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On the Computation of Foldings  
 

 The process of determining the development (or net) of a polyhedron or of 

a developable surface is called unfolding and has a unique result, apart 

from the placement of different components in the plane. The reverse 

process called  folding is much more complex. In the case of polyhedra it 

leads to a system of algebraic equations. A given development can 

correspond to several or even to infinitely many incongruent polyhedra. 

The same holds also for smooth surfaces. In the paper two examples of 

such foldings are presented. 

In both cases the spatial realisations bound solids, for which mathe-

matical models are required. In the first example, the cylinders with curved 

creases are given. In this case the involved curves can be exactly 

described. In the second example, even the ruling of the involved 

developable surface is unknown. Here, the obtained model is only an 

approximation. 

 

Keywords: folding, curved folding, developable surfaces, revolute surfaces 

of constant curvature. 

 

 
1. UNFOLDING AND FOLDING 

 

In Descriptive Geometry there are standard procedures 

available for the construction of the  development (net 

or unfolding) of polyhedra or piecewise linear surfaces, 

i.e., polyhedral structures. The same holds for 

developable smooth surfaces. These are surfaces with 

vanishing Gaussian curvature, composed from 

cylinders, cones or toruses; the latter are surfaces swept 

out by the tangent lines of spatial curves. 

Of course, the development can also be computed by 

methods of Analytic Geometry or Differential 

Geometry. However, the planar counterparts of the 

spatial parametrized bounding curves need not have a 

parametrization in terms of elementary functions. An 

oblique cylinder with a circular basis serves as an 

example [11]. 

 

Figure 1. Unfolding and folding 

The result of the procedure of unfolding, i.e., the 

development 0Φ of a given polyhedral or smooth 

surface Φ  is unique, apart from the placement of the 

components in the plane. The unfolding induces an 

isometry 
0Φ → Φ : each curve c on Φ  has the same 

length as its planar counterpart 
0 0c ⊂ Φ . Hence, the 

development shows in the plane the interior metric of 

the original spatial structure. 

 

Figure 2. The Oloid is the convex hull of two circles in or-
thogonal planes such that each circle passes through the 
center of the other 

As an example, in Fig. 2 an Oloid is depicted. This 

is the convex hull of a particular pair of congruent 

circles. The Oloid's bounding surface Φ  is of course 

developable. For its development (see Fig. 3), there is 

even an explicit arc-length parametrization of the 

bounding curves available [5, Theorems 2 and 3]. 

Furthermore, by virtue of the isometry, not only the 

lengths of curves are preserved during the unfolding, 

but also the surface area of Φ , which equals that of the 

unit sphere [5, Theorem 5], provided that the circles 

defining the Oloid are unit circles.  

Remark: The book [4] presents a wide variety of 

mathema-tical problems around the unfolding and 

folding of polyhedra. 
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Figure 3. The development of the Oloid's bounding surface 

The inverse problem, i.e., the determination of a 

folded structure from a given development is more 

complex. In the smooth case we obtain a continuum of 

bent poses, in general. This is easy to visualize by 

bending a sheet of paper. In the polyhedral case the 

computation leads to a system of algebraic equations, and 

also here the shape of the corresponding spatial object 

needs not be unique. Sometimes even infinitely many 

spatial objects with the same development are possible. 

Then the structure is called flexible. If the system of 

algebraic equations has an isolated solution with higher 

multiplicity, one speaks of an infinitely flexible 

realisation. Otherwise it is called locally rigid (for details 

see [16], [12] or [13] and the references there). 

If a given development allows two realisations 

sufficiently close together, a physical model can flip 

from one into the other. Their seeming flexibility results 

from slight bendings of the faces or clearances at the 

hinges. A famous example in this respect is a 

polyhedron called “Vierhorn” (Fig. 4). It is locally 

rigid, but can flip between its spatial shape and two flat 

poses in the planes of symmetry. At the science 

exposition “Phänomena” 1984 in Zürich this 

polyhedron was exposed and falsely stated that it is 

flexible (note [18]). 

If a polyhedron bounds a convex solid then the result 

of the folding is unique. We owe this result to the 

Russian mathematician Aleksandr Danilovich 

Alexandrov who stated in his famous Uniqueness 

Theorem (1941): For any convex intrinsic metric there 

is a unique convex polyhedron [1]. In this respect, an 

intrinsic metric is called convex, if for each vertex the 

sum of intrinsic angles for all adjacent surfaces is 

smaller than 360°. By the same token, A. I. Bobenko 

and I. Izmestiev created 2006 an algorithm for the 

construction of the convex polyhedron with given 

intrinsic metric [2]. 

It is of course possible that such a convex metric 

admits beside the convex realisation still other 

realisations. Take, e.g., a cube and replace one face by a 

right pyramid with the bounding square as basis and a 

sufficiently small height. Then the development remains 

the same, whether the apex of this pyramid lies in the 

exterior or interior of the original cube. 

The smooth counterpart of Alexandrov's Uniqueness 

Theorem is the theorem stating the rigidity of ovaloids, 

which are defined as compact two-dimensional 

Riemannian spaces of positive Gaussian curvature (see, 

e.g., [3, 15]). 

In the sequel we present two examples of smooth 

foldings. In one case the ruling is given; the involved 

surfaces are cylinders. In the other, much more complex 

case the ruling of the involved developable surface is 

unknown. 

    

Figure 4. This polyhedron called “Vierhorn” flips between its spatial shape and two flat realizations. Dashes in the develop-
ment below indicate valley folds. 
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2. FOLDING CYLINDERS WITH A COMMON CURVED 
EDGE 

 

 

 

Figure 5. Wunderlich's original figure in [17]: development 

with crease 
0c  (top) and spatial form (bottom) 

A very common way of producing small boxes in 

shops or in fast-food restaurants is to push up 

appropriate planar cardbord forms with prepared 

creases. In the case of creases along circular arcs (see 

Fig. 5) W. Wunderlich proved in [17] that at the spatial 

form the creases between the cylinders are again planar. 

They belong to a family F  of non-elementary curves 

which are well-known in Differential Geometry since C. 

F. Gauß: the curves are meridians of surfaces of 

revolution with constant Gaussian curvature. The family 

F  includes circular arcs, since spheres have a constant 

curvature, too. Below, we prove a slight generalization 

of Wunderlich's result. 

 

Figure 6. Given a surface of revolution, 
1 11/κ ρ=  and 

2 21/κ ρ=  are the principal curvatures at the point P c∈  

To begin with, we determine a differential equation 

which characterizes the curves of F : Let the meridian 

c in the xy-plane with the twice-differentiable arc-length 

parametrization 

( ) ( ( ), ( ))s x s y s=c  for 1 2s s s≤ ≤  

rotate about the x-axis (Fig. 6). If primes indicate the 

differentiation with respect to (w.r.t., in brief) the arc-

length s then ' ( ', ') (cos sinx y α α= = , )c  is the unit 

tangent vector, and 1" ( ", ") ( ' 'x y y xκ= = , − )c  is the 

curvature vector. 

At all surfaces of revolution the meridians and 

parallel circles are the principal curvature lines. 

Therefore, the signed principal curvatures at the point 

( )P s= c  are 

1

"

cos

y
κ

α
= − , 2

cos

y

α
κ = . 

The Gaussian curvature 
1 2K κ κ= ⋅  is constant if 

and only if the arc-length parametrization of the 

meridian c satisfies the differential equations 

" 0y K y+ = ,  2' 1 'x y= −                  (1) 

with const.K = , provided that cos 0α ≠ . 

In the case 0K =  the meridians are lines; the 

corresponding surfaces of revolution are cones or 

cylinders. In the remaining cases 0K ≠  we obtain the 

general solutions 

  
0 : cos sin or

0 : cosh sinh

K y a s K b s K

K y a s K b s K

> = +

< = − + −
        (2) 

with constants ,a b ∈ℝ  and 21 'x y ds= −∫ . 

After specifying an appropriate initial point s = 0 the 

arc-length parametrization, there remain – up to 

similarities – six different cases. This classification 

dates back to C. F. Gauß (1827) and F. A. Minding 

(1839) (note [3, p. 169], [6, 277-286], [7], [9, p. 158], or 

[15, 141-148]). 

In Fig. 7 three of the six types are depicted. Due to 

Scheffers [11], the curve c with K = 1, 0 1a< <  and b = 

0 (type 1) shows up at the development of an elliptic 

cylinder when bounded by a circular section. At type 2 

with K = 1 and (a,b) = (1,0) the meridian c is a half-circle 

centered on the x-axis. The meridian c for K = -1 and 

(a,b) = (1,1) of type 3 has the arc-length parametrization  

21 ar cosh , , 0.s s s
x e e y e s

− −= − − = >  

This defines a tractrix c, for which the contacting 

segment PT at the point P c∈  with T on the x-axis 

satisfies 
2

1 2 1PM PM PT⋅ = = . 

Theorem. Let 0F  be the family of meridians of surfaces 

of revolution with constant Gaussian curvature 0K ≠ . 

Suppose the curve 
0 0c ∈F  bounds together with the 

corresponding axis 0a  (= x-axis) the development 
0Φ  

of a cylindrical patch with generators orthogonal to 0a . 
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Figure 7. Curves of the family 
0F  of meridians of surfaces of revolution with constant Gaussian curvature 0K ≠  

If at a cylindrically bent pose Φ  of 
0Φ  the 

corresponding boundary curve c is located in a plane ε  

then c is again a member of the family 0F  and even 

with the same curvature K. The axis of c is the meet of 

ε  and the plane of the orthogonal section through the 

bent counterpart a of the original axis 0a . 

 

 

Figure 8. Development 0Φ  and bent pose Φ  

Proof.  The bending from the flat initial pose 0Φ  to the 

cylindrical shape Φ  is an isometry. Therefore the arc-

length s of 0c  serves also as arc-length of c ε⊂ . If at 

the bent pose Φ  the line of intersection between ε  and 

the plane of the bent cross section a is used as x-axis 

then the ordinate 0y  of any point of 0c  and the y-coor-

dinate of the corresponding point of c satisfy 

0 ( ) ( ) cosy s y s β= ,  with   const.β =              (3) 

being the angle of inclination of the generators of Φ  

w.r.t. the plane ε  (Fig. 8). We have 
2

π
β <  since 

otherwise 
0c  would be a line. 

The ordinate y0
(s) of the given boundary curve c0 

satisfies (1). Consequently, the planar section c of Φ 

satisfies the same equation y''+ Ky = 0. This means in 

particular that the Gaussian curvature K of the 

corresponding surfaces of revolution is preserved. 

If we plug (3) into the general solutions y0 = y0
(s), as 

listed in (2), the coefficients a0, b0 are replaced with 

         0
0

cos

a
a a

β
= ≥   and  0

0
cos

b
b b

β
= ≥ .             (4)  

This proves the Theorem. 

We can perform a continuous bending from Φ0 to Φ  

by varying the angle β of inclination in an intervall 0 ≤ β 

≤ β1. The condition | '| 1y ≤ , by (1), implies an upper 

limit β1 for β: The angle β cannot be greater than the 

angle in the initial flat pose between the generators and 

the boundary 0c . 

Here are a few examples of the Theorem: 

• In Fig. 7, type 2, the curve c is a circular arc. 

Hence, the cylinder Φ is elliptic and 0c  a curve of 

type 1. This confirms Scheffers' result in [11].    

• If 0c  lies on a tractrix (type 3) then c is congruent 

to another portion of the same tractrix. This follows 

from (4) for a=b, but it can also be concluded from 

the fact that the distance PT  along the tangent 

from the point 0P c∈  to the intersection T with the 

x-axis (see Fig. 8) remains unchanged during the 

bending from Φ0 to Φ. 

• The statement in the Theorem above includes also 

Wunderlich's particular case (see Fig. 5) with 0c  of 

type 2. However, we still need to prove the 

planarity of the boundary curve c at the box 

depicted in Fig. 5, bottom. This can be done as 

follows: 

Proof. Physical models of the box demonstrate that its 

shape is uniquely defined by its development. We show 

that there is a solution where the four bounding surfaces 

are cylinders. 
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The spatial counterpart c of the circular arc c0 in Fig. 

5, top, is common for two cylinders. At each point P of 

c the geodesic curvature of c is the same for both 

cylinders since it is equal to the curvature of c0 in the 

development at the corresponding point. Therefore at P 

the tangent planes to the two cylinders must be 

symmetric w.r.t. the osculating plane of c at P. 

Also the generators of the two cylinders at P must be 

symmetric w.r.t. this osculating plane since in both 

tangent planes the generators include the same angle 

with the tangent to c, which is the meet of the two 

planes. The direction of the generators does not change 

when P traverses c. Hence, also the osculating plane as 

well as the binormal of c cannot change its direction. 

But then the torsion of c must be zero, and c is planar. 

Remark: An analytic proof of a slightly generalized 

theorem can be found in [14, Theorem 3]. 

When we reflect the second cylinder through c in the 

plane of c, we obtain an extension of first cylinder 

beyond its original boundary c. (In rigid origami this is 

called reflection operation (see, e.g., [10, p. 187]). For 

each pair of generators, which meet on c, the plane of c 

is an exterior angle-bisecting plane. 

 
3. FOLDING WITH UNKNOWN RULINGS 

 

Figure 9 shows a development Φ0 with a boundary 0c , 

which is a 1
C -curve composed from two straight line 

segments and two semicircles of equal lengths. Let 0A  

and 0C  be two opposite points of transition between 

semicircles and straight line segments for bisecting the 

boundary. Now the spatial form Φ is obtained by gluing 

together, from 
0A  on, the semicircle of one part with 

the straight segment of the other, and vice versa (Fig. 

10, top to bottom). The question is, how to obtain a 

mathematical model of the resulting body?  

In contrast to Example 1, the crucial point is now 

that the ruling is unknown, and local conditions are not 

sufficient for modelling the bent shape. The constraint is 

of global nature: the boundary 
0c  of Φ0 must finally 

give a two-fold covered closed curve c. 

 

In [8] a general and effective appoximating method 

is presented in order to compute the spatial form from 

given planar shapes. Our approach in this particular case 

is different. The inspection of a physical model (Fig. 10) 

reveals: 

• The corresponding spatial body with the boundary 

Φ  is convex and uniquely defined. 

• The helix-like curve c is a proper edge of Φ ; the 

resulting solid is the convex hull of c. 

• The spatial body has an axis a of symmetry which 

connects the spatial position M of the center 0M  

with the remaining transition point B D=  on c. 

• The semicircular disks are bent to cones with apices 

A and C. Hence, the boundary Φ  is a 1
C -

composition of two cones and a torse between. 

We traverse c from A to C and subdivide it at the 

transition point B D=  into the two parts 1c  and 2c . 

Due to the observations at the physical model, we can 

state: 

(a) The rotation about the axis a of symmetry through 

180° maps Φ onto itself and interchanges c1 and c2. 

Hence, a is orthogonal to the tangent tB at the transition 

point B. The apices A and C are symmetric w.r.t. a. The 

generator gM of Φ through the central point M is 

cylindric and has a tangent plane orthogonal to a.  

(b) Because of the straight segments of the development 

c0, the developable surface on the left hand side of c1 

belongs to the rectifying torse of c1. With respect to the 

right hand side, c1 is a geodesic circle of Φ. 

(c) Since at A0 the semicircle is tangent to the adjacent 

straight segment, the surface Φ has cone singularities 

with the intrinsic curvature π at the points A and C. 

Therefore, at point A the surface can be approximated 

by a right cone with the apex angle 60°. The initial 

tangent tA to c1 is a generator of this cone. 

Consequently, the osculating plane of c1 at A coincides 

with the cone's tangent plane along tA, and the rectifying 

plane at A passes through the cone's axis. 

 

Figure 9. Development of the second example 
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(d) Φ belongs to the connecting torse of c1 and c2. If g is 

a generator of Φ whose counterpart in the development 

meets both straight segments of the boundary c0 then g 

meets c1 and c2 at points with parallel and equally 

oriented tangent vectors. 

(e) At the point 2 2E c∈  of transition between the cone 

with apex A and the continuing torse (see Fig. 9) the 

tangent to c2 must be parallel to the initial tangent tA to 

c1 at A. The symmetric point 1 1E c∈  has a tangent 

parallel to the final tangent tc of c2. By virtue of item 

(d), the tangent indicatrices of the subarcs AE1of c1 and 

E2C of c2 must coincide. 

 

 

 

Figure 10. The transition from the development to the spa-
tial form (photos: G. Glaeser) 

It turned out that a good approximation arises when 

we specify the conciding subarcs of the tangent 

indicatrices as a circular arc. Then the corresponding 

space curves 1 1AE c⊂  and 2 2E C c⊂  are of constant 

slope, and their common rectifying torse is a cylinder. 

Conversely, if the middle part of Φ is supposed as a 

cylinder the arcs AE1 and E2C, being geodesics, are 

curves of constant slope w.r.t. generators g of this 

cylinder. In the development (Fig. 9) all generators g0, 

which meet the two straight segments of c0, are of equal 

lengths. There is a translation along g which maps the 

arc 1 1AE c⊂  onto the arc 2 2E C c⊂ . The half-rotation 

about the axis a of symmetry maps E2C back to E1A. 

Hence, there must be a half-rotation with an axis a1 

parallel to a which exchanges A with E1 while the arc 

AE1 is mapped onto itself. 

 

Figure 11. Principal views of the approximation; the cylin-
drical patch is shaded 

This means, the slope curve AE1 has an axis a1 of 

symmetry which meets c1 at a point F1. The axis a1 must 

be orthogonal to the tangent plane of the cylinder at F1 

in order to guarantee that the complete arc AE1 is a 

smooth slope curve. Since E1 and C are the images of A 

under reflections in parallel axes a1 and a, respectively, 

the points A, C, E1, and E2 lie in a plane orthogonal to a 

(note the side view in Fig. 11). 

The approximation depicted in Figs. 11 and 12  

yields the following numerical results: The slope angle 

of c w.r.t. the cylinder is approximately ψ = 54.53°. The 

‘width’ MB  of the solid, in terms of the semicircles' 

radius r, is 1.18r, the ‘height’ AC  = 3.635r, and the 

angle ABC = 130.67°.  

These data correspond quite well to the physical 

model. However, in [14] it is noted that there is still a 

tiny contradiction inherent in the model with the 

cylindrical patch. So, at the exact model, the torsal part 

between the two cones of Φ must deviate slightly from a 

cylinder. 

We can fold the sheet shown in Fig. 9 in two ways, 

since we can choose the depicted side either in the 

interior of the solid or in the exterior. At the first choice 
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the curve c has negative torsion (see photos in Fig. 10). 

Otherwise its torsion is positive (see Fig. 12). 

 

Figure 12. Approximation with a cylindrical patch 
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О ПРОРАЧУНУ САВИЈАЊА КОД 

ПОЛИЕДАРСКИХ СТРУКТУРА 

 

Х. Штахел 

 

Поступак одређивања развијања полиедра у мрежу 

или развојне површине се назива развијање и даје 

јединствени резултат, поред постављања различитих 

компонената у раван. Обрнути поступак који се 

назива савијање много је сложенији. У случају 

полиедара оно доводи до система алгебарских 

једначина.  

Дато развијање може да одговара неколицини или 

бесконачном броју разноликих полиедара. Исто 

важи и за глатке површине. У раду су дата два 

примера таквих савијања. У оба случаја просторна 

реализација је везана за тела за која су потребни 
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математички модели. У првом примеру су 

приказани цилиндри са кривим наборима. У таквом 

случају кривине се могу тачно описати. У другом 

примеру чак је и понашање обухваћене развојне 

површине непознато. Добијени модел овде 

представља само апроксимацију. 

 

 


