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Fuzzy Model Based Surface 
Roughness Prediction of Fine Turning 
 

The quality and accuracy requirements of machined parts (e.g. geometric, 

and shape tolerances…) continue to grow even today. These requirements 

include, as an important criterion, the machined surface roughness. 

During machining the surface roughness depends largely on the cutting 

parameters (cutting speed, feed, depth of cut). The authors implemented a 

fuzzy-based predictive model based on the available measurement data, 

which is able to estimate the roughness parameters belonging to the 

different settings. The main advantage of the fuzzy approach is that the 

model can be constructed on the basis of relatively few measurements as 

the expert knowledge can be built into the system through the rule base. 

Consequently, the unnecessary, time consuming measurements can be 

eliminated. The study discusses die-cast (eutectic) aluminum alloy part, 

typically used in mass production, fine-turned by a diamond tool. 
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1. INTRODUCTION  

 
The surface roughness, as quality characteristics, is a 
particularly important criterion in the case of fine 
turning and finishing operations. It depends on the 
cutting parameters (Figure 1).  

 
Figure 1. Schematic diagram of the turning 

In technology design the desired (manufactured) 
roughness should be taken into account. Recent years 
have seen many researchers dealing with the installation 
of predictive models, due to the increased number of the 
applied materials and the modern tool materials. These 
models create a connection between the cutting 
parameters and the surface roughness.  

Oğuz Çolak [1] Ti6Al4V investigated the 
machinability under conventional and high-pressure 
heating conditions. During the investigation 
CNMG0812 (Ti,Al)N+TiN coated insert was used and 

the experiments were based on Taguchi L9. The cutting 
speed, feed, and cooling was investigated in three level 
(vc=50-70-90 m/min, f=0.1-0.15-0.2 mm, cooling=6-
150-300 bar), while the depth of cut was held at a 
constant value (ap=2 mm). He installed an empirical 
model to predict Ra (power input, kW and chip removal 
rate, cm3/min), based on the cutting speed, feed, depth 
of cut, and the cooling as input parameters. 
Additionally, optimal cutting parameters were defined 
for all three levels of cooling. 

Hard turning investigation was carried out by Hamdi 
Aouici et al [2]. They turned material AISI H11, with 
hardness 40-45-50 HRC. They used tool CBN7020, 
whose material is 57% CBN and 35% Ti(C, N). A design 
of the experiment was carried out, in which the cutting 
speed, feed, and depth of cut were changed in three levels 
(vc=120-180-240 m/min, f=0.08-0.12-0.16 mm, ap=0.15-
0.3-0.45 mm). In the study empirical equations were 
constructed to predict e.g. the average surface roughness 
(Ra) and the three components of cutting force, which 
included the cutting parameters and the hardness of work 
piece. Additionally, optimal parameters were determined, 
while the surface roughness and the components of the 
cutting force were minimized. 

Catalin Fetecau and Felicia Stan [3] tested the 
cutting ability of two kinds of polytetrafluoroethylene 
(PTFE) using PCD (polycrystalline diamond) tool. In 
plan L27 Taguchi they changed the cutting parameters 
and the nose radius of the tool in three levels (vc=51.02-
128.58-163.28 m/min; f=0.053-0.167-0.25 mm; ap=0.5-
1.5-2, rε=0.4-0.8-1.2 mm). As a result they created 
equations to predict the surface roughness for both 
materials, in which the cutting parameters are the inputs. 

Cutting ability of engineering plastic was also 
examined by Lazarević et al [4]. Their researches 
focused on modeless optimization approach for 
minimization of cutting force in polyamide turning 
process. They examined the influence of cutting 
parameters (vc=65.03, 115.61, 213.88 m/min;  f=0.049, 
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0.098, 0.196 mm;, ap=1, 2, 4 mm; rε=0.4, 0.8 mm), on 
main cutting force was analyzed on the basis of the 
standard L27 Taguchi’s orthogonal array. In their work 
optimal turning parameters were determined 
considering Taguchi’s robust design methodology. 

The cutting ability of two kinds of stainless steel 
was examined by Selvaraj et al. [5] in dry conditions. In 
the study they used a TiC and TiCN coated tool (insert 
code: SNMG 120408 MT TT5100). The cutting speed 
and the depth of cut was changed in three levels (vc=80-
100-120m/min, f=0.04-0.08-0.12 mm), while the feed 
was held at constant values ap=0.5 mm). They have 
concluded that the minimum roughness in the case of 
both materials can be reached with 100 m/min cutting 
speed and 0.04 mm feed, furthermore, they have found 
that the feed affects the surface roughness to a greater 
extent than the cutting speed. 

Iacob et al. [6] investigated the cutting torque at the 
drilling of stainless steel (x22CrMoV12-1). The cutting 
conditions during the experiments are given below: the 
cutting tool: HS6-5-2C high-speed steel drill with the 
hardness 62 HRC and the diameters: Ø8, Ø10, Ø12, Ø16; 
cutting parameters:  f=0.08-0.125 mm, n=355-710 1/min; 
the cooling and lubricating fluid: P 20% emulsion. They 
created an equation to estimate the torque of drilling. 

Barzani et al. [7] examined the cutting ability of die-
cast alloy Al-Si-Cu-Fe for four kinds of materials: 
normal, Bismuth-reinforced (Bi), Strontium-reinforced 
(Sr), and Antimon-reinforced (Sb). In the study a TiN 
coated tool was used (insert code: VBGT110302F). The 
cutting speed and the feed were changed in three levels 
(vc=70-130-250 m/min; f=0.05-0.01-0.15 mm), while 
the depth of cut was held at a constant value (ap=0.5 
mm). They performed a design of experiments in 36 
measuring points, and they have defined the 
membership functions of the input and the measured 
output (surface roughness) parameters. Based on these 
results they have constructed a predictive model using 
fuzzy approach to estimate the surface roughness. 

The surface roughness minimization was carried out 
using fuzzy approach by Gok [8] for nodular cast iron. 
The so-called L16 (3

4) Taguchi plan was used to define 
the experimental run, in which the three input cutting 
parameters were changed in four levels (vc=50-100-150-
200 m/min; f=0.05-0.075-0.01-0.125 mm; ap= 0.5-1-
1.5-2 mm). 

Olteanu et. al examined 42CrMo4 steel milling [9] 
using the neural network. The aim was to analyze the 
influence of cutting parameters (feed and cutting speed) 
respectively on the cutting torques, respectively. The 
used cutting tool was a milling cutter type R365-
080Q27-S15M of 80 mm diameter, with insert, whose 
approach angle was 65°. They used a 9257B Kistler 
dynamometer for measuring the forces and torques 
during milling.  The used parameters were the feed (fz = 
0.05-0.075-0.1-0.125-0.15 mm/tooth), and the cutting 
speed (vc=125.66-150.8-163.36-170.93-201.06 m/min), 
while the depth of cut ap = 0.5 mm was constant during 
the tests. Finally, a model was proposed that provides a 
good agreement between the measured values and 
calculated numerical values. 

The authors have already dealt with the examination 
of aluminum fine-turning. Using the response surface 

method they have implemented a predictive model, in 
which in addition to the input cutting parameters the 
tool edging material and the work piece material are 
also be used in the equations as a quality variable [10, 
11, 12]. They showed for different edge geometry tools 
that the statistical parameters of the surface roughness 
depend on the edge geometry [13]. 

Furthermore, they designed a fuzzy-based model, 
which can assign a goodness value to the different cutting 
parameter settings taking into account the surface 
roughness and also the productivity. The goodness factor 
allows the ranking of the different settings, consequently, 
the most appropriate values (cutting speed, feed, and 
depth of cut) can be selected [14]. 
 
2. MATERIAL AND METHOD 

 
2.1 Tools used in the experiments 
 
In the study die-cast aluminum parts were used. The 
composition of the eutectic material (AS12) is the 
following: Al = 88.43 %, Si = 11.57 %, the hardness of 
the work piece: 64±2HB2.5/62.5/30.   

The modification of aluminium alloys is also highly 
important research area. Modification and material 
properties of similar cast alloy (Al-Si-Cu) was 
examined by Farkašová et al. [15]. 

The overall size of the available work piece is: 
Ø110·40 mm. The surface roughness values were 
measured using Mitutoyo SJ-301 roughness tester in the 
experimental run twelve times (at 30°). 

 
Figure 2. The measurement of surface roughness 

The tool code used in the experiment: DCGW 
11T304, edge geometry: ISO, edge material: PCD 
(polycrystalline diamond). The specification of the 
toolholder: SDJCR 1616H 11. 

The examinations were performed using NCT 
euroturn 12b CNC turning machine (maximum spindle 
speed = 6000 1/min, power = 7 kW). 

 
2.2 Measured parameters 

 
In the study the surface roughness characteristics most 
commonly used by the industry were defined (Ra – 
average surface roughness, Rz surface height). 



FME Transactions VOL. 45, No 1, 2017 ▪ 183

 

a.  Average surface roughness (Ra) 
 

The average surface roughness is one of the most 
commonly used height direction feature, because it is 
easy to measure and based on the change in its value 
broad conclusions can be drawn with regards to both the 
material, and the tool. When determining it, one can be 
constructed the arithmetic means of the absolute value 
distances between the real-profile points measured on 
the base length and the center line. (Figure 3). The 
mathematical definition is as follows: 
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Figure 3. Average surface roughness (Ra) [16] 

However, the surface roughness Ra is unable to 
differentiate between peak and valley regions. This is 
the justification for measuring e.g. parameter Rz.  

 
b.  Surface height (Rz) 

 
The surface height can be interpreted as the average of 
the distances between the five maximum peaks and 
valleys measured on the base length profile (Figure 4).  
The mathematical definition is given bellow: 
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 Figure 4. Surface height (Rz) [16] 

 
2.3 The fuzzy model 

 
The so-called central composite experimental design 
plan was used for the determination of the experimental 
run. The cutting parameter range has been adjusted to 
cover the larger fine turning range. The input cutting 
parameters were studied in five levels, their values are 
shown in Table 1. 

The experimental run obtained from Table 1, and the 
central composite experimental design plan are 
illustrated in Table 2. 

Table 1. Cutting parameters belonging to each level 

Levels vc, m/min f, mm ap, mm 
-1.28719 500 0.05 0.2 
-1 667 0.058 0.267 
0 1250 0.085 0.5 
1 1833 0.112 0.733 
1.28719 2000 0.12 0.8 

 

Table 2. Cutting parameter levels in the experimental run 

Experimental run vc f ap 

1 -1 -1 -1 
2 -1 -1 1 
3 -1 1 -1 
4 -1 1 1 
5 1 -1 -1 
6 1 -1 1 
7 1 1 1 
8 1 1 1 
9 -1.28719 0 0 

10 1.28719 0 0 
11 0 -1.28719 0 
12 0 1.28719 0 
13 0 -1 -1.28719 
14 0 -1 1.28719 
15 0 0 0 
16 0 0 0 

 
2.4 The fuzzy model 

 

The fuzzy approach was introduced by L. A. Zadeh, 
who constructed a novel method in 1965 to describe the   
previously mathematically indescribably linguistic 
concepts [17]. The fuzzy based systems are able to 
handle the uncertainty, imprecision, and subjectivity in 
the data as well as in the evaluation process. In this way 
they serve a more realistic result. These kinds of models 
can be advantageously used in the cases when there is 
not enough data to construct the statistical model, or the 
causal relationship is not precise enough. Consequently, 
it is a commonly used method in predictive models [18]. 

The advantages described above can be exploited in 
order to predict the roughness parameters, because 
carrying out the measurements for all possible 
combinations of the settings (cutting speed, feed, and 
depth of cut) is a cost- and time-consuming task. 
Therefore, in practice this is not carried out. Instead of 
this method a predictive model can be applied, which 
can estimate the surface roughness parameters based on 
some characteristic measurement data. For this purpose, 
the authors have developed a fuzzy based model, which 
takes into account the appropriately chosen cutting 
parameters and the expert knowledge was built into the 
system through the rule base. 

In the fuzzy model Mamdani-type inference is used 
[19]. The inputs are the cutting speed (vc), the feed (f), 
and the depth of cut (ap), the outputs are the predicted 
values: the average surface roughness (Ra), and the 
surface height (Rz). The evaluation is performed based 
on the rule base as represented by the expert knowledge. 

The general structure of the rules can be defined as 
follows:  

IF x1 is
1i1,A and…and xn =

nin,A THEN y =
n1 i,...,iY .    (4) 
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where 
kik,A  is the antecedent set ik belongs to input k, 

n1 i,...,iY  is the consequent part of the rule, ij=1..nj, and nj is 

the number of the antecedent sets belonging to input j. 
The rule premises are formed as all the all possible 
combinations of the antecedent sets. The steps of the 
evaluation are illustrated in Figure 5, the applied rule 
base is shown in Table 3, while the detailed evaluation 
steps are described in the following section. 

 
Figure 5. Steps of the fuzzy evaluation 

Table 3. The applied rule base 

Inputs Outputs 
vc f a Ra Rz 

low low low excellent excellent 
low low medium excellent excellent 
low low high excellent excellent 
low medium low excellent good 
low medium medium good good 
low medium high good good 
low high low medium medium 
low high medium bad medium 
low high high medium bad 

medium low low excellent excellent 
medium low medium excellent excellent 
medium low high good good 
medium medium low medium medium 
medium medium medium good medium 
medium medium high good medium 
medium high low good bad 
medium high medium bad bad 
medium high high bad bad 

high low low excellent good 
high low medium excellent good 
high low high good good 
high medium low good good 
high medium medium good good 
high medium high good medium 
high high low good good 
high high medium good medium 
high high high good excellent 

 

The first step of the evaluation is the fuzzification, 
when a membership value is assigned to the input value. 
This assignment is performed using a membership 
function, which is the generalization of the 
characteristic function, but in this case the result is not 
that whether or not the value belongs to the set. In the 
case of the fuzzy membership function the belonging of 
the set rate can be defined. In the authors’ predictive 
model three different sets (low, medium, high) belong 
to each input parameter. Accordingly, in the first step of 

the evaluation it can be decided to what extent the 
current value can be considered as low, medium, or 
high. In this step trapezoidal membership function is 
applied, which can be defined as follows: 
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where 
ki

a ,
ki

b ,
ki

c , and 
ki

d are the membership function 

parameters, i.e. they define breakpoints of the function. 
The membership functions belonging to each input 

are shown in Figures. 6-8. 

 
Figures 6. Membership functions of the cutting speed 

  
Figures 7. Membership functions of the feed 

In the second step of the evaluation the obtained 
fuzzified values are linked by a conjunction operator to 
define their combined effect. This linking form is the 
basis of the rule premise value as it is shown in Table 3, 
and its result is the so-called firing strength (wi). In the 
model the product operator was used: 

( ) ( ) ( )afvw
kklkkjkki CBcAi µµµ=  (6) 

where ( )cA v
kki

µ , ( )f
kkjBµ , and ( )a

kklCµ  are the member–

ship values of vc, f, a, respectively. 
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Figures 8. Membership functions of the depth of cut 

The next operation is the implication, whose result 
represents the participation rate of the current rule in the 
overall conclusion. This result is obtained from the 
linking of the firing strength and the consequent set by 
an appropriately chosen operator. In this case the 
minimum operator was used: 

( )
iYiY µ,wminy

i
=   (7) 

where wi is the firing strength belonging to rule I and 

iYµ  is the consequent set belonging to rule i. For the 

representation the consequent sets belonging to the 
roughness parameters the Gauss-type membership 
functions were used, which can be defined by (8), the 
specific sets belonging to the outputs are illustrated in 
Figures. 9-10. The consequent set value assigned to 
each rule are presented in Table 3. 
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where m is the mean, σ is a measure of the width of the 
curve. 

 
Figures 9. The consequent sets belong to the average 
surface roughness 

In the next step, the consequent sets obtained per 
rules should be aggregated to determine the overall 
system output, which can be defined in the model as the 
weighted average of the consequent sets. 
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where wi is the firing strength belongs to rule i, 
iYy  is 

the consequent belonging to rule i, and n is the number 
of the rules. 

 
 Figures 10. Consequent sets belong to the surface height 

The result of the aggregation can be a complex 
shaped set, therefore, for easy legibility and usability, it 
should be defuzzified. In this step a crisp value is 
assigned to the set, which best represents the obtained 
set. The applied method is the center of gravity: 
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where 
Yµ  is the rule consequent. 

 
3. RESULTS 

 
The predictive model was implemented in Matlab - 
Fuzzy Logic Toolbox environment, and the obtained 
predicted values are compared to the measured values. 
The results show that in the case of both parameters (Ra 
and Rz) the measured and predicted values are very 
close to each other (Figure 11). 

Determining the difference between the measured 
and predicted values in each measuring point: 

∆Ra = Rameasured – Raestimated. (11) 

∆Rz = Rzmeasured – Rzestimated.  (12) 

 
a) The measured and predicted average surface roughness 
values (Ra) depending on the experimental run 
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b) The measured and predicted surface height (Rz) 
depending on the experimental run 

Figure 11. Comparison of the measured and predicted 
surface roughness parameters Ra and Rz 

In the case of average surface roughness (Ra) the 
value ∆Ra is between 0.11 µm and -0-1 µm, while the 
surface height (Rz) the value ∆Rz is between  -0.9 µm 
and 0.85 µm. The analysis of the residuals (Figure 12) 
shows that the differences follow a normal distribution. 
The expected values of the errors are approximately 
zero and their dispersion in the case of Ra is 0.057 µm, 
while in the case of Rz is 0.49 µm.  

a) Average surface roughness residuals (∆Ra) 
representation in normality plot 

 

b) Surface height residuals (∆Rz) representation in 
normality web 

Figure 12. Residuals representation in normality plot 

The significance test proved that the feed has a 
significant effect on the roughness as it can also be seen 
in the main effect diagrams. Figure 13 illustrates that 
increasing the feed the surface roughness also increases, 
while the other two parameters (cutting speed, depth of 
cut) have no significant effect. This statement is true for 

both roughness parameters (Ra, Rz). Consequently, 
considering the productivity, at low feed, high cutting 
speed is recommended. 

 
a) Main effect diagram of average surface roughness (Ra) 

 

b) Main effect diagram of surface height (Rz) 

Figure 13. Main effect diagrams 

 
4. CONCLUSIONS 

 
The machined surface roughness is an important 
criterion during fine-turning. Therefore, its prediction is 
essential in technological pre-planning. The cutting 
settings (cutting speed, feed, and depth of cut) have a 
significant effect on the surface roughness. In this study, 
the authors investigated the fine-turning of a die-cast 
aluminum alloy applied in eutectic mass production 
using a design of experiments. Since carrying out the 
measurements all the possible combinations of the 
cutting parameters would be extremely cost and time-
consuming task, there is a need to create a predictive 
model, which is able to substitute these measurements. 
The fuzzy based model is suitable for solving this 
problem given relatively few measurement data and 
incorporated the expert knowledge.  

After the testing of the authors’ fuzzy based predictive 
model, the following conclusions can be drawn: 
- applying the design of experiment in cutting 

research is highly welcome, because the reduction of 
the measuring points is cost and time-consuming; 

- the feed has a significant effect on the surface 
roughness (Ra, Rz). By increasing the feed, the 
surface roughness also increases. 

- using a modern diamond tool in the case of eutectic 
the tested aluminum alloy with surface Ra < 0,5  µm 
can be manufactured by setting a low feed value; 
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- taking into account the roughness minimization and 
the productivity, a low feed rate and the higher 
cutting speed is recommended; 

- the suggested fuzzy method can be advantageously 
applied in the roughness parameter prediction model; 

- compared to the measured values the result of 
constructed predictive fuzzy model estimates the 
roughness parameters with sufficient precision in 
technology pre-planning; 

- the difference between the measured and predicted 
values (∆Ra, ∆Rz) shows a normal distribution, with 
low dispersion and zero expected value; 
In this paper, the authors focused on the cut surface 

as an important quality parameter but in the future the 
research should be extended additional essential 
parameters, e.g.:  the statistical parameters of surface 
roughness; cutting force parameters. 
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NOMENCLATURE  

ap depth of cut, mm 
f  feed, mm 
vc cutting speed, m/min 
Ra  average surface roughness, µm 
Rz surface height, µm 
AS12 die-cast eutectic aluminum alloy 
rε nose radius, mm 

 

 
ПРЕДВИЂАЊЕ ХРАПАВОСТИ ПОВРШИНЕ 

КОД ФИНОГ СТРУГАЊА НА ОСНОВУ ФАЗИ 

МОДЕЛА  

 

Е. Тот-Лауфер, Р. Хорват 

 

Квалитет и прецизност обрађених делова (нпр. 
геометрија, толеранција зависна од облика ...) су 
захтеви који чак и данас постају све већи. Ови 
захтеви укључују храпавост обрађене површине као 
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значајан критеријум. У току обраде храпавост 
површине зависи великим делом од параметара 
резања (брзине резања, помоћног кретања, дубине 
резања). Аутори су применили фази модел 
предвиђања користећи доступне податке мерења. 
Модел може да прорачуна параметре храпавости 
који припадају различитим условима обраде. Главна 
предност фази приступа је та што модел може да се 

конструише на основу релативно малог броја 
мерења, пошто стручно знање може да се угради у 
систем преко базе правила. Отуда, непотребна 
мерења која одузимају време могу да се елиминишу. 
У раду се разматра изливање у калупима дела од 
легуре алуминијума (еутектика), обично кориш–
ћеног у масовној производњи, који се обрађује 
дијамантским алатом методом финог стругања.   

 
 


