
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2015) 43, 335-343 335

Received: October 2015, Accepted: November 2015
Correspondence to: Luís Dias
Departamento de Produção e Sistemas,
Campus de Azurém, 4800-058 Guimarães, Portugal
lsd@dps.uminho.pt
doi:10.5937/fmet1504335V

António Vieira
Researcher,*

Luís S. Dias

Assistant Professor,*

Guilherme A. B. Pereira
Associated Professor,*

José A. Oliveira

Assistant Professor,*

M. Sameiro Carvalho
Associated Professor,*

Paulo Martins

Assistant Professor,*

*: University of Minho
Production and Systems Department

Portugal

Using Simio to Automatically Create 3D
Warehouses and Compare Different
Storage Strategies

This paper focuses on a simulation based approach to reduce warehouse
costs. At an early stage, the tool needs to be able to generate different
types of warehouses. To accomplish this, a Simio add-in was built in C#,
using the Simio API, where the user only needs to insert the layout data on
an excel spreadsheet. Afterwards, the created warehouse is capable of
modelling different storage strategies and compare them. The obtained
results indicate that the proposed strategy is able to reduce the picking
time in about 15% and the number of stops per milk run in 50%. Moreover,
it was found that the strategy currently in use needs 35% more space than
the proposed one.

Keywords: Warehouse, milk run, picker, Simulation, Simio, 3D, API,
Excel, C#.

1. INTRODUCTION

In recent years, the Bosch Group has been applying
concepts of the Toyota Production System (TPS) [1]
and of the Lean Manufacturing [2, 3], designated as
Bosch Production System (BPS). The purpose of the
BPS is to “eliminate waste in production and all related
business processes. Thus, BPS provides the basis for
continuous improvements in quality, costs, and supply
performance” [4].

A significant part of the costs of a company are
related to its warehouses [5]. Since one of the objectives
of the BPS is to reduce costs, the need to study
alternatives to the current design and picking system of
the warehouse on a company of the Bosch Group, arose.
This warehouse is comprised of corridors through which
the pickers ride the milk runs to collect containers of
products to satisfy the needs of the production lines. A
corridor is a set of racks, which in its turn is a set of
channels, where the containers, that hold several units of
products of a single type, are placed. In this context, a
simulation model, using Simio, is being developed.
Among other parameters, the tool must allow several
properties to be parameterized, such as: different storage
strategies, types of products, quantity of requests a
picker gets per trip, time between trips, arrival rate of
requests, the number of milk runs and pickers, the
layout of the warehouse, among others. The principal
steps conducted to model the logic of the system have
already been documented [6].

Thus, the main purpose of this work is to use a
simulation tool, developed in Simio that allows to
automatically create different storage layouts and to
compare different storage strategies for a warehouse of
the Bosch Group. In a traditional approach and due to
many reasons, such as the re-adaptation to new

products, new clients, etc., it may be necessary to
perform some changes on a model in order to maintain
it updated, or simply to accurately respond to new
scenarios. This is a process that, made manually can be
very time consuming. Consequently, the need to
automatically design warehouses, using Simio, arose.

Simio provides an API (Application Program
Interface), allowing the users to use their methods,
classes and others. Thus, an add-in for Simio was
created-using C#. By executing it, it is possible to
automatically create and place sets of Simio objects,
which collectively form the intended warehouse.
Moreover, the add-in needs to be able to: create any
number of corridors of channels (simple corridors and
sets of two corridors faced inside out), racks per
corridor, channels per rack (channels per column and
number of columns) and specify the size of the
channels, its position, rotation and the number of ways
the milk runs are allowed to travel on. To specify all
these features the user only has to enter the respective
data on an excel spreadsheet.

Chapter 2 presents a review over the analysed
literature. In chapter 3, the steps to create the add-in are
covered. In the fourth chapter, the developed add-in will
be used to create a warehouse correspondent to the one
being studied and the two types of picking strategies
will be compared. Finally, in the last chapter, the main
conclusions of the work will be discussed.

2. LITERATURE REVIEW

According to Coyle et al. “Warehousing provides time
and place utility for raw materials, industrial goods, and
finished products, allowing firms to use customer
service as a dynamic value-adding competitive tool” [7].
Thus, warehouses represent a very important role on
modern supply chains [5].

In fact, “whilst warehouses are critical to a wide
range of customer service activities, they are also
significant from a cost perspective. Figures for the USA
indicate that the capital and operating costs of
warehouses represent about 22% of logistics costs,

336 ▪ VOL. 43, No 4, 2015 FME Transactions

whilst figures for Europe give a similar figure of 25%”
[5]. These costs impel us to understand the problematic
and to use the storage space as efficiently as possible
[8]. Thus, the need to provide companies with methods
capable of improving the performance of warehouses
arises. According to Gu et al., several methods could be
used to model warehouses, such as simulation,
analytical methods and benchmarking. Nonetheless,
“simulation is still the most widely used technique for
warehouse performance evaluation in the academic
literature as well as in practice” [9].

One example is the simulation model developed by
Costa et al. using Arena. The authors conducted
experiments to identify changes that could be made on a
material delivery system to improve the efficiency and
precision of the logistic train functioning they were
modelling [10].

Notwithstanding, due to the appearance of new
products, new clients, demand changes or other reasons,
it may be necessary to perform some changes on a
model, in order to maintain it updated or just to
accurately respond to new scenarios. This is a process
that, made manually can be very time consuming. Thus,
the possibility of automatically create a simulation
model has already been studied [11].

Hlupic and Paul [13] compared simulation tools,
distinguishing between users of software for educational
and industry purposes. In his turn, Hlupic [14]
developed “a survey of academic and industrial users on
the use of simulation software, which was carried out in
order to discover how the users are satisfied with the
simulation software they use and how this software
could be further improved”.

Dias and Pereira et al. [12, 15] compared a set of
tools based on popularity on the internet, scientific
publications, WSC (Winter Simulation Conference),
social networks and other sources. “Popularity should
never be used alone otherwise new tools, better than
existing ones would never get market place, and this is a
generic risk, not a simulation particularity” [12].
However, a correlation may exist between popularity
and quality, since best tools have greater chances of
being more popular. According to the authors, the most
popular tool is Arena and the good classification of the
Simio is noteworthy. Based on these results, Vieira et al.
compared both tools [16] taking into consideration
several factors.

Simio is based on intelligent objects [17-19]. These
“are built by modellers and then may be used in
multiple modelling projects. Objects can be stored in
libraries and easily shared” [20]. Unlike other object-
oriented systems, in Simio there is no need to write any
programing code, since the process of creating a new
object is completely graphic [17-19].

The activity of building an object in Simio is
identical to the activity of building a model. A vehicle, a
customer or any other agent of a system are examples of
possible objects and, combining several of these, one
can represent the components of the system in analysis.
Thus, a Simio model looks like the real system [17, 19].
This fact can be very useful, particularly while
presenting the results to someone unfamiliar to the
concepts of simulation.

In Simio the model logic and animation are built in a
single step [17, 19]. This feature is very important,
because it makes the modulation process very intuitive
[19]. Moreover, the animation can also be useful to
reflect the changing state of the object [17]. In addition
to the usual 2D animation, Simio also supports 3D
animation as a natural part of the modelling process
[18]. To switch between 2D and 3D views the user only
needs to press the 2 and 3 keys of the keyboard [18].
Moreover, Simio provides a direct link to Google
Warehouse, a library of graphic symbols for animating
3D objects [18, 19].

Notwithstanding the fact that this is a recent tool, it
is already possible to find many studies that use this
tool. Vik et al. [21] used Simio to model a logistic
system design of a cement plant. Vieira et al. also used
Simio to model traffic intersections, so that they could
evaluate the impact on the performance when pre-
signals were introduced [22].

3. BUILDING THE WAREHOUSE

In this chapter, the several steps of the creation of the
Simio add-in will be covered. Moreover, in the last
section, the add-in will be used to create several
different warehouses.

3.1. Data input

To make it simpler for the user to introduce the data
related to the warehouse he wants to create, it was
established that he would only have to introduce the
data on an Excel spreadsheet. Table 1 shows an example
of the content of the mentioned file and in this section
the cells that the user needs to fill will be covered.

In order to allow the user to specify any number of
racks per corridor, it was established that on each line of
the excel file, the user inserts data related to a single
rack. Therefore, to start a new corridor, the user has to
enter the value “1” on the column “New corridor?”.
Conversely, if the user wants to keep adding racks to a
corridor, he just has to keep entering the value “0” on
the corresponding rows, on the same column.
Additionally, for each corridor, the user can chose one
of two types: a simple corridor, which is comprised of
one or more racks; and a set of two corridors that are
disposed inwards, so that a milk run traveling it may
collect containers from both corridors of its left and
right. To make it simpler to refer to these corridors, on
the remaining sections of this document, these will be
referred as simple and double, respectively. In this
sense, to specify a double corridor, the user needs to
assign the value “2” to the row corresponding to its first
rack. In the considered example, illustrated in Table 1,
the user intends to create 2 corridors, one of each type.

In the columns “Size” and “Coordinates”, the user
can specify the size of the channels (length, width and
height) and the position on which the corridors starts to
be built. These values are only read if the user entered
the value “1” on the “New corridor?” column of that
row, since it was assumed that this information does not
vary in the same corridor. The same approach applies
for the “Symbol index” and “Directions” columns. On

FME Transactions VOL. 43, No 4, 2015 ▪ 337

the first, the user can specify a symbol, from an array of
symbols, to be assigned to the channel. The only
difference between the symbols on this array is its
rotation angles. This approach had to be considered,
since the API of Simio does not provide methods for
rotating a fixed object and, for animation purposes, it
was very important to rotate the corridors and its
channels. However, this approach has a couple of flaws.
Firstly, since the waiting queue of the object is not
considered part of the symbol, it is not “rotated”, i.e.,
despite the fact that a different symbol is assigned to an
object, its queue remains with the rotation as the
original. Lastly, the possible rotation angles have to be
previously assigned. For this case, rotations of 45
degrees were considered (e.g. 1 means a rotation of 45
degrees, 2 means a rotation of 90 degrees and so on).
On the “Directions” column the user can define the
number of ways through which the milk runs can travel
on the corridor. On the last column, “Channels per
column”, the user can define any number of columns
per rack and any number of channels per column,
depending on the number of cells that have values and
the values on each of those cells, respectively.

On the “Rack description” column, the user can
specify a string that, as the name implies, indicates the
rack description of the rack in question. Figure 1 shows
the warehouse created by executing the developed
Simio add-in with the input defined on Table 1.

Figure 1: Warehouse created 1 (user-specified rack layout)

As can be seen, two corridors were created: a simple
and a double. Moreover, they were created at different
locations and with different rotation. The number of
columns and channels per column created also
corresponds to the data specified on Table 1.

3.2. First steps using the Simio API

The add-in was developed in Microsoft Visual Studio
2012. To start using the Simio API, it is necessary to
create a class that implements the IDesignAddIn
interface:

Afterwards, it is necessary to define the methods of

the implemented interface, otherwise the implemented
IDesignAddIn interface cannot be used. In this sense,
the methods Name, Description, Icon and Execute.

The first three define the name, description and icon
that will be presented in Simio, when a user wants to
select an add-in to execute. Lastly, the Execute method
will contain the code the add-in is supposed to execute.
In this case, the code to create the warehouse. The
following code lines illustrate the above mentioned:

After defining the methods of the IDesignAddIn

interface, it is possible to start to create objects and edit
its properties. To create an object using the Simio API
the user needs to call the CreateObject method. This
method takes a string and a FacilityLocation as
arguments. The later defines the coordinates x, y and z
in Simio and the first is the name of the object that is
supposed to be created on the specified location. This
object can be any one of the Standard library of Simio,
any other created by a user (e.g. a sub model) or even
the object that represents an entity or a worker. Thus, to
create the developed Simio sub-models, which have
already been discussed [6], this method is used.
Notwithstanding, to create a path, a conveyor, a time
path or a connector between objects a different method
is used, even though these are also objects in Simio. In
these cases, the method CreateLink has to be used.
Examples of both methods are given below:

As can be seen, this method takes a string, two

INodeObjects and a collection of FacilityLocations as
arguments. The first corresponds to the object being
created, while the following two arguments correspond
to the two nodes the method is supposed to connect.
Lastly, the collection of FacilityLocations is a list of
coordinates used to create the vertexes of the object. If
the user does not want to specify any vertexes, the value
null can be passed through this argument.

Apart from creating objects, the Simio API may also
be useful for other reasons, such as editing object
properties. In many cases, to accomplish this, it is
necessary to know the name of the property and use the
following code line:

However, there are some properties that require

other means to edit them, like the name of the object, its
size, symbol index, location, among others.
Nonetheless, knowing the name of the property in
question is not always a simple task, due to the lack of
information concerning the Simio API available. In fact,
when a user interacts with the tool and edits an object
property, the name presented by Simio for that property
is actually the display name. To confirm this situation
Figure 2 shows the properties inherited by an object of
the standard library of Simio.

As can be seen, the name of the selected property is
“EnteredAddOnProcess”, while its display name is
“Entered”. Thus, to learn the name of this property, the
user would have to access the list of properties of the
object and check its name, which is very troublesome.

Moreover, to create different orientations for the
corridors of channels that compose the warehouses, or
simply to create two corridors faced inwards,

338 ▪ VOL. 43, No 4, 2015 FME Transactions

composing a single corridor, it would be necessary to
use a Simio method that could rotate an object, just like
it is possible to do when interacting with the tool itself.
However, the API does not provide any method for this
task, so other workarounds had to be considered. The
solution adopted for this task was to assign different
Simio symbols (Object image representation) to the
objects, each one representing a different rotation angle.
Nonetheless, this does not affect the queue of the
objects. This fact can be seen on Figure 6 and on Figure
7 (chapter 4), where all the queues, of all the channels,

of the two faced inwards corridors, are facing the same
direction. Thus, the queues of the channels on the
second set of channels are facing an opposite direction
to where the pickers and the milk runs travel.

3.3. Excel communication

When the add-in starts its execution, all the data is read
from the excel spreadsheet to avoid having to make
multiple communications with the application. The
method created to that end is given below.

As can be seen, the variable app is used to start

Excel. Afterwards, the workbook variable opens the
intended excel file, by providing it with the correct path.
Lastly, the sheet variable accesses the pretended
worksheet (the first of the opened workbook) and the
range variable gets the range currently being used. At
this point, to read data from a cell of the opened sheet, it
was necessary to use the following expression:

As the purpose of this method is to save the data
contained on the excel sheet to a multidimensional
array, the remaining code lines search through the cells
with content and saves its string value to the respective
position on the array to be returned. Once all the data is
read, the communication with Excel can be terminated.

3.4. Algorithm

After retrieving the data, the add-in can start building
the warehouse. In this section, the code for this task will
be explained as pseudo-code, given below.

FME Transactions VOL. 43, No 4, 2015 ▪ 339

As can be seen, the algorithm runs through the
retrieved multidimensional array of strings, with the
contents retrieved from the excel spreadsheet, and

searches for the value “1” on the first column of every
row it searches. Once it finds it, executes the
GetCorridorData method, which is displayed below.

The purpose of this method is to get all the

information related to a corridor and store it on a single
data structure. This method had to be used, since the
way defined to build a simple corridor is different from
the way defined to build a double one. Moreover, to
make it simple for the user to introduce data on the
excel spreadsheet, he only needs to assign the value “2”
on the first rack of the second corridor of the double
corridor. Thus, to know if the corridor in question is a
simple one or a double one, it is necessary to read all the
rows belonging to the same corridor.

To store the data related to a corridor, the authors
defined an array with only two positions of lists of lists
of strings. The strings are the data retrieved from the
excel spreadsheet, while the list of strings (channels in
the code given above) stores the data related to the
number of channels to create, per rack (values of the
column “Channels per column” of Table 1). All the
information related to racks belonging to the same
corridor is stored on the remaining list (racks0 on the
code above). Nonetheless, if the value “2” is found, the
values are saved on a different list (racks1 in the code
above.). After running through all the rows of a
corridor, the two lists are saved on the respective array
positions, and the final data structure is returned. Once
again, considering the data on Table 1, the data
structures resulted from executing the GetCorridorData
for the first corridor is illustrated on Figure 3.

3.5. Add-in Validation

To demonstrate that the add-in is building the intended
warehouses, in this section, several inputs related to
different warehouses will be considered. Time and
Simio objects required for the creation will be
discussed. Three warehouse sizes were considered:
warehouse 1 with a total of 60 channels, warehouse 2
with a total of 300 channels and warehouse 3 totalizing
1500 channels. The numbers of corridors created,
number of objects used and elapsed time to build them

are displayed on Table 2. The way each type of corridor
is built and the number of objects required to create
them has already been explained and documented [6].

These results can greatly vary for the same
warehouse sizes, since they are very dependent of the
number of channels per column of a rack, the number of
columns per rack, the sets of racks, which has more
columns of channels, and more.

Thus, to be able to withdraw some conclusions from
this test, the authors applied the same number of
channels, per column, columns per rack and racks per
corridor to the same warehouse (c.f.
Stopplace_Channels created and Channels created
rows).

As Table 2 suggests, regardless of the size of the
warehouse, the type of corridor that requires more time
to build is the simple one. This can be explained by the
superior number of objects needed to build this type of
corridor, in comparison to the double one, which is
capable of providing the same amount of channels in
less space, since it can access two sets of channels, and
thus less objects are needed to create it. Consequently,
less time is also needed to create this type of corridor. In
fact, even building 3 simple corridors and 3 double
corridors can require more objects that building a single
simple corridor, with the same total number of channels.

4. COMPARISON OF STORAGE STRATEGIES

After building a warehouse, the model is ready to run
and/or perform simulation experiments. In this chapter,
a warehouse built using the developed add-in will be
used to compare two storage strategies.

Figure 4 illustrates the complexity associated to the
construction of a warehouse. In this figure, some of the
paths, TransferNodes and other Simio objects needed to
build the displayed warehouse can be seen, whilst
Figure 5 shows the same warehouse, by only showing
the important objects for animation purposes.

340 ▪ VOL. 43, No 4, 2015 FME Transactions

Figure 2: Warehouse created 2

Figure 3: Warehouse created 3

The system being modelled consists on an advanced
warehouse, located next to the production lines, which
stores about 500 different products. Products are placed
in containers and each container stores only one type of
product. The products are produced and sent to the
warehouse, for later being collected by the pickers and
sent to the respective production lines. These lines
consume the needed product units and, when it is
necessary to start consuming a different type of product,
a reference change occurs. In some cases, this
phenomenon can result on a container being returned to
the warehouse with the leftover product units in it.

The storage strategy used in this warehouse is the
dedicated (single-product within each container and in a
fixed position - channel). This is the simplest case, since
it consists on having a channel dedicated to a single type
of containers [8]. One of its great advantages resides on
the fact that, since the locations of the containers don’t
change, the pickers can memorize them, making the
picking process more efficient [8]. Nevertheless, the
problem with this strategy is that “it does not use space
efficiently. In fact, it is expected that, on average, the
storage capacity is about 50%” [8], which represents a
high amount of costs associated. To overcome this
problem, other strategies can be considered. However,
an alternative to this strategy would have to allow
containers to be mixed within a same channel, whereby
some companies oppose to its implementation. The
main reason for this is that the Information System (IS)
would have to be much more complex, in order to avoid
picking from the non-first position of a channel and to
guide pickers to the proper channel, once they would no

longer have the advantage of having memorized the
location of the containers. Figure 6 displays the running
of the simulation model, while modelling the single-
product storage strategy.

Figure 4: Modelling storage strategy 1

The remaining strategy being considered (multi-
product) consists on letting the pickers know the
channels they have to visit, at the beginning of their
picking trips. Moreover, the containers would have to be
stored, on each channel, taking into consideration their
data consumption (giving priority to the channels that
already have containers of the same type). Thereby, it
should be ensured that pickers always know what
channels they have to visit and that they always have to
collect the first containers on each of those channels. To
compare both storage strategies, the authors mainly
considered the space gained on the warehouse (e.g. the
number of unused channels), the number of stops per
milk run and the time spent by the pickers while
collecting containers. Figure 7 shows the simulation
model execution, while modelling the multi-product
storage strategy.

Figure 5: Modelling storage strategy 2

By comparing both Figure 6 and Figure 7, it is
expected that the single-product strategy requires a
higher quantity of channels to work, since it does not
store different types of product on the same channel.
This can be seen through the colours of the containers,
wherein each colour represents a different type of
product. As the figures illustrate, when the single-
product strategy is modelled (Figure 6), on each
channel, there are only containers of the same colour.
On the other hand, when the strategy being modelled is
the multi-product (Figure 7), containers of different
colours are mixed within a same channel. Moreover, the
containers are more concentrated and the majority of the
channels are close to being full. Conversely, on the
single-product strategy, the channels are divided
through a higher quantity of channels.

FME Transactions VOL. 43, No 4, 2015 ▪ 341

These differences were already expected.
Nonetheless, to quantify both strategies, some
simulation experiments with a warehouse of
approximately 900 channels were performed. These
experiments were executed with 4 milk runs, a 20
minute time interval between the picking trips and a
maximum capacity of 6 containers to every channel.
Additionally, probabilities of 50% and 5% were
considered for to the act of returning a container to the
warehouse with leftover containers. These percentages
can be justified by the fact that, in the multi-product
strategy, the load of the warehouse is driven by the next
effective production needs (electronic kanban system).
Thus, the quantity of containers returned to the
warehouse (leftovers) is very small. Results are
summarized on Table 3.
Table 1: Comparison of the storage strategies

Table 3 illustrates the several Key Performance
Indicators (KPI) considered for this comparison.
Nonetheless, some KPI were considered in order to
validate the simulation model, such as: the average trips
per milk run, the late pickers (pickers who were not
ready to start a new trip at the respective time), the
reference changes of the production lines and the full
containers collected. By examining the obtained values
for these KPI, it is possible to verify that all of them
present the same values, regardless of the storage
strategy being simulated, indicating that both strategies
are based on the same data. Moreover, it increases the
confidence in the simulation model. Nonetheless, for the
KPI average number of accesses per channel, the
average number of occupied channel positions and total
number of returned containers to the warehouse that
were collected once again, some differences were
obtained. However, these differences can be explained
by the fact that, on the multi-product strategy, the
production is driven by the next effective production
needs, which results in less containers being returned
when a reference change occurs and, in its turn, less
returned containers being collected once again and
slightly less channel positions being occupied.

According to the obtained results, the pickers of the
simulated multi-product strategy could perform their
picking trips in roughly 15 seconds less time,
representing an improvement of about 15% of the time
needed to collect the respective containers. In part, this
can be explained by the different results obtained by the
average number of stops per milk run, where a
difference of almost 2 was registered (improvement of
about 50%). In its turn, the different values registered

for the KPI average number of stops per milk run can be
explained by the fact that, with the implemented IS, it is
possible to store the containers on the warehouse, taking
into consideration the milk runs that will be collecting
them and, consequently, the production lines they are
destined to. Thus, the references that a single milk run
has to collect are more concentrated and a single stop is
enough to collect several containers of different types of
product. Another aspect that influences the picking
times obtained is the fact the pickers of the single-
product strategy had to collect more containers
(Returned containers collected column of Table 3),
since in this scenario the probability of a container
being returned to the warehouse, after being delivered to
a production line, is higher. Lastly, the multi-product
approach was able to achieve this performance and
maintaining one of the advantages of the single-product
approach, which consists on the fact that the pickers
always collect the first container on each channel.

Focusing the analysis on the space occupied on the
warehouse, it is possible to verify that the multi-product
did not use 500 of the roughly 900 channels,
representing a usage percentage of less than 50%. On
the other hand, on the single-product strategy, only 358
channels were not used, representing a usage percentage
of less than 40% and an overall better performance of
the multi-product strategy of 35%, which means that the
system with the single-product warehouse would need
35% more space than the multi-product warehouse.
Lastly, concerning the average number of empty
channels, the strategy of multi-product was able to
obtain roughly 21% more of the empty channels.

5. CONCLUSIONS

One of the goals of the Bosch Production System (BPS),
implemented at Bosch, is to provide “the basis for
continuous improvements in quality, costs, and supply
performance” [4]. Thus, the opportunity to develop a
simulation model in Simio that could help a company of
the Bosch Group, arose. At an early stage, the tool
needs to be able to design several layouts of the
warehouse. After creating the intended warehouse, the
model should be capable of modelling different storage
strategies, allowing the user to specify several
properties.

Throughout chapter 3, it was explained how the
user can specify the warehouse layout he intends to
create, by inserting its data on an Excel spreadsheet.
Additionally, since the information available regarding
the Simio API is very scarse, some code lines needed to
start using it were provided. The code used to
communicate the C# with Excel was also provided,
while the main algorithm was kept as pseudo code. On
the last section of chapter 3, several inputs were used on
the developed add-in, in order to test it, by building
many different warehouses. As the results indicated, the
add-in was able to build all the warehouses. The number
of Simio objects that were created, as well as the time
needed to build them was also analysed. Some Simio
API gaps were also discussed at the end of chapter 3.

On the fourth chapter, the Simio add-in was used to
create a new warehouse to compare two different

342 ▪ VOL. 43, No 4, 2015 FME Transactions

storage strategies. The first consisted on a dedicated
warehouse (single-product), where each channel only
stores containers of a single type of product. The second
strategy consisted on allowing any number of different
types of products to be stored within the same channel
(multi-product). The comparison considered several
Key Performance Indicators (KPI). Focusing the
analysis on the KPI average picking time, average
channel picking position (Depth), average number of
stops per milk run and the total number of unused
channels, it was possible to notice that, on the multi-
product strategy, the pickers could collect the same
required containers in about 15% less time and by doing
an average of less 2 stops per picking trip (improvement
of about 50%). Moreover, the single-product strategy
needs approximately 35% more space. Lastly, the
analysed results indicate that the multi-product approach
was able to achieve this performance and maintain one
of the advantages of the single-product approach, which
consists on the fact that the pickers always collect the
first container on each channel, indicating that the
company in question could benefit from this strategy, by
reducing the size of their warehouse and by globally
improving their picking system. Thus, the associated
costs, both in time and space would be reduced.

The good animation results that Simio offers were
an important indicator for its selection for this project.
Additionally, the 3D features as well as the direct
interaction between Google 3D warehouse makes the
final result very similar to the system being modelled,
which can be very important when trying to transmit
confidence to others and also to show the results to third
parties. Throughout the paper, several figures illustrate
the very good animation results obtained (e.g. Figure 7).

ACKNOWLEDGMENT

This work has been co-supported by SI I&DT project in
joint-promotion nº 36265/2013 (HMIEXCEL - 2013-
2015 Project) and by FCT – Fundação para a Ciência e
Tecnologia in the scope of the project: PEst-
OE/EEI/UI0319/2014.

REFERENCES

[1] Monden Y (1998) Toyota Production System – an
integrated approach to Just-In-Time. In. Institute of
Industrial Engineers, Norcross, Georgia.

[2] Womack JP, Jones DT, Roos D (1990) The machine
that changes the world. In, Rawson Associates, NY

[3] Womack JP, Jones DT (1996) Lean Thinking. In,
Siman & Schuster, New York, USA.

[4] Bosch (2014) consulted online at:
http://www.bosch.com/en/com/home/homepage.html

[5] Baker P, Canessa M (2009) Warehouse design: A
structured approach. European Journal of
Operational Research 193, pp 425-436.

[6] Vieira A, Dias L, Pereira G, Oliveira J, Carvalho M,
Martins P (2014) 3D Microsimulation of Milkruns
and Pickers in Warehouses using SIMIO. In:
ESM'2014, FEUP - University of Porto.

[7] Coyle JJ, Bardi EJ, Langley CJ (1988) The
management of business logistics. West Pub. Co.

[8] Bartholdi JJ, Hackman ST (2008) Warehouse &
Distribution Science: Release 0.89. The Supply
Chain and Logistics Institute.

[9] Gu J, Goetschalckx M, McGinnis LF (2010)
Research on warehouse design and performance
evaluation: A comprehensive review. European
Journal of Operational Research 203, pp 539-549.

[10] Costa B, Dias LS, Oliveira JA, Pereira G (2008)
Simulation as a tool for planning a material delivery
system to manufacturing lines. In: Engineering
Management Conference, 2008 IEMC Europe 2008
IEEE International, pp 1-5.

[11] Vik P, Luís D, Guilherme P, Oliveira J (2010)
Automatic generation of computer models through the
integration of production systems design software
tools. International Journal for Simulation and
Multidisciplinary Design Optimization 4, pp 141-148.

[12] Dias L, Pereira G, Rodrigues G (2007) A Shortlist
of the Most Popular Discrete Simulation Tools.
Simulation News Europe 17, pp 33-36.

[13] Hlupic V, Paul R (1999) Guidelines for selection of
manufacturing simulation software. IIE Transactions
31. pp 21-29.

[14] Hlupic V (2000) Simulation software: an
Operational Research Society survey of academic
and industrial users. In: Simulation Conference,
2000 Proceedings Winter, pp 1676-1683 vol.1672.

[15] Pereira G, Dias L, Vik P, Oliveira JA (2011)
Discrete simulation tools ranking: a commercial
software packages comparison based on popularity.

[16] Vieira A, Dias L, Pereira G, Oliveira J (2014)
Comparison of Simio and Arena Simulation Tools.
In: ISC, University of Skovde, Skovde, Sweden.

[17] Pegden CD (2007) Simio: A new simulation system
based on intelligent objects. In: Simulation
Conference, 2007 Winter, pp 2293-2300

[18] Sturrock DT, Pegden CD (2010) Recent
innovations in Simio. In: Proceedings - Winter
Simulation Conference, Baltimore, MD, pp 21-31.

[19] Pegden CD, Sturrock DT (2011) Introduction to
Simio. In: Proceedings - Winter Simulation
Conference, Phoenix, AZ, pp 29-38.

[20] Pegden CD (2013) Intelligent objects: the future of
simulation. Simio. White paper. In, Available online
at:http://www.simio.com/resources/white-
papers/Intelligen-objects/Intelligent-Objects-The-
Future-of-Simulation-Page-1.htm

[21] Vik P, Dias L, Pereira G, Oliveira JA (2010) Using
simio for the specification of an integrated
automated weighing solution in a cement plant. In:
Proceedings of the Winter Simulation Conference.
Winter Simulation Conference, Baltimore,
Maryland, pp 1534-1546.

[22] Vieira A, Dias L, Pereira G, Oliveira J (2014)
Micro Simulation to Evaluate the Impact of
Introducing Pre-Signals in Traffic Intersections. In:
ICCSA, University of Minho at Guimarães –
Portugal.

ПРИМЕНА СОФТВЕРА SIMIO ЗА

АУТОМАТСКО КРЕИРАЊЕ 3D СКЛАДИШТА

FME Transactions VOL. 43, No 4, 2015 ▪ 343

И ПОРЕЂЕЊЕ РАЗЛИЧИТИХ СТРАТЕГИЈА
СКЛАДИШТЕЊА

A. Виеира, Л. С. Диаш, Г. А. Б. Переира, Ж. А.
Оливеира, М. С. Карваљо, П. Мартинш

Основну идеју рада представља приступ

заснован на симулацији са циљем смањења
трошкова складиштења. У раној фази, алат треба да
има могућност генерисања различитих типова
складишта. Да би се ово постигло Simio add-in је
развијен у C#, коришћењем софтвера Simio API, где

корисник треба само да убаци податке за распоред
складишта (layout) у Excel spreadsheet. После тога,
креирано складиште је оспособљено за моделирање
различитих стратегија складиштења и њихово
поређење. Добијени резултати показују да
предложена стратегија може да редукује време
“кружног” (тзв. milk-run) узимања артикала за око
15% и број заустављања по једном кругу узимања
артикала за 50%. Осим тога, утврђено је да је према
стратегији која се тренутно примењује потребно
35% више простора у односу на предложену
стратегију.

Table 2: Input Excel table

Length Width Height x y(z in Simio)
1 1 2 1 ‐20 30 0 2 AAA 4 4 4
0 AAB 4 4 4 4
0 AAC 4
0 AAD 4 4 4
0 AAE 4 4
2 ABA 3 3 3
0 ABB 4 4 3 4 5
0 ABC 4 3 4 3 4 3 3 4
1 2 4 1 15 20 2 1 BAA 6 6 5 5
0 BAB 4 4 4 4 0 0 0
0 BAC 0 3 4 4 3
0 BAD 6 6 6 4

Channels per columnNew corridor? Coordinates Symbol index Directions Rack descriptionSize

Table 3: Different warehouses created using the developed Simio add-in

Figure 6: Verifying name and display name of a property

Figure 7: Data structure representation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

