
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2016) 44, 83-91 83

Received: October 2015, Accepted: December 2015
Correspondence to: Dr. Vaibhav Shah
Department of Production & Systems (DPS), School of
Engineering, University of Minho, Guimarães, Portugal
E-mail: vaibhav.shah@dps.uminho.pt
doi:10.5937/fmet1601083S

Vaibhav Shah
Researcher

University of Minho
Portugal

Goran D. Putnik

Full Professor
University of Minho

Portugal

Software Tools for Understanding
Grammatical Inference Algorithms:
Part I – Tools for Regular Grammars
and Finite-State Automata

Software demonstrators are effective tools to show and understand
scientific and engineering concepts in function, and they also allow rapid
experiments. In the field of grammatical inference, there is a lack of
“ready-to-use” grammar synthesis tools, with simple interfaces showing
intermediate stages of the grammar inference process, and the presented
work addresses this issue by giving tools for experimentation with regular
grammar and finite-state automata, to help students and researchers
understand their properties, underlying concepts and applications.

Keywords: Formal Grammars, Grammatical Inference, Finite-State
Automata, Regular Grammars, Algorithms, Machine Learning,
Demonstrator Software Tools, Industrial Engineering.

1. INTRODUCTION

There is a growing interest in the field of grammatical
inference and it has received renewed attention
especially in researh communities from various sub-
fields of computer science and machine learning.
Historically, there were elaborative works and
applications of grammatical inference (GI) in the field
of syntactic pattern recognition [1], [2]. Later on, the
approach started to be widely used in other domains,
including the machine learning for problem solving in
industrial engineering [3], or in the areas of software
engineering [4]. An example of application of GI for an
industrial case is given in [5] and [6]. Also, as reported
in [7], grammar has been used as a design tool in many
disciplines including mechanical engineering [8], [9].
The work in the field of grammatical inference is also
gaining momentum through dedicated research commu–
nities such as International Community interested in
Grammatical Inference (ICGI) [10].

Software demonstrators that showcase functioning
of algorithms related to formal grammars can help in
further rapid growth of the field of grammatical
inference as a research subject. There have been
implementations of several algorithms and these are
available in the form of libraries, links to which can be
found on the webpage of the ICGI [10]. Also, there are
tools to visualize and simulate a finite-state automata
[11], as well as tools for creating regular grammars and
transforming from one model to another model of
automata theory [12]. But for the purpose of explaining
behavior and outputs of an algorithm, given an input set,
in a simple and easy to grasp way, it may be userful to
have ready-to-use tools of these algorithms with simple

user interfaces. An algorithm implementation in the
form of a software demonstrator is obviously an
effective way to visualise the algorithm and understand
its behaviour. The tasks of explaining and understanding
algorithms become much more intuitive, interesting and
simpler if there is an interactive way to see the
algorithms in function. However, the authors of the
presented work have not yet encountered any such
software tools for grammatical inference algorithms,
that allow the user to make easy correlation between
input set and synthesised output grammars. A working
implementation of an algorithm in the form of a
software tool allows visualising the functioning of the
algorithm in a much more effective intuitive manner
than reading its description. Such tools can be very
useful in explaining the concepts and functionality of
the grammatical inference algorithms to students and
researchers alike. In the presented work, software tools
demonstrating algorithms of regular grammar inference
are implemented and explained. The objective is to have
easy-to-use tools for experimentation with regular
grammar and finite-state automata and to understand
their properties. They bring clarity to explanation as
well as understanding of the core concepts. The
presented tools can also be used to apply grammatical
inference in many real-life cases, i.e. they are usable
beyond the controlled laboratory use cases. In
particular, these tools can be used for engineering
applications, to synthesise grammars as models of
industrial systems and architectures.

Three algorithms concerning regular grammars
inference and minimizing finite-state automata were
selected for implementation. These tools were
developed as part of the work for a Doctoral thesis [13]
and were primarily made to create better understanding
of the algorithms. In the following sections, these tools
are presented, with description of each tool following a
brief outline of the corresponding algorithm. The
software tools are explained with their respective
graphical user interfaces (GUIs), functionalities, and

84 ▪ VOL. 44, No 1, 2016 FME Transactions

examples of their functioning by giving output for a
given set of input sentences.

Section 2, very briefly, describes the basic notions of
regular grammar synthesis, i.e. definition of regular
grammar and the symbolism applied in the tools for
grammar synthesis. The authors have followed standard
norms for input and output symbols, as globally accepted
in formal languages and formal grammars. Section 3
describes Regular Expression Generator (REG) tool
demonstrating an algorithm to generate regular
expressions from input strings, where it is assumed that
there are repetitions of patterns in each string and the
algorithm finds these patterns and describes them in the
form of a regular expression. Section 4 describes a
software tool implemented to infer regular grammar
through “successor” method, which is a simple regular
grammar inference method. Section 5 describes k-tails
method for state merging through k-eqivalence relations
among states of a finite automaton, for arbitrary values of
k. All the software tools were implemented using
LabVIEW graphical programming environment.

2. REGULAR GRAMMAR SYNTHESIS BASIC

NOTIONS

2.1 Grammar definition

Consider V, a set of all symbols and V* a set of all
possible strings made of symbols of V.

Definition [14]: A phrase structure grammar G is a
4-tuple

G = (T, N, R, σ)

where, T is a finite set of terminal symbols, N is a finite
set of non-terminal symbols, T N∩ = Φ , VNT =∪ ,

N∈σ is the start symbol, and R is the finite set of
rewriting rules or productions of the form α β→ ,

*, Vα β ∈ , α λ≠ .

2.2 Symbolism used in grammatical inference tools

The authors have followed globally accepted norms for
the symbols of regular expressions and regular
grammars throughout this work, i.e. in all the tools
presented. Input strings are always formed either by
numbers (0-9) or by lowercase letters (a-z) or by ASCII
symbols (+, -, /, *, {, }, and so on…) or by a
combination of any of these. The symbols generated by
the tools are uppercase letters (A-Z). The tools also take
care of these rules of symbols in case the user makes a
mistake in writing symbols of input strings. For
example, once the user introduces input strings, called
input sample, these strings are analysed to extract
individual symbols, and if there are any uppercase
letters, they are automatically converted into their
lowercase counterparts. These extracted symbols, used
in the input strings are called the terminal symbols, and
they are always in lowercase by global convention. And
their set is called the Terminal Alphabet (T). The
symbols generated by the tools are always uppercase
letters, and are called non-terminal symbols (N).

The terminal symbols are essentially the abstraction
of real life complex terms, or processes in case of

engineering applications. When the grammatical
inference algorithms are applied for engineering
applications, or for any other application involving
terms made of strings longer than a single character, the
terms are abstracted into single character symbols, for
simplicity in understanding and ease of processing. The
system generates symbols to define the grammar rules,
and these are the non-terminal symbols. These symbols
are used for describing the synthesised grammar rules.
In a real-life scenario, these symbols help re-write the
synthesised model in shorter and cleaner format.

3. REGULAR EXPRESSION GENERATOR (REG)

This tool is an implementation of the uvkw algorithm for
regular expression generation from a given set of input
strings. The algorithm was given in detail in [15], and a
translated description in English was given in [16]. The
algorithm’s flowchart and outline in section 3.1 are
based on the description from [16]. Sections 3.2 and 3.3
describe the REG tool and experiments, respectively.

3.1 The algorithm to generate regular expressions

Figure 1 shows the flowchart of the algorithm uvkw
algorithm as implemented in the REG.

Figure 1. Flowchart of the implemented algorithm

In case when multiple patterns are found to be
recursive, some selection criteria have to be applied to
select a pattern as the best hypothesis for synthesis of
regular expression. In our implementation, the criterion
is to select the pattern that has the most number of
repetitions in a given string. As stated by [17], in terms
of the computation time, this method leads to a realistic
program.

FME Transactions VOL. 44, No 1, 2016 ▪ 85

Below is outline for the uvkw algorithm:

Input Sample I;
Do While Found (repetitions in the strings of I)

Build hypotheses for recursion;
Select the best hypothesis hi based on some

criteria;
Generate regular expression ri for the substring hi;
Rewrite I by replacing hi with ri;

End While
Output: Regular Expression.

The algorithm analyses the input strings to find

recursive patterns v and rewrite the strings in the form
of u-vk-w, hence the name. In the output regular
expressions, the recursion is denoted with an asterisk
“*”, and union of two expressions is denoted by a plus
symbol “+”. A pattern is closed within parentheses “(”
and “)”. Two symbols within a pattern are related by
product operation which is denoted by writing two
symbols together, e.g. ab is a pattern created as a
product of two terminals a and b. The priorities for the
operations in the regular expression notations are in the
following order: Star > Product > Union (as followed
from [17]).

3.2 The REG software tool implementation

This demonstrator has single graphical user interface.
The interface is shown in figure 2. The areas of interest
are marked with numbers.

Figure 2. REG graphical user interface

Following is the description of each of the numbered
parts of the interface:

(1) – this is where the user introduces input strings.
These strings are believed to contain repetitions of
certain patterns with one or more of the symbols. Each
input string should be introduced in separate line in
individual textbox of the list.

(2) – this indicator is to show the alphabet of
terminal symbols, i.e. symbols/letters extracted from the
input set of strings.

(3) – in this box the recursion patterns as found by
the algorithm are enlisted, for the purpose of analysis of
inputs and understanding of the algorithm.

(4) – this is where the final output of the algorithm is
displayed, in the form of a regular expression.

(5) – these are the buttons for analysis of the input
strings. By clicking the “analyse” button, the user tells
the tool to extract the unique symbols from the input
strings. This step is necessary before the actual
inference step.

A program in LabVIEW can be viewed in two
modes: front panel to edit user interface controls, and
block diagram to write and edit the logical flow of the
program. Figure 3 shows block diagram of the actual
program written for the REG Tool.

Figure 3. Implementation of the REG tool in LabVIEW

LabVIEW is a graphical programming language,
where programs are drawn by “wiring” objects instead
of “coding” as opposed to the text based programming
languages.

3.3 Synthesis using the REG tool

Following are several experiments performed on the
REG tool.

Experiment 1: As seen in figure 4, the REG is
provided with 3 strings as input – aaabc, abcabcabcbc,
abababab – where a, b and c are individual terminal
symbols. In the first cycle, the REG finds repetitions of
patterns a, abc, bc and ab. As per our criteria the pattern
a has the most repetitions, hence it is replaced with a
non-terminal symbol – in this case the capital letter A,
and all the strings are re-written. In the next cycle, more
such patterns are selected and re-written with new non-
terminal symbols, following the convention. The REG
synthesises the following regular expression after the
inference process, as given in formula (1).

 ()()*()* * (()*)*a bc a b+ (1)

When the synthesis process terminated, as seen in
figure 4, in total 4 recursion patterns were found. They
are listed in table 1, in front of their respectively
assigned non-terminal symbols. A brief analysis of the
output regular expression from formula (1) is discussed
here. As explained before, the priorities of operations in
a regular expression are Star>Product>Union. When
required, the parentheses are used to explicitly denote
the operation, overpassing the priority rule. Hence, in
the output expression above, the symbol a is a recurring
pattern on its own, i.e. a*, followed by the recursion of
product of symbols b and c, i.e. bc, as a single pattern
with recursion, i.e. (bc)*. This forms one complex

1

2

3

4
5

86 ▪ VOL. 44, No 1, 2016 FME Transactions

pattern (a)*(bc)*, which itself may appear in recursion,
i.e. ((a)*(bc)*)*. Another pattern is the recursion of
symbol a, i.e. a* followed by symbol b, hence their
product (a)*b. Also, it is “assumed” that this whole new
pattern may also appear 0 or more times, hence a
recursion ((a)*b)* which is also a complex pattern,
created by multiple symbols and recursions within
recursions. Finally, all the complex patterns thus
generated are joined by union to create the final regular
expression, so that the synthesised regular expression
represents the entire input strings sample.

Figure 4. Inference of regular expression through REG

Table 1. Recursion patterns

Non-terminal symbols Corresponding recursion patterns
with stepwise substitutions

A a
B bc
C AB >> A(bc) >> (a(bc))
D Ab >> (a)b

Table 2 shows more examples of regular expressions

synthesised by REG for various input samples.
Table 2. Experiments using the REG

Exp.
No. Input samples Regular expressions

1
aabaaababcabc
abcabaabcbc
aaaaabc

(((a)*b)*c)* + (((a)*b)*c)*bc

2
aabaaababcabc
abcabaabcabc
aaaaabc

(((a)*b)*c)*

3
sdsdsdsd
ssssfffff
sdfsdfsdf

(sd)* + (s)*(f)* + ((sd)*(f)*)*

Analysing the above experimental results, the

experiments 1 and 2 are almost identical in terms of
input strings, except that the second string in experiment
2 has an additional “a” before the last occurrence of
“bc” and this eliminates a part of the regular expression.
Implicating this in a manufacturing system application,
introducing a single instance of an operation simplified
the entire manufacturing process, and this effect was

apparently relatively easily if translated into a regular
expression in REG. Experiment 3 generated a regular
expression as a union of three different expressions
because the input strings are varied and show unique
patterns, i.e. strings do not share common patterns
among them.

4. REGULAR GRAMMAR INFERENCE THROUGH

“SUCCESSOR” METHOD

This is one of the simplest methods to generate a regular
grammar. The method was developed by two
independent teams of researchers [18] & [19]. In section
4.1 a brief description and the algorithm outlines are
given. In sections 4.2 and 4.3, the corresponding tool
and experimental example, respectively, are presented.

4.1 The “successor” method algorithm

The “successor” method is a simple method to synthesise
regular grammar from a given set of strings, by finding
the immediate successor of each terminal, and then
minimizing the automata to reduce the redundant states.
The outline of the algorithm is following:

Input Sample I;
States Q = {};
Build alphabet A = {a1, a2 …};
States counter r = 0;
Find “successors” of λ (empty string) in the sample,

i.e. the first letters of any string : (ai
0…): create

state q0;
For i = 1 to size(alphabet) i.e., for each symbol of

the alphabet
Find “successors” of ai in the sample, i.e. letters

that follow ai in any string : (aji …): create
state qi. Where aji is the successor of ai in jth
string (if exists);

EndFor
Merge states with same successors to build Q;
Output: Finite-State Automaton .

The finite-state automaton thus obtained is in fact

the representation of corresponding regular grammar.

4.2 The tool for regular grammar synthesis

The demonstrator tool for regular grammar synthesis
by “successor” method is given here, referred to as
GISM tool in the remaining parts of the paper. The
graphical user interface of the tool is given in figure 5.
Following is a brief description of each numbered part
on the interface.

(1) – this textbox is to introduce input strings, in
order to populate the input sample. The set of input
strings should be exhaustive, i.e., it should be positive
sample containing all the symbols of the language
represented. The input strings are automatically
converted to lowercase characters if there is any
character from A-Z.

(2) – this list shows the input strings as introduced
by the user, in order to verify the input set before
processing further.

FME Transactions VOL. 44, No 1, 2016 ▪ 87

(3) – the start symbol. By convention, S is used as
the start symbol, but it is possible to mention a start
symbol of the user’s choice. Start symbol can be of
multiple characters as well, such as “START” etc.

Figure 5. GUI of the successor method synthesis tool

 (4) – These are the three sets T, N and F, each
containing specific types of symbols. T is the set of
terminal symbols. N is the set of non-terminal symbols,
written in uppercase. F is the set of final states. Upon
clicking “Generate Alphabets” these three sets are
automatically filled. T is filled with lowercase unique
symbols extracted from the input strings. N is filled with
corresponding uppercase symbols for each symbol in T
and the start symbol. F is filled with symbols
considering the number of unique symbols at the end of
each positive string, i.e. the final states.

(5) – this is a table where each row corresponds to a
transition from one state (first column) to another (third
column), given the input symbol (second column). In
other words, each row of this table corresponds to each
execution cycle of the algorithm for the given positive
sample strings. This table is mainly for analysis and
educational purpose. It gives a clear understanding of
the functioning of the algorithm.

(6) – this table is the actual state transition table,
where each row represents a unique transition. This
table is generated after eliminating all the redundant
transitions from the table in item (5).

(7) – this box shows the state transition from (6) in
the form of grammar productions, or rewriting rules, i.e.
the regular grammar G representing the language L of
the input strings I.

)(GLI ⊆ (2)

4.3 Example run of the tool

Below is an example run of the software tool
demonstrating “successor” method in function. Consider
the following input set of positive strings.

I = {ab, baa, bbb, aaba}.
Figure 6 shows the state transition table, table of

unique state transitions and grammar rules for the
language representing the input strings. As seen in
figure 6, the sets T, N and F are filled based on the input

strings – extracting unique terminal symbols to fill T,
their uppercase counterparts plus the start symbol to fill
N, and a symbol for each of the unique ends of the input
strings to fill F (in the given input set, the strings either
end with a or b, hence two final states, A and B).

Figure 6. An example run of the GISM tool

The first state table generated is given in table 3.

Table 3. Initial state table with duplicate state transitions

Start
state

Input
symbol New state

S A
A a B
B b
S B
B b A
A a A
A a
S B
B b B
B b B
B b
S A
A a A
A a B
B b A
A a

The execution of this algorithm is pretty straight–

forward. For example, before reading each input
string, the automaton is considered to be in the start
state (S). In addition, each string has a prefix λ which
is the symbol for an empty string. The purpose of this
empty string is for it to be considered as the first input
in order to consider the first actual symbol of the string
as a “successor” of something (in this case the empty
string).

Now, when the program picks the first string ab of
the input sample, the first state transition occurs from
the start state S to a new state A with the input string λ,

i.e., S A
λ
→ , the first row in table 3. Considering the

“successor” of λ, the next input is a, by which the
automaton makes a transition towards the next state,

88 ▪ VOL. 44, No 1, 2016 FME Transactions

calling it B, hence the state transition
a

A B→ is
generated, and this transition is written in the second
row of table 3. There are no more symbols in the first
string, hence the state B becomes the final state, and is
added in the transition table without output state. The
third row of table 3 indicates this. In this way, one by
one, all the strings are read new state transitions are
calculated. On the GISM tool’s GUI, this table is shown
as “SM State table” (see figure 6) in the area numbered
5 as in figure 5.

As seen in table 3, the initial state table generated by
the “successor” method, has multiple rows showing the
same state transition, with the same (start state, input
symbol, new state) triplets.

In the next step, these “duplicate” rows are
eliminated, and only unique state transition rows are left
in the state transition table, as in table 4.
Table 4. State table with unique state transitions

Start state Input symbol New state
S A
S B
A a A
A a B
A a
B b A
B b B
B b

To compare the algorithm’s functioning against the

GISM simulator tool’s output, the algorithm’s execution
steps are given below. The method is to create a state
for each symbol of the alphabet T. Recalling the input
sample I = {ab, baa, bbb, aaba}.

The state set Q is created in the following steps:

“successors” of λ in I are (a,b): create state q0.
“successors” of a in I are (a,b): create state q1.
“successors” of b in I are (a,b): create state q2.

Figure 7 shows the state diagram of the inferred

grammar. This state diagram was created using JFLAP
tool [11]. The states q1 and q2 are also the final states,
hence marked with double outline. Rewriting the state
transition table into the form of rules of a regular
grammar, the rules are obtained as shown in table 5.
Hence, the grammar synthesis process is completed.
Table 5. Regular grammar rules derived

Rules of synthesised grammar

S → A
S → B
A → aB
A → aA
A → a
B → bA
B → bB
B → b

It is important to note that the three steps to
grammar synthesis by “successor” method are clearly
seen on the user interface of the presented tool. As
claimed earlier, this kind of interface allows students to
grasp the algorithm’s functionality fairly clearly. The
tool can be an effective educational tool as well as a tool
for automatic grammar synthesis for practical
applications.

Figure 7. State diagram of inferred grammar

5. K-TAILS BASED REGULAR GRAMMAR

INFERENCE

Of all the tools presented in this paper, the simulator of k-
tails method is the most important. One reason is that the
method itself is quite tricky and requires an understanding
of various other concepts and definitions. The k-tails
method is applied for minimization of finite automata for a
constraint value defined as k. It was given in [20] and [21].
However, for the purpose of this work, the authors have
adapted examples given in [22]. The method is very clearly
explained in literatures [22] and [23], hence the details and
the usage of k-tails are not discussed in the presented work.
But for the purpose of clarity and context, some basic ideas
are discussed in section 5.1.

5.1 The method in brief

The k-tails method follows procedure of finding k-
equivalence relation among the states of a canonical
grammar [16] through a heuristic state merging process.
To understand the k-tails method, it is necessary to
understand the idea of a formal derivative [23] of a set.

Definition [22, 23]: The formal derivative of a set I
of strings with respect to a given symbol u T∈ is
defined as { }xD I u xu I= ∈ . Considering the same
input sample I = {ab, baa, bbb, aaba} from section 4,
following are some formal derivatives of the set I for
strings λ, a and b:

DλI = I; DaI = {b, aba}; DbI = {aa, bb}

Next, the k-tail of I with respect to a string x, formed by
symbols of terminal alphabet T, is defined as:

(, ,) { , }xg x I k u u D I u k= ∈ ≤ (3)

Next, the simulator is presented.

5.2 Software simulator for k-tails based regular
grammar inference

The figure 8 shows graphical user interface for the k-

tails simulator tool. The parts numbered (1), (2) and (3)

FME Transactions VOL. 44, No 1, 2016 ▪ 89

are common from the GISM tool, hence not explained
here. The other parts are as follows:

(4) – this table shows all possible distinct derivatives
of the input sample. The purpose is to give the whole
list at once, always present for reference.

(5) – this control is to specify an arbitrary value of k.
(6) – this is the list of k-tails of the sample, for the

selected value of k.
(7) – this table shows the k-equivalence classes

generated for the selected value of k.

Figure 8. GUI of k-tails simulator tool

5.3 Experimenting with the simulator

Running the simulator with the same input sample I =
{ab, baa, bbb, aaba}, the interface is initially filled with
all possible distinct derivatives, which do not depend on
any selection of value of k. These distinct derivatives
are created for all possible strings, formed by the
symbols of T, up to the length equal to the smallest
string in input sample. In sample I, the smallest string is
ab, hence the distinct derivatives of I are created for
strings λ, a, b, aa, ba, bb (ab is omitted deliberately
because there are no other string in I starting with ab,
except the string ab itself).

As soon as the interface is activated, the user is able
to change the values of k, and the interface looks as seen
in figure 10. With each changing value of k, the parts k-
equivalence classes and k-tails of Sample show
corresponding values. Shown in Figures 10 and 11 show
the whole interface for values of k=1 and 2,
respectively.

Table 6 shows k-equivalence classes for different
values of k. It has been proven in [16] that the class
merging is effective for values of k less than or equal to
the number of states – 2.

Table 6. k-equivalence classes derived

k=1 k=2 k=3
(S0, S2, S5), (S1,
S4), (S3)

(S0), (S1, S4), (S2),
(S3), (S5)

(S0), (S1), (S2), (S3), (S4),
(S5)

S0 = S2 = S5 =
{}; S1 = {b};
S3 = {a};
S4 = {b}

S0 = {ab}; S3 = {a};
S1 = S4 = {b};
S2 = {aa,bb};
S5 = {ba}

S0 = {ab, baa, bbb};
S1 = {aba, b}; S3 = {a};
S2 = {aa, bb}; S4 = {b};
S5 = {ba}

Figure 9. Distinct derivatives of input sample

Figure 10. GUI of the k-tails simulator showing values for k=1

Figure 11. GUI of the k-tails simulator showing values for k=2

In order to understand the k-tails method, and to apply
it for a given set of strings, it is necessary to calculate
all the derivatives of the set of strings, and then apply
the k-tails method on those derivatives, for values of k.
This requires careful calculations, which can be tricky
if there are a large number of strings and/or symbols
and may lead to frequent errors if calculated manually.
Furthermore, for a student, trying to understand the

1

2

3

4

5

6
7

90 ▪ VOL. 44, No 1, 2016 FME Transactions

method and the concept behind the method, it is
extremely helpful if there is a simulator which allows
visualising all the distinct derivatives as well as
different outcomes of k-equivalence classes for
different values of k.

The presented k-tails simulator tool addresses both
of these issues with a user-friendly interface that
highlights all the intermediate information required to
understand the final outcome of the k-equivalence
classes.

6. CONCLUSION

Three algorithms concerning the regular grammar
inference were implemented and presented in this
paper. The tools can be further enhanced for inclusion
of more functions, such as handling more complex
symbols. Moreover, the authors expect that these tools
can be considered as starting point for further
development of user friendly tools for inference of
formal grammars to help the growing research and
academic community working in the field of
grammatical inference, as well as for helping its
application in engineering problems.

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT – Fundação para a
Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2013, and by Doctoral Grant (FCT),
referenced SFRH/BD/62313/2009.

REFERENCES

[1] Torokhti, A., and Howlett, P.: Syntactic Methods in
Pattern Recognition, Elsevier, 1974.

[2] Fu, K.S.: Syntactic Pattern Recognition and
Applications, Prentice-Hall, 1982.

[3] Tanaka, T., Ohsuga, S., and Ali, M. (Eds.):
Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, Gordon
and Breach Publishers, 1996.

[4] Stevenson, A. and Cordy, J.R.: A survey of
grammatical inference in software engineering,
Science of Computer Programming, Vol. 96, pp.
444-459, 2014.

[5] Putnik, G.D., and Rosas, J.A.: Manufacturing
System Simulation Model Synthesis: Towards
Application of Inductive Inference, in:
Reengineering for Sustainable Industrial
Production, Chapman & Hall, pp. 259-272, 1997.

[6] Putnik, G.D., and Sousa, R.M.: On formal theories-
and formalisms for virtual enterprises. In: Information
Technology for Balanced Manufacturing Systems, pp.
223-232, Springer US, 2006.

[7] Lee, J., Wyner, G.M., and Pentland, B.T.: Process
grammar as a tool for business process design, MIS
Quarterly, Vol. 32, No. 4, pp. 757-778, 2008.

[8] Rinderle, J.R.: Grammatical Approaches to
Engineering Design, Part II: Modeling

Configuration and Parametric Design Using
Attributed Grammars, in: Research in Engineering
Design, Vol. 2, pp. 137-146, 1991.

[9] Schmidt, L.C., and Cagan, J.: GGREADA: A
Graph Grammar-Based Machine Design Algorithm,
in: Research in Engineering Design Vol. 9, No. 4,
pp. 195-213, 1997.

[10] ICGI: International Community interested in
Grammatical Inference, official webpage of the
community: http://www.grammarlearning.org/

[11] Rodger, S.H., and Finley, T.W.: JFLAP: An
Interactive Formal Languages and Automata
Package, Jones & Bartlett Publishers, Sudbury,
MA, 2006.

[12] Chesnevar, I.C., and Cobo, M.L.: Simulators for
Teaching Formal Languages and Automata
Theory: A comparative Survey, SeDiCI, 2002.

[13] Shah, V.: Contribution to Automatic Synthesis of
Formal Theories of Production Systems and
Virtual Enterprises, PhD thesis, School of
Engineering, University of Minho, Guimarães,
2014.

[14] Hopcroft, J.E., and Ullman, J.D.: Formal
Languages and Their Relation to Automata,
Addison-Wesley, Reading, Mass., 1969.

[15] Miclet, L.: Inference de grammaires régulières,
Thése de Docteur-Ingénieur – PhD thesis, Ecole
Nationale Superieure des Telecommunications,
Paris, France, 1979.

[16] Miclet, L.: Grammatical Inference in: Bunke, H.,
and Sanfeliu, A. (Eds.) Syntactic and Structural
Pattern Recognition – Theory and Applications,
Series in Computer Science – Vol. 7. World
Scientific, 1987.

[17] Miclet, L.: Structural Methods in Pattern
Recognition, Chapman and Hall, 1986.

[18] Richetin, M., and Vernadat, F.: Efficient regular
grammatical inference for pattern recognition,
Pattern Recognition, Vol. 17, No. 2, pp. 245-250,
1984.

[19] Rodger R.S., and Rosebrugh, R.D.: Computing a
grammar for sequences of behavioural acts, Animal
Behaviour, Vol. 27, pp. 737-749, 1979.

[20] Biermann, A.W., and Feldman, J.A.: On the
syntheses of finite-state machines from samples of
their behaviour, IEEE Trans. On Computers, Vol.
21, pp. 592-597, 1971.

[21] Biermann, A.W., and Feldman, J.A.: A survey of
results in grammatical inference, in: Watanabe, S.
(Ed.): Frontiers of Pattern Recognition, Academic
Press, 1972.

[22] Fu, K.S., and Booth, T.L.: Grammatical Inference:
Introduction and Survey – Part I, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-8, No. 3, May 1986.

[23] Booth, T.L.: Sequential Machines and Automata
Theory, Wiley, New York, 1967.

FME Transactions VOL. 44, No 1, 2016 ▪ 91

СОФТВЕРСКИ АЛАТИ ЗА РАЗУМЕВАЊЕ
АЛГОРИТАМА ЗА ЗАКЉУЧИВАЊЕ О
ГРАМАТИКАМА: ДЕО 1 – АЛАТИ ЗА

РЕГУЛАРНЕ ГРАМАТИКЕ И АУТОМАТЕ
КОНАЧНИХ СТАЊА

Ваибхав Шах, Горан Д. Путник

Софтверски демонстратори су ефикасно

средство за показивање и разумевање функцио–
нисања научних и техничких појмова, а омогућавају

и брзо експериментисање. У области закључивања о
граматикама постоји недостатак готових алата за
синтезу граматике са једноставним интерфејсом
који приказује непосредне фазе процеса
закључивања о граматикама. Приказани рад се бави
проблемом обезбеђења алата за експериментисање
регуларним граматикама и аутоматима коначних
стања у циљу пружања помоћи студентима и
истраживачима у разумевању каракатеристика,
апликација и појмова који се налазе у основи
регуларних граматика и аутомата коначних стања.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

