba na
Oyne na Ou ce MUHAMUYKH OajJaHC CHCTEMa OJpIKao.
Takole ce MOrogHOM CUMYJALIjOM KpETamka CUCTeMa Y
JUHAMHYKOM OaJaHCy IMOKa3yje Ja OBH YCIOBH HHCY
JIOBOJbHH JIa CUCTEM OJIpXKU yCIpaBaH cTaB, Beh ma cy y
BE3U C HErOBOM yIpaBibuBoIIhy. YKpaTko ce pa3Marpa
KOji Cy HEONXOIHH YCIIOBH Ja OH OBaj CHCTEM Y
JMHAMHYKOM OallaHCy 3a/IpiKao yCIpaBaH CTaB.
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