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The Onset of Electrohydrodynamic 
Instability of An Elastico-Viscous 
Walters’ (Model B') Dielectric Fluid 
Layer 
 
In this paper we investigate the effect of AC electric field on the onset of 
instability of an elastico-viscous Walters’ (model B') dielectric fluid layer 
stimulated by the dielectrophoretic force due to the variation of dielectric 
constant with temperature. By applying linear stability theory and normal 
mode analysis method, we derive the dispersion relation describing the 
influence of viscelasticity and AC electric field. For the case of stationary 
convection, it is observed that Walters’ (model B') fluid behaves like an 
ordinary Newtonian fluid whereas AC electric field hastens the stationary 
convection. The present results are in good agreement with the earlier 
published results. 
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1. INTRODUCTION  
 

Electrohydrodynamics can be considered as a branch of 
fluid mechanics which deals with the effect of electrical 
forces. It can also be regarded as that part of 
electrodynamics which is necessitated with the 
influence of moving media on electric fields. A review 
of electrodynamically enhanced heat transfer in liquids 
has been studied by Jones [1] while the most interesting 
problems in electrohydrodynamics which involve both 
the effect of fluid in motion and the influence of the 
field in motion was discussed by Melcher et al. [2]. A 
detailed account of thermal instability of Newtonian 
fluid under the various assumptions of hydrodynamics 
has been discussed by Chandrasekhar [3] while the 
electrodynamics of continuous media and later 
electrohydrodynamic convection in fluids was studied 
by Landau [4], Robert [5] and Castellanos [6]. A short 
discussion on the applications of electrohydrodynamic 
(EHD) instability has been given by Lin [7] 

The study of electrohydrodynamic instability in 
dielectric fluid attracts many researchers for the past 
few decades because it has various applications in EHD 
enhanced thermal transfer, EHD pumps, EHD in 
microgravity, micromechanic systems, drug delivery, 
micro-cooling system, nanotechnology etc. Chen et al. 
[8] discussed the advances and applications of 
electrohydrodynamics in brief. They say that EHD heat 
transfer came out as an alternative method to enhance 
heat transfer, which is known as 
electrothermohydrodynamics (ETHD). Many researches 
have been studied the effect of AC or DC electric field 
on natural convection in a horizontal dielectric fluid 
layer by taking different types of fluids. The onset of 

electrohydodynamic convection in a horizontal layer of 
dielectric fluid was studied by Gross and Porter [9], 
Turnbull [10], Maekawa et al. [11], Smorodin and 
Velarde [12], Galal [13], Rudraiah and Gayathri [14] 
and Chang et al. [15]. Takashima and Ghosh [16] 
studied the electrohydrodynamic instability in a 
viscoelastic liquid layer and found that oscillatory 
modes of instability exist only when the thickness of the 
liquid layer is smaller than about 0.5 mm and for such a 
thin layer the force of electrical origin is much more 
important than buoyancy force while Takashima and 
Hamabata [17] studied the stability of natural 
convection in a vertical layer of dielectric fluid in the 
presence of a horizontal AC electric field.  

The theory of fluids with non-linear constitutive 
equations so called non-Newtonian fluids started by 
Reiner [18] for compressible fluids and Walters’ [19] 
for incompressible fluids. With the growing importance 
of non-Newtonian fluids having applications in 
geophysical fluid dynamics, chemical technology and 
petroleum industry attracted widespread interest in the 
study on non-Newtonian fluids. There are many 
elastico-viscous fluids that cannot be characterized by 
Maxwell's constitutive relations or by Oldroyd's 
constitutive relations. One such type of fluids is 
Walters’ (model B') elastico-viscous fluid having 
relevance in chemical technology and industry. Walters’ 
[19] reported that the mixture of polymethyl 
methacrylate and pyridine at 250C containg 30.5g of 
polymer per litre with density 0.98g per litre behaves 
very nearly as the Walters’ (model B') elastico-viscous 
fluid. Walters’ (model B') elastico-viscous fluid form 
the basis for the manufacture of many important 
polymers and useful products. In the case of Walters’ 

(model B') fluid, the term  q2  in the equations of 

motion is replaced by the term 


















 q2'

t
 , 

where μ and  ' are the viscosity and viscoelasticity of 
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the incompressible Walters’ (model B') fluid, 2  is the 
Laplacian operator and q is the Darcian (filter) velocity 
of the fluid. This has been widely accepted as simplest 
nonlinear viscoelastic model that takes account of frame 
invariance in the nonlinear regime. The model 
adequately represents highly elastic fluids, for which the 
viscosity remains sensibly constant over a wide range of 
shear rates, hence covering a wide range of practical 
fluids. Also the constitutive equation is one of the 
simplest viscoelastic laws that accounts for normal 
stress effects responsible for the periodic phenomena 
arising in viscoelastic fluids. Because of these reasons, 
the model has been widely accepted for experimental 
measurements and flow visualization on the instability 
of viscoelastic flows. The stability of Walters’ (Model 
B’) superposed fluid in porous medium has been studied 
by Sharma and Rana [20] while the thermal instability 
of compressible Walters’ (model B') fluid in the 
presence of hall currents and suspended particles has 
been studied by Gupta and Aggarwal [21]. 

Keeping in mind the various applications as 
mentioned above, our main aim in the present paper is 
to study the effect of uniform AC electric field on the 
onset of instability of an elastico-viscous Walters’ 
(model B') fluid. To the best of my knowledge, this 
problem has not been studied as yet. 
 
2. MATHEMATICAL MODEL  
 
Here we consider an infinite horizontal layer of an 
incompressible Walters’ (model B') elastico-viscous 
fluid of thickness d, bounded by the planes z = 0 and z 
= d as shown in fig. 1. The fluid layer is acted upon by a 
gravity force g = (0, 0, -g) aligned in the z direction and 
the uniform vertical AC electric field applied across the 
layer. The temperature T at the lower and upper 
boundaries is assumed to take constant values T0 and T1 
(< T0) respectively.  

 
Fig. 1 Physical Situation of the Problem 

 
2.1 Governing Equations 
 

Let ,,,,ρ, ' Kp  q(u, v, w), g, T,   and E denote 

respectively, the density, viscosity, viscoelasticity, 
pressure, dielectric constant, Darcy velocity vector, 
acceleration due to gravity, temperature, thermal 

diffusivity and the root-mean-square value of electric 
field. Then the equations of conservation of mass, 
momentum and thermal energy for Walters’ (model B') 
elastico-viscous fluid (Chandrasekhar [3], Walters’ [19], 
Takashima [15], Sharma and Rana [20] and Robert [5[) 
are  

 0,=q   (1) 

   K,
t

μμρ+P=
dt

d ' 










 EEqg
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12  (2) 
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where  

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 q
ε

1

tdt

d
 stands for convection 

derivative  
and  

  EE 






 K
p

2
P  (4) 

is the modified pressure. 

The Coulomb force term Ee , where e is the free 

charge density, is of negligible order as compared with 
the dielectrophoretic force term for most dielectric 
fluids in a 60Hz AC electric field. Thus, we retain only 
the dielectrophoretic term, i. e. last term in equation (2) 
and neglect the Coulomb force term. Furthermore, the 
electrical relaxation times of most dielectric liquids 
appear to be sufficient long to prevent the build up of 
free charge at standard power line frequencies. At the 
same time, dielectric loss at these frequencies is very 
low that it makes no significant contribution to the 
temperature field. It is also seen that the 

dielectrophoretic force term depends on  EE  rather 

than E. As the variation of E is so speedy, the root-
mean-square value of E is used as effective value in 
determining the motion of fluids. So we can consider 
the AC electric field as the Dc electric field whose 
strength is equal to the root mean square value of the 
AC electric field. 

A charged body in an electric field tends to along the 
electric field lines and impart momentum to the 
surrounding fluid. The Maxwell equations are  

0 E ,  (5) 

   0 EK . (6) 

Using Eq. (5), the electric potential can be expressed as 

 VE , (7) 

where V is the root mean square value of electric 
potential. The dielectric constant is assumed to be linear 
function of temperature and is of the form 

  0 01K K T T     , (8) 
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where 0 , is the thermal coefficient of expansion of 

dielectric constant and is assumed to be small. 
The equation of state is 

   ,1 00 TT     (9) 

where α is coefficient of thermal expansion and the 
suffix zero refers to values at the reference level z = 0. 
 
2.2 Basic State  
 
The basic state of the system is taken to be quiescent 
layer (no settling) and is given by 

 
)(),(),(

),(),(),(

zzKKz

zTTzPPz

bbb

bbb

 


EE

qq
, (10) 

where the subscript b denotes the basic state.  
Substituting equations given in (10) in Eqs. (1) – (9), we 
obtain 

    K,
zρ

+
zP

= bb  2

000 2

1)(
0 Eg


 (11) 

 ,0
)(

2

2

=
dz

zTd b   (12) 

   ,1)( 00 TTKzK bb     (13) 

   ,1)( 00 TTz bb    (14) 

   .0 bb EK  (15) 

Solving Eq. (12) by using the following boundary 
conditions 

0)( TzTb   at z = 0 and 1)( TzTb   at z =d , (16) 

we obtain 

 ./0 dTzTTb   (17) 

In view of Eq. (15) and noting that .0 bybx EE  It 

follows that 

 00 EKEK bzb constant (say).   (18) 

Then  

 
dTz

E
zb /1
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Hence 

  dTz
T

dE
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

, (20) 

where  

  T

dTV
E








1log

/1
0  (21) 

is the root-mean-square value of the electric field at z = 
0. 

 
2.2 Perturbation Solutions 

 
To study the stability of the system, we superimposed 
infinitesimal perturbations on the basic state, so that  

 
P+P=PK

T=T=
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 (22) 

where  PK   ,,, ,T , Eq  be the perturbations in 

PKT  ,,,  , , Eq  respectively. Substituting Eq. (10) 

in Eqs. (1) – (9), linearizing the equations by neglecting 
the product of primed quantitities, eliminating the 
pressure from the momentum Eq. (2) by operating curl 
twice and retaining the vertical component and non-
dimensionalizing the resulting equations by introducing 
the dimensionless variables as follows: 
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Neglecting the primes for simplicity, we obtain the 

linear stability equations as 
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where we have dimensionless parameters as: 

 ,Pr



  ,



F  (26a,b) 

 ,
3


 Tdg

Rat


   (27) 

 
 

,
222

00
2


 dTEK

Rae


  (28) 

The parameter Pr is The Prandtl number and F is the 

viscoelasticity parameter while tRa  is the familiar 

thermal Rayleigh number and eRa  is the AC electric 

Rayleigh number.  
Here we assume that the temperature at the 

boundaries is kept fixed, the fluid layer is confined 
between two boundaries. The boundary conditions 
appropriate (Chandrasekhar [1], Takashima [15], Rana 
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and Jamwal [23] and Shivakumara et al. [27]) to the 
problem are 

 0,0
2

2









 T
z

V

z

w
w  or DT = 0.  (29) 

 
3. LINEAR STABILITY ANALYSIS 
 
Following the normal mode analyses, we assume that 
the perturbation quantities have x, y and t dependence of 
the form: 

 
      

 ,t+imy+ilx

zzΘzW=Tw

exp

)( , ,V, , 
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where l and m are the wave numbers in the x and y 
direction, respectively, and  is the complex growth rate 
of the disturbances. 

Substituting Eq. (30) in Eqs. (23) – (25) and (29), we 
get: 
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where 
dz

d
Dmla  ,222 . 

Eqs. (31) – (33) form an eigenvalue problem for 

tRa
 or eRa

and ω with respect to the boundary 
conditions (34).We assume the solution to W, Θ, Ф and 
Z of the form 

 0 sinW W z , 0 sin z   ,  

 zcos0 , (35) 

which satisfy the boundary conditions of Eq. (34). 
Substituting Eq. (35) into Eqs. (31) – (33), we obtain the 
following matrix equation 
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where 22 a+π=J 2 is the total wave number. 

The linear system (36) has a non-trivial solution if 
and only if 
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Eq. (37) is the dispersion relation accounting for the 
effect of Prandtl number, electric Rayleigh number, 
Taylor number and kinematic visco-elasticity parameter 
in a layer of Walters’ (model B') elastico-viscous 
dielectric fluid. 

Setting ii   in equation (37) and clearing the 

complex quantities from the denominator, we obtain 

 ,21  it iRa   (38) 
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Since tRa  is a physical quantity, it must be a real 

value. Hence, it follows from Eq. (43) that either 

0i  (exchange stability, steady onset) or 02  , 

0i  (overstability, oscillatory onset). 

 
4. THE STATIONARY CONVECTION 
 
For stationary convection, putting  = 0 in equation 
(37) reduces it to 
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  (41) 

Eq. (41) expresses the thermal Rayleigh number as a 
function of the dimensionless resultant wave number a 

and the parameters eRa . It is found that the kinematic 

viscoelasticity parameter F vanishes with ω and the 
Walters’ (model B') elastico-viscous dielectric fluid 
behaves like an ordinary Newtonian dielectric fluid. Eq. 
(41) is in good agreement with the equation obtained by 
Roberts [3]. 
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In the absence of AC electric field (i. e., 

when 0eRa ), Eq. (41) reduces to 
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which is exactly the same equation as derived by 
Chandrasekhar [1].  

To find the critical value of tRa , we differentiate 

Eq. (44) with respect 2a  and equate to zero to obtain a 

polynomial in 2
ca  in the form 
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From Eq. (43), it is observed that the critical wave 

number varies with eRa .  

To study the effect of AC electric field on 
electrohydrodynamic stationary convection , we 

examine the behaviour of 
e

t

Ra

Ra




 analytically. 

From Eq. (41), we obtain 
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22

2

a

a

Ra
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e
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



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
 (44) 

which is negative implying thereby AC electric field 
hastens the electroconvection implying thereby AC 
electric field has destabilizing effect on the system 
which is in an agreement with the results derived by 
Takashima and Ghosh [16]. 

The dispersion relation (44) is analyzed numerically. 
Graphs have been plotted by giving some numerical 
values to the parameters, to depict the stability 
characteristics. 

 

Fig 2. Variation of thermal Rayleigh number tRa
 
with the 

wave number a for different values of AC electric Rayleigh 

number eRa . 

In fig. 2, the thermal Rayleigh number tRa  is 

plotted against dimensionless wave number a for 

different values of electric Rayleigh number )( eRa as 

shown. This shows that as )( eRa increases the thermal 

Rayleigh number tRa  decreases. Thus AC electric field 

has destabilizing effect on stationary convection which 
is in good agreement with the result obtained 
analytically from Eq. (44).  
 
5. CONCLUSIONS 
 
The effect of AC electric field on the onset of 
instability of Walters’ (model B') elastico-viscous 
dielectric fluid layer heated from below has been 
investigated for the case of free-free boundaries by 
using perturbation theory and linear stability analysis 
based on normal modes. For the case of stationary 
convection, the non-Newtonian electrohydrodynamic 
Walters’ (model B') elastico-viscous dielectric fluid 
behaves like an ordinary Newtonian fluid. AC electric 
field hasten the onset of electrohydrodynamic stationary 

convection as 0 et RaRa  indicating that the 

thermal Rayleigh number tRa is an decreasing function 

of electric Rayleigh number eRa . Thus AC electric 

field has destabilizing effect on the stationary 
convection.  
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NOMENCLATURE 

Q Velocity vector 

a  Wave number  

d Thickness of the horizontal layer 

E  Root-mean-square value of the electric field 

0E  Root-mean-square value of the electric field at  

z = 0 

g Acceleration due to gravity  

K Dielectric constant 

0K  Reference dielectric constant at T0
 

l, m Wave numbers in x and y directions 

P Modified pressure, defined by Eq. 4 

Pr Prandtl number, defined by Eq. 26a 

F Viscoelasticity parameter, defined by Eq. 26b 

tRa  Thermal Rayleigh number, defined by Eq. 27 

eRa   AC electric Rayleigh number, defined by Eq.  

  28 

t Time  

T Temperature 

T0 Temperature at the lower boundary  

T1 Temperature at the upper boundary 

V Root-mean-square value of the electric  

 potential 

W Amplitude of vertical component of perturbed  

 velocity 

k Thermal conductivity  

(x,y,z) space co-ordinates 

Greek symbols 

μ Viscosity of fluid 

  Viscoelastisity of fluid 

  Coefficient of thermal expansion 

  Coefficient of thermal expansion of dielectric  

 constant 

κ Thermal diffusivity of the fluid 

ρ Density of fluid 

e   Free charge density 

  Electrical conductivity of fluid 

 Growth rate of disturbances 

2
h   Horizontal Laplacian operator 

   Laplacian operator 

Φ Amplitude of perturbed dielectric potential V 

Θ Amplitude of perturbed temperature T 
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У овом раду се истражује утицај електричног поља 
наизменичне струје на настанак нестабилности 
еластично-вискозног Волтерсовог (модел Б') слоја 
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диелектричног флуида под утицајем 
диелектрофоретске силе настале варирањем 
диелектричне константе са температуром. 
Применом теорије линеарне стабилности и методе 
анализе нормалног мода извели смо релацију 
дисперзије која описује утицај вискоеластичности и 
електричног поља наизменичне струје. У случају 

стационарне конвекције је утврђено да се Волтерсов 
(модел Б') флуид понаша као обичан њутновски 
флуид, док електрично поље наизменичне струје 
убрзава стационарну конвекцију. Добијени 
резултати су у складу са раније објављеним 
резултатима. 

 


