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Unconstrained Evolutionary and 
Gradient Descent-Based Tuning of 
Fuzzy-partitions for UAV Dynamic 
Modeling 
 

In this paper, a novel fuzzy identification method for dynamic modelling of 

quadrotors UAV is presented. The method is based on a special 

parameterization of the antecedent part of fuzzy systems that results in 

fuzzy-partitions for antecedents. This antecedent parameter representation 

method of fuzzy rules ensures upholding of predefined linguistic value 

ordering and ensures that fuzzy-partitions remain intact throughout an 

unconstrained hybrid evolutionary and gradient descent based 

optimization process. In the equations of motion the first order derivative 

component is calculated based on Christoffel symbols, the derivatives of 

fuzzy systems are used for modelling the Coriolis effects, gyroscopic and 

centrifugal terms. The non-linear parameters are subjected to an initial 

global evolutionary optimization scheme and fine tuning with gradient 

descent based local search. Simulation results of the proposed new 

quadrotor dynamic model identification method are promising. 

 

Keywords: fuzzy identification method, dynamic modelling, quadrotor 

UAV, Christoffel symbols, genetic algorithms, non-linear parameters, 

global evolutionary optimization. 

 

 
1. INTRODUCTION 

 

Autonomous quad-rotor helicopters increasingly attract 

the attention of potential researchers. A wide area of 

robotics research is dedicated to aerial platforms. The 

quad-rotor architecture has low dimensions, good 

manoeuvrability, simple mechanics and payload 

capability. The electrically powered four-rotor quad-

rotor helicopter architecture has been chosen for this 

research (Figure 1). 

 

Figure 1. Quad-rotor helicopter 

This structure can be attractive in several 

applications, in particular for surveillance, for imaging 

dangerous environments and for outdoor navigation and 

mapping. The study of kinematics and dynamics helps 

to understand the physics of the quad-rotor and its 

behaviour.  

Together with modelling, the determination of the 

control algorithm structure is very important [1-6]. The 

quad-rotor UAV is controlled by angular speeds of four 

motors. Each motor produces a thrust and a torque, 

whose combination generates the main trust, the yaw 

torque, the pitch torque, and the roll torque acting on the 

quad-rotor. Motors produce a force proportional to the 

square of the angular speed and the angular 

acceleration; the acceleration term is commonly 

neglected as the speed transients are short thus exerting 

no significant effects. 

Soft computing methods can be efficiently applied 

together with and also instead of conventional 

controllers. Fuzzy modelling [7-10] can be conducted as 

black-box modelling where all the system knowledge is 

mere input-output data. However when expert 

knowledge is readily available, we should take 

advantage of it – fuzzy grey-box modelling is a rational 

choice.  

Identification of linear parameters is a well-studied 

area, with efficient matrix algebra and singular value 

decomposition based reliable tools. Non-linear 

parameters can also be simply traced to their local 

optimum with well-studied gradient descent methods, 

but we should always keep in mind that gradient descent 

methods are trapped by local optimum areas. 

Evolutionary algorithms are robust global optimum 

search engines, capable of multi-objective search as 

described in [8-10].  

The paper is organized as follows:  
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In Section 1 the Introduction is given.  In Section 2 

the quad-rotor dynamic model is presented. In Section 3 

the Fuzzy-Logic systems are illustrated. In Section 4 the 

Multi-Objective Genetic Algorithms are illustrated.  

Section 5 presents the simulation setup and results. 

Conclusions are given in Section 6. 

 
2. DYNAMIC MODEL OF THE QUAD-ROTOR 

HELICOPTER 

 

Dynamic modelling [11-17] of the quad-rotor helicopter 

is a well elaborated field of aeronautics.  The model of 

the quad-rotor helicopter [18] and the rotational 

directions of the propellers can be seen in Figure 2.  

 

Figure 2. The model of the quadrotor helicopter 

The rotor pair 2 and 4 rotates clockwise direction 

and the rotor pair 1 and 3, anticlockwise direction. A 

quad-rotor helicopter has fixed pitch angle rotors and 

the rotor speeds are controlled in order to produce the 

desired lift forces. 

The quadrotor helicopter has four actuators - 

brushless DC motors which exert lift forces F1, F2, F3, 

F4 proportional to the square of the angular velocities of 

the rotors. Actually, four motor driver boards are needed 

to amplify the power delivered to the motors. Their 

rotation is transmitted to the propellers which move the 

entire structure. 

The main thrust is the sum of individual trusts of each 

four motor. The pitch torque is a function of difference in 

forces produced on one pair of motors, while the roll 

torque is a function of difference in forces produced on 

other pair of motors. The yaw torque is the sum of all 

four motor reaction torques due to shaft acceleration and 

blades drag. The motor torque is opposed by a general 

aerodynamical drag. The complete dynamics of an 

aircraft, taking into account aero-elastic effects, flexibility 

of wings, internal dynamics of the engine, and the whole 

set of changing environmental variables is quite complex 

and somewhat unmanageable for the purpose of 

autonomous control engineering. 

For a full dynamic model of a quad-rotor system 

both (1) the center of mass position vector of (x, y, z) in 

fixed frame coordinates and (2) the orientation Euler 

angles: roll, pitch, yaw angles (Φ, θ, ψ) around body 

axes X, Y, Z are considered for the vector of 

generalized coordinates q. Using the Euler-Lagrange 

approach it can be shown how the translational forces Fξ 

applied to the rotorcraft due to main trust can be full 

decoupled from the yaw, pitch and roll moments For a 

full dynamic model of a quad-rotor system both (1) the 

center of mass position vector of (x, y, z) in fixed frame 

coordinates and (2) the orientation Euler angles: roll, 

pitch, yaw angles (ϕ, θ, ψ) around body axes x, y, z are 

considered for the vector of generalized coordinates q. 

Using the Euler-Lagrange approach it can be shown how 

the translational forces Fξ applied to the rotorcraft due to 

main thrust can be full decoupled from the yaw, pitch 

and roll moments τ: 
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constant. 
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where J is a 3x3 matrix, called the inertia matrix and C 

is also a 3x3 matrix that refers to Coriolis, gyroscopic 

and centrifugal terms. Further on, for the scope of this 

paper we shall address only equation (2) as the 

quadrotor dynamic model to be identified. 

Equation (2) can be analyzed as three resultant 

torques 
iτ  acting along the i

th axes respectively as i∈  

(ϕ, θ, ψ), which using Christoffel symbols of the first 

kind can be defined as a function of the state vector of 

Euler angles q = [ϕ, θ, ψ], their velocities ( dtdqq /=ɺ ) 

and accelerations  ( dtqdq /ɺɺɺ = ) as: 

( )( ) ( )( ) ,
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The first component of equation (3) is shortly 

referred to as Jqɺɺ  the inertia matrix part, while the 

second as Cqɺ  the Coriolis matrix term for which 

components are defined as: 

( ) ( )
1

J ,   C
p

ik ik ik j ijk

j

D q q D q

=

= = ⋅∑ ɺ                       (4) 

where 
ijkikD D ,  are in general, highly non-linear scalar 

functions of the state vector q. They contain sin(
.
) and 

cos(
.
) functions of q, and their products and sums 

defined by the geometry of the system. 

There are general relations that can be used for 

reducing the number of unknown elements of J and C, 

like: (1) J is symmetric and (2) 
ijkD  are Christoffel-

symbols of 
ijD [12] thus further properties are inherently 

defined as: 
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It should be noted that direct measurement of any 

single component from equation (4) is not possible; the 

only measurable data, on the output of the system, is the 

resultant torque of equation (3). Identification of all 

non-linear functions (4) under these terms is a 

considerable problem. 

 
3. FUZZY-LOGIC SYSTEMS 

 

The Takagi-Sugeno-Kang (TSK) type Fuzzy-logic 

systems (FLSs) having n inputs and 1 output are defined 

in [19] as: 

( ) ( ) ( ) ( )∑∑
==

⋅=
M

1

M

1 l

l

l

ll qqyqqf ωω                    (6) 

where M is the number of rules, q is the vector of n 

input variables, yl is a scalar function of n input 

variables, defined by (n+1) c parameters as in equation 

(8). The antecedent, the premise part of a fuzzy rule is: 

∏
=

=
n

i

iFl qq
il

1

)()(
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µω                                  (7) 

where )(
)( iF q

il
µ is the membership function (MF) of the 

i
th input variable in the lth rule that defines the linguistic 

value Fl(i). The linguistic form of the l
th rule from the 

previously described first order TSK FLS is defined in 

[20] as: 

IF (q1 is F l(1)) AND (q2 is F l(2)) AND …( qn is F l(n)) 

                   THEN )0(

1

)( l

n

j

jjll cqcy +⋅=∑
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,              (8) 

Zadeh-formed MFs are the z-, the s-, and π -

functions (named after their shape) defined respectively 

as: 
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where 4321 bbbb ≤≤≤ are parameters defining MFs. 

In case there is more than one value q such that the 

degree of membership of q is equal to one, the interval 

where 1),( =bqkµ (the interval [b2, b3] for πmf  type 

kµ ) is called the plateau of the kµ  MF. When having 

for example 3 naturally ordered linguistic values l∈{a, 

b, c} (a = low, b = medium, c = large) constraints on 

parameters to preserve this ordering are: 
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A linguistic variable can be assigned K different 

linguistic values, each described by a MF 

),( bqkµ such that for every input q it holds 

that
1

( , ) 1
K

kk
q bµ

=
=∑ , the MFs are said to form a 

fuzzy-partition. Forming fuzzy-partitions by antece–

dent membership functions ensures that there cannot 

be a numerical input within the defined input range 

that will not result in firing at least one rule 

consequent of the fuzzy model, which means that there 

is a defined output for all possible input states. 

Keeping specific properties of fuzzy-partitions 

imposes a set of hard constraints on membership 

function parameters as detailed in [20]. By imposing 

these restrictions on all linguistic variables of the FLS, 

and additionally assuming that the rule base is 

complete in the sense that it covers the whole input 

domain, it immediately follows that the TSK model 

structure of equation (6) simplifies to: 

                  ∑ =
⋅=
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Automatic fine tuning FLS parameters that satisfies 

all of above listed constraints is a significant problem. 

In [21] a method is introduced that simplifies 

parameter optimisation of equation (11) while 

preserving all required constraints. Fuzzy-partitions can 

be simply formed from Zadeh-typed MFs by making 

equal the last two parameters of each preceding MF to 

the first two parameters of the succeeding MF. This way 

a fuzzy partition of K MFs is defined by 

1)1(2 +−K parameters. Let our input space be 

normalised (qmin = 0 and qmax = 1). If we do not want to 

allow any plateaux, parameter b2 must be equal to b3 in 

equation (9) this way the number of parameters is 

further reduced to 2−K .  

                   b1<b2<…<bK-1                             (12) 

Let us add two more constraints: 

0<b1 and bK-1<1  (13) 

Let us define the first MF to be: 

),0,( 1bqmfz                                    (14) 

 Let the Kth, the last MF concluding the fuzzy 
partition be: 

)1,,( 2−Kbqmfs                      (15) 

Let us define intermediate kth MFs to be: 

                     ),,,,( 11 +− kkkk bbbbqmfπ                     (16) 

for k = 1, …, 2−K , where b0 = 0 and bK-1=1. This way 

the ordered series of 2−K  bi parameters together with 

constants 1 and 0 are the minimal number of parameters 

to define a fuzzy-partition of Zadeh-formed MFs. 

This minimal number of non-linear parameters is a 

very important issue for optimisation as over 

parameterised systems are hard to optimise [22-23]. The 

only problem is that when tuning the non-linear 

parameters of a FLS having an n dimensional input 

space, we must comply with ∑ =
n
i iK1 pieces of hard 

constraints. 
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Although there are a number of constrained 

optimisation methods it is obvious that an unconstrained 

optimisation method would be more efficient. Let us 

consider K-1 pieces of rational, positive or zero 

parameters as proposed in [10]: 

                       1...,,1,0 −=∈ +
KRa κκ                (17) 

 When we define bk as: 
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for every k = 1, …, K-2; all the constraints of equation 

(12) and equation (13) are automatically fulfilled for 

every κa  from equation (18) without any further 

restrictions on any κa , other than κa≤0 . 

An ANFIS like optimisation, defined in [23] or any 

other efficient unconstrained nonlinear numerical 

method can be applied to minimise equation (11) error 

along the κa  parameters. For calculating all linear 

parameters a linear least square (LS) method can be 

applied to cl(j) parameters of the consequent part. To 

avoid traps of local optimal solutions for κa , a 

preliminary global search should be applied. 

 
4. MULTI-OBJECTIVE GENETIC ALGORITHMS 

 

A genetic algorithm (GA) is constructed on the basis of 

imitating natural biological processes and Darwinian 

evolution [24]. GAs are widely used as powerful global 

search and optimization tools [25]. Real life 

optimization problems often have multiple objectives. 

To establish ranking of chromosomes for Gas the 

comparison of two objective vectors is required. Often a 

simple weighted sum is used, but its drawbacks are 

widely known [9]. Pareto based comparison is the bases 

of a few popular methods like Non-dominated Sorting 

GA (NSGA) [7] and Multi-Objective GA (MOGA). 

A general multi-objective optimization problem 

consists of n number of scalar minimization objectives 

where every scalar objective function fi(x) is to be 

minimized simultaneously, where x is an n-dimensional 

vector of parameters. As maximization can be easily 

transformed to minimization, the generality of the 

previous statement stands. 

A vector x1 Pareto-dominates x2, when no scalar 

component of x2 is less than the appropriate component 

of x1, and at least one component of x1 is strictly 

smaller than the appropriate component of x2. Since no 

metrics can be assigned to Pareto-dominance, there have 

been two different attempts to define a GA ranking 

method, which can be used for Pareto-dominance vector 

comparison: (1) “Block-type” ranking is defined as: 

Rank is equal to 1 + (number of individuals that 

dominate the ith individual) (2) “Slice-type” ranking is 

defined in [7] as: Rank is equal to 1 + (number of turns 

when the non-dominated individuals are eliminated, 

needed for the ith individual to become non-dominated). 

Quantity-dominance, as proposed in [10] is defined 

as: vector a=[ai] Quantity-dominates vector b=[bi] if a 

has more such ai components, which are better than the 

corresponding bi component of vector b, and a has less 

such aj components, which are worse than the 

corresponding bj. A metrics can be defined as: the 

measurement of the extent of Quantity-dominance is the 

difference between the number of better and the number 

of worse components. For a measurement based ranking 

method the Rank of the ith objective vector can be 

simply defined as the sum of Quantity-dominance 

measurements for every individual measured from the 

ith vector. This ranking method can be readily applied 

with Quantity-comparison. 

The proposed vector comparison method provides 

more information when comparing two vectors than the 

classic Pareto-based comparison, thus the GA is faster, 

more efficient in its search. The MMNGA algorithm is 

computationally less expensive, and more efficient 

compared to the classical methods, and its results 

analyzed on a number of GA hard problems are at least 

equally good [10]. 

A simple method for realistic training data 

acquisition is to define the desired state position vector 

(x, y, z) with the desired yaw rotation angle . As the 

quadrotor dynamics is very sensitive to jerks, sudden 

changes in the third derivatives of state variables, the 

desired state variables will be defined through jounce 

(the fourth derivatives of state variables) with 

continuous functions 
πmf

from equation (9), like: 
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A general basic smooth jounce function setup to 

minimise jerk and thus results in smooth torque 

transitions is presented in Figure 3.  

 

Figure 3. A basic jounce function setup 

State variables (x,y,z) and ψ can be calculated by four 

time integration of their jounces. The roll and pitch is 

equal to: 
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The proposal of this paper is to identify Dij inertia 

matrix components of the dynamic model in equation 
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(4) as FLSs defined by equations (11) to (18), where the 

FLS general input variable q will be substituted for the 

appropriate state variables of (ϕ, θ, ψ). When the Dij 

inertia matrix components are constructed in this way, 

forming the Dijk components as Christoffel symbols is to 

be expressed by partial derivatives of equation (11) like: 
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The unknown inertia matrix components of equation 

(2) to be identified are: 

( ) ( ) ( ) ( )13 22 23 33, , , , ,D D D Dθ φ φ θ φ θ            (22) 

Based on quadrotor system structure and inertia 

matrix symmetry the remaining inertia components are 

known to be: 

11 12 21 12 31 13 32 23, 0, , ,XD I D D D D D D D= = = = =  (23)  

Based on equation (5) the following Coriolis term 

matrix components can be calculated by equations (22): 
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Remaining Dijk components are trivial identities 

defined by equation (5). 

 
5. SIMULATION SETUP AND RESULTS 

 

The proposed method is tested for a quad-rotor system 

simulation [26-33] from [1] with parameters as in Table I. 

Table 1. Quad-Rotor parameters 

Quad-rotor parameters 

parameter value unit 

gravity constant, g 9.81 m/s2 

mass, m 6 kg 

torque lever, l 0.3 m 

trust factor, k 121.5e-6  

drag factor, b 2.7e-6  

body inertia along axes x, Ix 0.6 kgm2 

body inertia along axes y, Iy 0.6 kgm2 

body inertia along axes z, Iz 1.2 kgm2 

simulation time, T 3 s 

 

The training data set is collected from a simulation 

along a trajectory with jounce for (x,y,z) and ψ defined 

so that position changes simultaneously along a unit 

cube main diagonal (0,0,0) (1,1,1)− , while performing 

a full circle rotation in jaw motion 0 2π− . 

The calculated roll, pitch and yaw motions are as 

presented on Figures 4, 5 and 6. The simulated resultant 

torque training data is as presented on Figure 7. 

 

Figure 4. Roll training data for input 

 

Figure 5. Pitch training data for input 

 

Figure 6. Yaw training data for input 

 

Figure 7. Torque training data set for input 

Non-linear Ka  parameters of the system are 

identified in a manner that first the input space is 

normalised to the unit hyper-cube. A set of non-linear 

parameters consists of six times four Ka  integer 

parameters for defining six fuzzy-partitions of five MFs 

each, where each partition consists of one z-type MF, 

three π-type MFs and one s-type MF as in (9)-(18). 

These six fuzzy-partitions serve as antecedents for the 

four fuzzy-systems like in equation (11) and (21), used 

for identifying Dij, ij=(13, 22, 23, 33) as defined in 

equations (22)-(24) and (5). 

Two unknown linear parameters D11 and D12 of the 

quadrotor model as in equation (23), together with 170 

linear parameters of the four TSK FLSs (2 FLSs with 5 

MFs on one input, each rule with 2 c parameters, plus 2 

FLSs with 5 MFs on both of the 2 inputs, each rule with 3 

c parameters) of equations (22) and equations (24) are 

determined by the SVD-based LS method as used in [21]. 
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Concluded from equation (17) six fuzzy-partitions 

(antecedent part of 2 FLSs with 1 input, plus 2 FLSs 

with 2 inputs are covered by 6 independent fuzzy-

partitions) are represented by a vector of six times four 

Ka parameters, which are optimized by a multi-

objective hybrid genetic algorithm as detailed in [10]. 

Each chromosome evaluation is extended to include an 

additional round of nonlinear LSQ optimization of 
Ka  

parameters. Chromosomes are updated before applying 

further GA operators, so the GA does not waste time on 

local optimization; only global search capabilities of the 

GA are utilized. Three objectives are set for 

minimization: (1) the root mean square of the torque 

identification error, (2) the maximum absolute error for 

any given training data input-output pair, and (3) the 

condition number of the linear system of equations used 

for LS calculation of linear parameters. 

The GA is set to work on a population of 125, 

divided into 5 subpopulations with migration rate 0.2 

taking place after each 5 completed generations. 

Crossover rate, generation gap and insertion rate is 0.8, 

selection pressure is 1.5. In each generation 4% of 

individuals are subject to mutation, when 1% of the 

binary genotype is mutated. Individuals, chromosomes 

are comprised of 24 Gray-coded integers, each consist 

of 16 bits. The initial population is set up in a 

completely random manner. 

Matrix of the linear equation is pre-processed from 

equation (3), where FLSs like equation (11) and their 

partial derivatives like equation (21) are inserted as 

described in equations (22)-(24). Unknown linear 

parameters are D11, D12 and the 170 c parameters of 

fuzzy-rule consequents. 

Evaluation of each individual is done as follows:  

(1) Convert the coded 
Ka values from the chromosome 

to bk by equation (18).  

(2) Evaluate all MFs, which will comprise six fuzzy-

partitions from each of six bk quadruplets by equations 

(14)-(16). Also evaluate derivatives of equations (14)-

(16).  

(3) The pre-processed matrix of the linear equation is 

evaluated with the MFs.  

(4) Linear components of equations (11) and (21) are 

calculated by SVD decomposition as described in [21].  

(5) Next the 
Ka parameters are fine-tuned by the Matlab 

“lsqnonlin” function,  

(6) MFs are re-calculated for the optimised 

Ka parameters and all linear parameters are re-

calculated.  

(7) Resulting optimised 
Ka  parameters are re-assigned 

into the chromosome of the evaluated chromosome.  

For the multi-objective rank assignment described in 

[10], the objective vector is created from: 

(i) the mean square of the identified torque error,  

(ii) the maximum absolute torque identification error 

and  

(iii) the condition number of the matrix of the linear 

equation.  

Stochastic universal sampling is used for selecting 

the next generation without explicit elitism. To speed up 

the GA processing, a database of evaluated 

chromosomes and their objective vectors is created, so 

only unique new individuals are evaluated in each 

generation. 

Convergence is achieved in some 50 generation 

evaluations, when the mean square error is in order of 

5e-7, the maximum torque error is <0.005 Nm. For non-

dominated chromosomes the condition number of the 

used matrix of linear equation is in order of 1e+38. 

One typical non-dominated chromosome and the 

corresponding torque identification error are presented 

on Figures 8 to 12. The numerical value of this 

chromosome is:  

[61029   8550  10175  18348   6668  22470  11993  

57404    608  18024  25310  39946  26698  53573  

39807  47476   1909     46  52007  47288   3712    920  

50956   5174], 

which defines fuzzy-partition MF parameters as: 

bi for J13: [0.6221, 0.7093, 0.8130]. 

bi for J22: [0.0677, 0.2957, 0.4174]. 

bi for J23: [0.0072, 0.2221, 0.5238; 0.1593, 0.4791, 

0.7167]. 

bi for J33: [0.0189, 0.0193, 0.5330; 0.0611, 0.0762, 

0.9148]. 

 

Figure 8. Fuzzy-partition for J13 antecedents 

 

Figure 9. Fuzzy-partition for J22 antecedents 

 

Figure 10. Fuzzy-partition for J23 antecedents 

 

Figure 11. Fuzzy-partition for J33 antecedents 
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Figure 12. Torque identification error 

 
6. CONCLUSIONS 

 

Simulation results of the proposed new quad-rotor 

dynamic model identification method are promising.  

The quality of identification with the relative torque 

error being uniformly <0.1% is excellent, suitable for 

taking part in a model based control algorithm.  

The typical condition number for used linear 

parameter evaluations is very high for the used training 

data setup, so a more advanced trajectory has to be 

planned with sufficient inertia excitation along the 

complete input domain.  

Also the FLS structure is to be made flexible, in 

terms that the GA should be able to turn off unnecessary 

MFs and thus reduce the number of unnecessary rules 

and linear parameters. 
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СЛОБОДНО ЕВОЛУЦИОНО И ГРАДИЈЕНТНО 

ОПАДАЈУЋЕ УСКЛАЂИВАЊЕ ФАЗИ 

ПАРТИЦИЈА КОД ДИНАМИЧКОГ 

МОДЕЛИРАЊА БЕСПИЛОТНИХ ЛЕТЕЛИЦА 

 

А. Немеш, Ђ. Мештер 

 

У раду се представља једна нова фази метода 

идентификације за динамичко моделирање 

квадротора. Метода је заснована на специјалној 

параметризацији претходника фази система који 

резултира фази поделом претходника. Овај метод 

представљања параметара претходника фази 

правила обезбеђује уважавање редоследа претходно 

дефинисаних лингвистичких вредности и осигурава 

да фази подела остаје непромењена за сво време 

неограниченог хибридног еволуционог, градијентно 

опадајућег оптимизационог процеса. У једначинама 

кретања, одговарајућа компонента дериватива првог 

реда се срачунава на бази Kристофел симбола, 

деривативи фази система се користе за моделирање 

Kориолисових ефеката, жироскопских и 

центрифугалних израза. Нелинеарни параметри су 

подвргнути иницијалној општој еволуционој 

оптимизационој шеми а фино подешавање 

градијентно опадајућем локалном претраживању. 

Симулациони резултати предложеног новог 

идентификационог метода динамичког модела су 

обећавајући. 

 


