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The theme of this paper is the modeling of focaedadorial surfaces,

starting with their definition, as a locus of pointwhose sum of the
distances to the focus and/or directrix is constant predefined. We
presented a heuristic algorithm for modeling suefa@nd their isocurves,
achieved through the use of the Grasshopper vistramming editor in

the RhinoCeros environment. Surfaces and their isesuwere generated
in a spherical grid, because a Cartesian grid proueduitable for the task

approach. This paper additionallgppses a modeling
discrete variation of focal-directal surfaces. The

proposed modeling method is a 3D convex hull imptded on a set of
surface points, with the selected points close &b $lurface. The discrete
model is realized both in a Cartesian and spherigad. There are
significant differences between the obtained results

Keywords:focal-directorial surfaces, modeling, parametriodel, surface
discretization, 3D convex hull.

1. INTRODUCTION

Due to the development of new technologies, prilpari
construction technologies and new structural sysfem
but also because of the rapid progress in the
development of computer technology, architectural
objects of the 21st century are getting increagingl
complex geometric shapes. Traditional orthogonal
system is no longer dominant, but on the contrixeg,
curved forms or parametrically designed shapes are
going through an expansion in architectural ancamrb
design.

We can observe a faster development of geometry as

a science related to current trends in architeciamd
urban design. Constructive processing of geometric
surfaces is facilitated through the use of modern
software, although, the opposite also applies, aech
an increased application of constructive procedfwes
the formation of new 2D and 3D elements (curves and
surfaces) in most graphic software, [2, 7, 8, 1), 1
The theme of this paper is the modeling of focal-
directorial surfaces, starting with their definitio[1]
and [5], as a locus of points whose sum of theadists
S to the focus and/or directrix is constant and
predefined. We will not delve into the problem bét
generation and usage of implicit equations thatriles
them mathematically. We presented a heuristic
algorithm for modeling surfaces and their isocurves
achieved through the use of the Grasshopper visual
programming editor in the RhinoCeros environment,
[4]. To speed things up, all tests were first etrout in
the programming language Processing, [9] and [11].
Surfaces and their isocurves were generated in a
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spherical grid, because a Cartesian grid proved
unsuitable for the task and the chosen approach. We
selected grid points whose sum of distances tdates
and the directrix is within the limits of the prdited
absolute error as surface points. As the sphegudl
points are distributed in a radial fashion, it eoinout
that each spoke contains several points for the@tado
small step value, so we made an additional
improvement — selecting the point with the fewesbre
between all those points. Isocurves are curvesphss
through appropriate points, whereas the surfaeeladt
passing through one of two sets of isocurves.

Surface discretization is a step in the right dioec
when it comes to applied architecture, [7] and .[T0jis
paper additionally proposes a modeling algorithmaof
discrete variation of focal-directorial surfacesheT
proposed modeling method is a 3D convex hull
implemented on a set of surface points, with thectsl
points close to that surface. The discrete modeddkzed
both in a Cartesian and spherical grid. Thereigréfisant
differences between the obtained results. The tregul
algorithm application in the spherical grid is lba#ly a
triangular mesh, and in the case of the Cartesiah g
through step variation in the grid and the allowediation
from the surface, we get varied polyhedral strastuss
discrete models of the same focal-directorial serfa

The objective of this paper is not to select swa$ac
suitable for use in architecture, instead, we chose
examples that clearly illustrate the content of plaper.
Graphic, visual preview of the modeled surfaceivey
in top view, front view and right view, because
perspective view alone would not be sufficient to
properly view the model.

2. MODELING ALGORITHM OF A FOCAL-DIREC-
TORIAL SURFACES

The basic idea of this heuristic algorithm is tdime a
discrete spherical coordinate system — spherical. gr
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Each point on the grid is defined with spherical
coordinates(/ ,,g,,r,), O£/, £2p, - %£ g, &2

2
O0£r, £ R whereR should be a large enough value so

the surface would be within the grid, and the diself
is set as a local coordinate system with the coatdi
origin within the surface.

Angles g, are the points of division in the division

of angle p to m parts, SOO£ j£m, ¢, = - P and
o
G 2

To maintain the same step, angjes are the points
of division in the division of angl@p to 2m parts, so
0£i£2m,/,=0,/,,=2p.

The third set of coordinateg are the points of divi—
sion of the interva[o, R] to n parts, wherek £ n, ro=0,

r, = R and numbem should be large enough to ensure
a sufficiently small step for the predefined accyrh
For fixed /, and g, , points(/;,q,,r,), O£k £n

belong to the ray that penetrates the surfacehis t
point of penetration, the sum of distances to thau$
and directrix equals the defined value S which dsfin
the surface together with the focuses and direxdric
The basic idea is to select a point on the spHegita
closest to the point of penetration, in other wopalgrid
point whose sum of distances to the focus and tiixec
is closest to the defined value S. However, one lghou
be careful and make sure that this difference failkin
the limits of the predefined absolute or relativ@e
Therefore, the procedure should be carried out in
two steps. In the first step, for every selecteddivalue

/ andq, , we should select pointg, ,q,,r, ) from the

corresponding ray, whose sum of distances to tbasfo
and directrix is within the limits of the permittedror.
For each properly selected step, i.e. for eachceiffily
large n, we get a number of such points. From the
standpoint of permitted error, each of these points
would be a good solution, in other words, eachhefrt
could be accepted as a surface point.

However, the following step further improves
accuracy. Among all these points, we selected the
“best”, a pointp, = p(/i,qj), with the smallest error.

This selection is realized in Processing with the ak
an algorithm for finding the smallest member, and i
Grasshopper, using the available sorting of thererr
array while simultaneously sorting points.

The described procedure of selecting points
P=Pl.g) i=12..2m, j=12..m s

repeated for all discrete valueg; and g,, where we

get a double set of points of the modeled surface.
Through interpolation, generation of the curve that
passes through pointp(ji,qj), for fixed /,, we get

/ isocurvesC, i = 1,2...,2m, and for fixedg, , we

getq isocurvesK ;, j = 12..,m.
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By creating a lofted surface through the set/of

isocurves or through the set gfisocurves, we will get
a model of the focal-directorial surface.

2.1 Model of a Focal-Directorial Surface

Focal-directorial surface as a locus of points whnsa

of distances to predefined focuses and directrises
constant, defined within an initial global coordma
system. Focuses and directrices are initially define
with the use of Cartesian coordinates, but givem th
connection between spherical and Cartesian codegdina

it can be said that the surface is defined byatsuges
and directrices in the appropriate global spherical
coordinate system. We should somehow perform a
rough estimation of the position and size of thdame

so that the auxiliary spherical grid could be gosid
with the origin inside the surface and dimensiosed
that it covers the surface. However, the model is
parametric and through a variation of the coordinat
origin’s parametric values and the upper limit bét
third coordinate r, grid points, we will soon
experimentally obtain some favorable values. The
model is entirely realized through a parametric etdul
Grasshopper, all variables described in the algoriare
parametrically defined. As input data, the focuaed
directrices are defined as follows: focuses arénddf
with their coordinates, whereas directrices araéneef

by selecting drawn lines or defining a point antina
vector.

The selection of a local spherical coordinate systts
coordinate origin and position in space does nphairhthe
position or the shape of the surface, but it ddfestathe
shape and position of isocurves that are expegctedrtor
the character and behavior of the surface to sotiemte
Mathematically speaking, a change in the spherical
coordinate system represents the change of itsnpéiia
equations for the surface in the global Cartestamdinate
system, i.e. reparametrization, hence its sigmifigapact
on the isocurves is quite clear.

If we exclude rotation as a method of switching
from the global to the local coordinate system, the
translation itself only results in the change ok th
coordinate origin’s position. It was observed thath
changes produce interesting results that referhto t
isocurves of focal-directorial surfaces.

As an illustration of isocurve behavior, this paper
chose an example of a simple surface with threesies
P1(-12,0,0), R(0,12,0), R(5,5,5) and a constant sum of
distances to the focus =35. Figure 1 shows the said
surface with six isocurve variations.

By varying the position of the coordinate origin of
the local spherical coordinate system (Figure 1)get
different sets of isocurves whose discretizaticaults in
various spatial structures based on the same focal-
directorial surface. Many of these isocurves don't
visually match the behavior of the surface, and esom
can even generate visual illusions about the appear
of the surface itself. This fact should not be isseely
viewed in a negative context from the standpoint of
architectural application, although control is resaey,
as well as the ability to generate isocurves thiatom
the behavior of the surface to a sufficient degree.
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front view

top view

Figure 1. Isocurve variations on a trifocal surface

For that purpose, authors of this paper suggest of symmetry of the surface. Symmetry of isocurves
another step in the modeling algorithm of focal- clearly indicates the symmetry of the surface. $hm
directorial surfaces. In the second iteration, witie of distances between the points of this surfacethad
coordinate origin of the spherical grid in the certt of focus is 35.
the obtained model. Results obtained on the exaofple
three surfaces P.1, P.2 and P.3, are shown in Figure 2
The obtained isocurves mirror the behavior of the
surface, express their character and clearly inelitze
existing symmetries and antisymmetries within the p1.
surface.

Figure 2 first shows a surface P.1. with the isocurve
variation shown in Figure 1. It is a focal surfackose
focuses are three points in space: the first onxhe
axis B(- 1200), the second on they - axis p,(0120)
and the third point outside the coordinate axes,
P,(555). The sum of distances between the surface

points and the focuses is 35. It is a general cése
scalene triangle, so the surface is not expectdthte
other planes of symmetry, except the plane of the
triangle itself pR,R,. The resulting isocurves do not

display the existing symmetry. In order for it te b
visible, we should perform an additional rotatidntioe
coordinate system or drop the triangle whose vestic
are the focuses into the horizontal plane, thefiopar
the modeling. Given that this is not a general fmoh it
only applies to a trifocal surface, the authorsehaot Figure 2. Isocurves of modeled surfaces — spherical grid
tried to model such isocurves. with the coordinate origin in the centroid

The next surface, shown in Figure 2, manifests a
strong antisymmetry. It is the focal-directorialrfaice
P.2. with two bypassing directrices and one focus.
Directrices are the diagonals of two sides of aul@g
triangular prism, whereas the focus is outsidepitigm,
point P(550) (Figure 3). In its part toward the
directrices, it behaves as a directorial surfand,ia the
part toward the focus, as a focal surface. Thisabiein
of the surface is mirrored by the shape of isocsirve

The third presented surface P.3. is a focal surface
with focuses in the vertices of an isosceles til@ngo
the plane symmetry of that surface in relation He t
symmetric plane of the triangle base is expected. |
addition, all focuses p(- 5-50), PR,(- 550) and

P,(1000) belong to the same horizontal coordinate
L. . Figure 3. Positions of the directrices and the focus on the
place, hence, it is expected that the said plaaepisane example of a focal-directorial surface — P.2.

P.3.

Trifocal surface
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2.2 Discrete Model of a Focal-Directorial Surface

This paper proposes the generation of a discretkehod

a focal-directorial surface as a convex hull ofskkected
set of points. Convex hull is the smallest conveixtkat
contains the defined set of points. For points jplame,
the convex hull is a polygon, and for points incgpthat
do not belong to the same plane, it is a polyhedsome

of the defined points are vertices of the polyhadro
whereas all other points are outside of it. To gaeea
convex hull in Processing, we used an algorithmftbe
ComputationalGeometrjibrary. We performed model
testing in Processing and realized it in the Graysgér
afterwards. Grasshopper definition includes thevern
hull algorithm in the script, and for everythingsel
(discrete grid, point selection and result finaiza) we
used Grasshopper components. The result of thpt scri
algorithm for the convex hull is a polyhedron as a
triangular mesh. Through additional examination of
whether the triangles belong to the same plan®@bmwe
get a convex hull with visible polygonal sides.

Unlike the continuous model of the focal-directbria
surface, the discrete model is realized in a sphlednd
Cartesian grid. We already explained the sphegidlin
detail, a small step for ensures sufficient precision, and
through step variations fof and g we get different

variations of the solution. In the Cartesian gne, choose
the step arbitrarily, based on variablesnd y arbitrarily,

and the step based on variakleshould be small enough
in order to ensure sufficient precision in surfments
selection. The step based on variabtesind y impacts

the final outcomes, because through variationshese
values, we get different variations of polyhedsatiascrete
models of focal-directorial surfaces.

Convex hull is formed as a sheath for the selegtied
points. The points were selected in two ways.

In the first version, we selected grid poirts,g, ,r, )

on a spherical grid, o(y;, z) on a Cartesian grid, whose
sum of distances to the focuses and directrgj:kesatisfies

S-e£s, £S, where S is a predefined number that

defines the surface together with focuses and tdzes
and ¢ is an arbitrarily selected, but sufficiently small
number that provides the selection of a reasomabteer
of points from inside the body confined by the etbs
focal-directorial surface. Geometry of the convexl h
depends on external points, so the obtained solfdicthe
adopted grid is unique, regardless of the selacikeb for
€. Through step variation in the grid, we get défer
polyhedra as discrete models of the focal-direatori
surface.

In the second version, we selected grid pointstéoca
in the predefined close proximity of the surfaceinfs
whose sum of distances to the focus and direcijrkix

equals S within limit of a predefined errora
(‘Sjk - q £ d). In this version, the solution depends@n
Even very small changes in the valuegofead to changes
in external points, resulting in various polyhedras
discrete models of the focal-directorial surfaceaddition,

variations of the grid step result in new variatioof
polyhedra, which represent new discrete modelshef t
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focal-directorial surface provided they are witttie limits
of the permitted deviation.

We performed the modeling of several surfaces,
both in a spherical and Cartesian grid, parallighboth
versions of point selection. In the case of theesiphl
grid, we can say that the outcome of applying the
convex hull algorithm is a triangulated surfacemabt
all sides of the obtained polyhedron are triangdesept
a very small number of quadrilaterals that do renteh
much significance in the preview. Therefore, thihars
of this paper accepted the triangular mesh gertetate
the script itself as the result in the case ofgplerical
grid, without any additional research on whethanso
triangles belong to the same plane and make nteltih
polyhedra.

We can practically say that through the applicatbn
the convex hull, we performed surface triangulation
Figure 4 shows the obtained triangular mesh ofdbal-
directorial surface P.2. with two directrices ame docus,

a continuous model of which was already presentéte
previous section of the paper.

c) right view

Figure 4. Discrete model of the focal-directorial s urface P.2.

- triangulation-convex hull in a spherical grid
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Convex hull algorithm is implemented on a set of
points whose sum of distances to the directricestha
focus differs from the defined sum S by less than
0.2625 . The change of the spherical grid, i.a gteand

g, would affect the size of the triangles, theoedfc it
would be a new polyhedron, but in any case, it is a
triangulated surface.

A Cartesian grid yields far more interesting result
A discrete model obtained as a convex hull in the
Cartesian grid is shown in Figure 5 (Example I).
Convex hull algorithm is applied on a set of poiofs
the Cartesian grid, whose sum of distances todhasf

Example |

Example Il

Figure 5. Discrete model
selection)

298 VOL. 45, No 2, 2017

of the focal-directorial surface P.2. (examples | an

and directricessjk satisfies S- ¢ £ Sik £S, where

€ =0.05. Discrete model is shown in the first row wath
step forx andy 0.25, and the model in the second row
with a step 0.5. The step far has not changed and
equals 0.2. The change of step faandy significantly
affects the resulting polyhedron, which is natyr&lést
seen in top view.

Figure 5. (Example Il) shows two versions of the
discrete model of the same surface, but with diffier
methods of selecting grid points on which the canve
hull was applied.

0.25;
0.25;
0.2

0.5;

02

Steps forx; y; z

0.05

0.01

a

d 11, convex hull with two different versions of po int
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We selected points in the immediate vicinity of the
surface ngk - qu) with the permitted deviation of

a =0.05 for the surface in the first row aad= 0.01 for

the surface in the second row. Discrete models shiow
the picture above are just an illustration of polgsi
variations, which are virtually unlimited in numb&ve
selected an asymmetric focal-directorial surfacetlie
preview so as to present the most general and
comprehensive case possible.

The symmetry is mirrored in the symmetry of the
discrete mode. Figure 6. shows a model of a focal
surface with focuses in the vertices of an isoscele
triangle, which is the example described in detathe
previous section of the paper. Two planes of symmet
can be clearly read on the discrete model.

a) top view

a) front view

c) right view

Figure 6. Discrete model — An example of a focal su  rface

with two planes of symmetry

3. CONCLUSION

The family of focally generated 3D elements include
sphere, Cassini surface and m-ellipsoid, [3], Bis
paper discussed well-known focally generated 3D
elements and a new type, focally-directorially
generated 3D elements. By changing the small number
of parameters (position of the focus and/or diiggtr

we can significantly influence the change of shape

the generated element, hence these forms can be
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adapted, adjusted and transformed according to the
requirements of the architectural task. Becausheaif
geometrically definable forms, flexibility of shapend
morphological compatibility with the feasible
structures, favored by current trends in desigoaliy-
directorially generated elements provide a basis fo
exploring their suitability in the design of aradtural

and urban spaces.

This paper first presented an algorithm of
continuous focal-directorial models in a spherigadl.
The model represents a good approximation of al-foca
directorial surface in terms of the ability to ambe
sufficient preview accuracy. Through the variatioh
the spherical grid, we come to the variation of
isocurves, which represent a good basis for thiatian
of discrete spatial structures that display the esam
surface. By connecting the appropriate points & th
isocurves, we can achieve triangulation in a simple
manner, which is a standard procedure omitted tftos
paper because of its scope.

The Displayed triangulation is obtained with a
Convex hull with the origin of the spherical grid the
center of gravitz, which enables an even distrdsutf
the triangles. Of course, triangles are not congu®or
equal in size, their shape and size depend onottsd |
behavior of the surface. However, if we signifidant
displaced the coordinate origin from the centrdid,
would cause significant differences in the shapksire
of the triangles. They would be grouped by sizealsm
ones on one side, significantly larger ones onother,
which may be the subject of further research infigld
of applied architecture.

In the case of the Cartesian grid, the positiothef
coordinate system is irrelevant. A significant rivlehis
case belongs to the grid step. Two coordinatesatjiob
determine polygon sizes, and the step for the third
responsible for the accuracy of the surface preview
Obtained polyhedral structures are the result efstiep-
third coordinate ratio and the required accuracgdmt
selection. Through variations of that ratio, we get
different polyhedral surfaces.

When it comes to preview accuracy, greater
deviations may be allowed. In that case, we coalkl t
about discrete spatial structures inspired by focal
directorial surfaces, instead about the modeling of
such surfaces. In contrast, if we demanded small
deviations and if we coordinated grid step with the
required preview accuracy of surface points in the
grid, the expected result would be a triangulated
surface as a very good approximation of the focal-
directorial surface. This model has not been redlin
this paper.
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