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Modeling of Focal-Directorial Surfaces 
for Application in Architecture 
 

The theme of this paper is the modeling of focal-directorial surfaces, 

starting with their definition, as a locus of points, whose sum of the 

distances to the focus and/or directrix is constant and predefined. We 

presented a heuristic algorithm for modeling surfaces and their isocurves, 

achieved through the use of the Grasshopper visual programming editor in 

the RhinoCeros environment. Surfaces and their isocurves were generated 

in a spherical grid, because a Cartesian grid proved unsuitable for the task 

and the chosen approach. This paper additionally proposes a modeling 

algorithm of a discrete variation of focal-directorial surfaces. The 

proposed modeling method is a 3D convex hull implemented on a set of 

surface points, with the selected points close to that surface. The discrete 

model is realized both in a Cartesian and spherical grid. There are 

significant differences between the obtained results. 

 

Keywords: focal-directorial surfaces, modeling, parametric model, surface 

discretization, 3D convex hull. 

 

 
1. INTRODUCTION  

 

Due to the development of new technologies, primarily 

construction technologies and new structural systems, 

but also because of the rapid progress in the 

development of computer technology, architectural 

objects of the 21st century are getting increasingly 

complex geometric shapes. Traditional orthogonal 

system is no longer dominant, but on the contrary, free, 

curved forms or parametrically designed shapes are 

going through an expansion in architectural and urban 

design.  

We can observe a faster development of geometry as 

a science related to current trends in architectural and 

urban design. Constructive processing of geometric 

surfaces is facilitated through the use of modern 

software, although, the opposite also applies, we have 

an increased application of constructive procedures for 

the formation of new 2D and 3D elements (curves and 

surfaces) in most graphic software, [2, 7, 8, 10, 12]. 

The theme of this paper is the modeling of focal-

directorial surfaces, starting with their definition, [1] 

and [5], as a locus of points whose sum of the distances 

S to the focus and/or directrix is constant and 

predefined. We will not delve into the problem of the 

generation and usage of implicit equations that describe 

them mathematically. We presented a heuristic 

algorithm for modeling surfaces and their isocurves, 

achieved through the use of the Grasshopper visual 

programming editor in the RhinoCeros environment, 

[4]. To speed things up, all tests were first carried out in 

the programming language Processing, [9] and [11].  

Surfaces and their isocurves were generated in a 

spherical grid, because a Cartesian grid proved 

unsuitable for the task and the chosen approach. We 

selected grid points whose sum of distances to the focus 

and the directrix is within the limits of the predefined 

absolute error as surface points. As the spherical grid 

points are distributed in a radial fashion, it turned out 

that each spoke contains several points for the adopted 

small step value, so we made an additional 

improvement – selecting the point with the fewest error 

between all those points. Isocurves are curves that pass 

through appropriate points, whereas the surface is a loft 

passing through one of two sets of isocurves.    

Surface discretization is a step in the right direction 

when it comes to applied architecture, [7] and [10]. This 

paper additionally proposes a modeling algorithm of a 

discrete variation of focal-directorial surfaces. The 

proposed modeling method is a 3D convex hull 

implemented on a set of surface points, with the selected 

points close to that surface. The discrete model is realized 

both in a Cartesian and spherical grid. There are significant 

differences between the obtained results. The result of 

algorithm application in the spherical grid is basically a 

triangular mesh, and in the case of the Cartesian grid, 

through step variation in the grid and the allowed deviation 

from the surface, we get varied polyhedral structures as 

discrete models of the same focal-directorial surface.   

The objective of this paper is not to select surfaces 

suitable for use in architecture, instead, we chose 

examples that clearly illustrate the content of the paper. 

Graphic, visual preview of the modeled surface is given 

in top view, front view and right view, because 

perspective view alone would not be sufficient to 

properly view the model.   

 
2. MODELING ALGORITHM OF A FOCAL-DIREC–

TORIAL SURFACES  

 

The basic idea of this heuristic algorithm is to define a 

discrete spherical coordinate system – spherical grid. 
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Each point on the grid is defined with spherical 

coordinates ( )
kji r,,θϕ , πϕ 20 ≤≤ i

, 
22

π
θ

π
≤≤− j

,  

Rrk ≤≤0  where R  should be a large enough value so 

the surface would be within the grid, and the grid itself 

is set as a local coordinate system with the coordinate 

origin within the surface.  

Angles 
jθ  are the points of division in the division 

of angle π  to m  parts, so mj ≤≤0 , 
2

0

π
θ −=  and 

2

π
θ =m

. 

To maintain the same step, angles 
iϕ  are the points 

of division in the division of angle π2  to m2  parts, so 

mi 20 ≤≤ , 00 =ϕ , πϕ 22 =m
.  

The third set of coordinates 
kr  are the points of divi–

sion of the interval [ ]R,0  to n  parts, where nk ≤ , r0 = 0, 

Rrn =  and number n  should be large enough to ensure 

a sufficiently small step for the predefined accuracy.1 

For fixed 
iϕ  and 

jθ , points ( )
kji r,,θϕ , nk ≤≤0  

belong to the ray that penetrates the surface. In this 

point of penetration, the sum of distances to the focus 

and directrix equals the defined value S which defines 

the surface together with the focuses and directrices. 

The basic idea is to select a point on the spherical grid 

closest to the point of penetration, in other words, a grid 

point whose sum of distances to the focus and directrix 

is closest to the defined value S. However, one should 

be careful and make sure that this difference falls within 

the limits of the predefined absolute or relative error.    

Therefore, the procedure should be carried out in 

two steps. In the first step, for every selected fixed value 

iϕ  and 
jθ , we should select points ( )

kji r,,θϕ  from the 

corresponding ray, whose sum of distances to the focus 

and directrix is within the limits of the permitted error. 

For each properly selected step, i.e. for each sufficiently 

large n, we get a number of such points. From the 

standpoint of permitted error, each of these points 

would be a good solution, in other words, each of them 

could be accepted as a surface point.  

However, the following step further improves 

accuracy. Among all these points, we selected the 

“best”, a point ( )
jiij PP θϕ ,= , with the smallest error. 

This selection is realized in Processing with the use of 

an algorithm for finding the smallest member, and in 

Grasshopper, using the available sorting of the error 

array while simultaneously sorting points.  

The described procedure of selecting points 

( )
jiij PP θϕ ,= , mi 2,...,2,1= , mj ,...,2,1=  is 

repeated for all discrete values  
iϕ  and  

jθ , where we 

get a double set of points of the modeled surface.   

Through interpolation, generation of the curve that 

passes through points ( )
jiP θϕ , , for fixed 

iϕ , we get  

ϕ  isocurves 
iC , mi 2,...,2,1= ,  and for fixed 

jθ , we 

get θ  isocurves 
jK , mj ,...,2,1= .  

By creating a lofted surface through the set of ϕ  

isocurves or through the set of θ isocurves, we will get 

a model of the focal-directorial surface.    
 

2.1 Model of a Focal-Directorial Surface 
 

Focal-directorial surface as a locus of points whose sum 

of distances to predefined focuses and directrices is 

constant, defined within an initial global coordinate 

system. Focuses and directrices are initially defined 

with the use of Cartesian coordinates, but given the 

connection between spherical and Cartesian coordinates, 

it can be said that the surface is defined by its focuses 

and directrices in the appropriate global spherical 

coordinate system. We should somehow perform a 

rough estimation of the position and size of the surface 

so that the auxiliary spherical grid could be positioned 

with the origin inside the surface and dimensioned so 

that it covers the surface. However, the model is 

parametric and through a variation of the coordinate 

origin’s parametric values and the upper limit of the 

third coordinate rk grid points, we will soon 

experimentally obtain some favorable values. The 

model is entirely realized through a parametric model in 

Grasshopper, all variables described in the algorithm are 

parametrically defined. As input data, the focuses and 

directrices are defined as follows: focuses are defined 

with their coordinates, whereas directrices are defined 

by selecting drawn lines or defining a point and a line 

vector.   

The selection of a local spherical coordinate system, its 

coordinate origin and position in space does not impact the 

position or the shape of the surface, but it does affect the 

shape and position of isocurves that are expected to mirror 

the character and behavior of the surface to some extent. 

Mathematically speaking, a change in the spherical 

coordinate system represents the change of its parametric 

equations for the surface in the global Cartesian coordinate 

system, i.e. reparametrization, hence its significant impact 

on the isocurves is quite clear.   

If we exclude rotation as a method of switching 

from the global to the local coordinate system, the 

translation itself only results in the change of the 

coordinate origin’s position. It was observed that such 

changes produce interesting results that refer to the 

isocurves of focal-directorial surfaces.  

As an illustration of isocurve behavior, this paper 

chose an example of a simple surface with three focuses 

P1(-12,0,0), P2(0,12,0), P3(5,5,5)  and a constant sum of 

distances to the focus 35=S . Figure 1 shows the said 

surface with six isocurve variations. 

By varying the position of the coordinate origin of 

the local spherical coordinate system (Figure 1), we get 

different sets of isocurves whose discretization results in 

various spatial structures based on the same focal-

directorial surface. Many of these isocurves don’t 

visually match the behavior of the surface, and some 

can even generate visual illusions about the appearance 

of the surface itself. This fact should not be necessarily 

viewed in a negative context from the standpoint of 

architectural application, although control is necessary, 

as well as the ability to generate isocurves that mirror 

the behavior of the surface to a sufficient degree.   
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1. 2. 3. 4. 5. 6. 

   

front view 

    

top view 

Figure 1. Isocurve variations on a trifocal surface  

For that purpose, authors of this paper suggest 

another step in the modeling algorithm of focal-

directorial surfaces. In the second iteration, with the 

coordinate origin of the spherical grid in the centroid of 

the obtained model. Results obtained on the example of 

three surfaces  P.1, P.2 and P.3, are shown in Figure 2. 

The obtained isocurves mirror the behavior of the 

surface, express their character and clearly indicate the 

existing symmetries and antisymmetries within the 

surface.  

Figure 2 first shows a surface P.1. with the isocurve 

variation shown in Figure 1. It is a focal surface whose 

focuses are three points in space: the first on the −x  

axis ( )0,0,121 −P , the second on the  −y axis ( )0,12,02P  

and the third point outside the coordinate axes, 

( )5,5,53P . The sum of distances between the surface 

points and the focuses is 35. It is a general case of a 

scalene triangle, so the surface is not expected to have 

other planes of symmetry, except the plane of the 

triangle itself 
321 PPP . The resulting isocurves do not 

display the existing symmetry. In order for it to be 

visible, we should perform an additional rotation of the 

coordinate system or drop the triangle whose vertices 

are the focuses into the horizontal plane, then perform 

the modeling. Given that this is not a general problem, it 

only applies to a trifocal surface, the authors have not 

tried to model such isocurves.  

The next surface, shown in Figure 2, manifests a 

strong antisymmetry. It is the focal-directorial surface 

P.2. with two bypassing directrices and one focus. 

Directrices are the diagonals of two sides of a regular 

triangular prism, whereas the focus is outside the prism, 

point ( )0,5,5P  (Figure 3). In its part toward the 

directrices, it behaves as a directorial surface, and in the 

part toward the focus, as a focal surface. This behavior 

of the surface is mirrored by the shape of isocurves.  

The third presented surface P.3. is a focal surface 

with focuses in the vertices of an isosceles triangle, so 

the plane symmetry of that surface in relation to the 

symmetric plane of the triangle base is expected. In 

addition, all focuses ( )0,5,51 −−P , ( )0,5,52 −P  and 

( )0,0,103P  belong to the same horizontal coordinate 

place, hence, it is expected that the said plane is a plane 

of symmetry of the surface. Symmetry of isocurves 

clearly indicates the symmetry of the surface. The sum 

of distances between the points of this surface and the 

focus is 35. 

 top front right 

   

P.1. 

Trifocal surface 

   

P.2. 

Focal-directorial surface 

   

P.3. 

Trifocal surface 

Figure 2. Isocurves of modeled surfaces – spherical grid 
with the coordinate origin in the centroid 

 

Figure 3. Positions of the directrices and the focus on the 
example of a focal-directorial surface – P.2. 
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2.2 Discrete Model of a Focal-Directorial Surface 

 

This paper proposes the generation of a discrete model of 

a focal-directorial surface as a convex hull of the selected 

set of points. Convex hull is the smallest convex set that 

contains the defined set of points. For points in a plane, 

the convex hull is a polygon, and for points in space that 

do not belong to the same plane, it is a polyhedron. Some 

of the defined points are vertices of the polyhedron, 

whereas all other points are outside of it. To generate a 

convex hull in Processing, we used an algorithm from the 

ComputationalGeometry library. We performed model 

testing in Processing and realized it in the Grasshopper 

afterwards. Grasshopper definition includes the convex 

hull algorithm in the script, and for everything else 

(discrete grid, point selection and result finalization) we 

used Grasshopper components. The result of the script 

algorithm for the convex hull is a polyhedron as a 

triangular mesh. Through additional examination of 

whether the triangles belong to the same plane or not, we 

get a convex hull with visible polygonal sides. 

Unlike the continuous model of the focal-directorial 

surface, the discrete model is realized in a spherical and 

Cartesian grid. We already explained the spherical grid in 

detail, a small step for r  ensures sufficient precision, and 

through step variations for ϕ  and θ  we get different 

variations of the solution. In the Cartesian grid, we choose 

the step arbitrarily, based on variables x  and y  arbitrarily, 

and the step based on variable z  should be small enough 

in order to ensure sufficient precision in surface points 

selection. The step based on variables x  and y  impacts 

the final outcomes, because through variations of these 

values, we get different variations of polyhedral as discrete 

models of focal-directorial surfaces.  

Convex hull is formed as a sheath for the selected grid 

points. The points were selected in two ways.  

In the first version, we selected grid points ( )
kji r,,θϕ  

on a spherical grid, or (xi, yi, zjk) on a Cartesian grid, whose 

sum of distances to the focuses and directrices 
ijks  satisfies 

SsS ijk ≤≤−ε , where S  is a predefined number  that 

defines the surface together with focuses and directrices 

and ε  is an arbitrarily selected, but sufficiently small 

number that provides the selection of a reasonable number 

of points from inside the body confined by the closed 

focal-directorial surface. Geometry of the convex hull 

depends on external points, so the obtained solution for the 

adopted grid is unique, regardless of the selected value for 

ε . Through step variation in the grid, we get different 

polyhedra as discrete models of the focal-directorial 

surface.  

In the second version, we selected grid points located 

in the predefined close proximity of the surface, points 

whose sum of distances to the focus and directrix 
ijks  

equals S  within limit of a predefined error δ  

( δ≤− Ssijk
). In this version, the solution depends on δ . 

Even very small changes in the value of δ  lead to changes 

in external points, resulting in various polyhedra  as  

discrete models of the focal-directorial surface. In addition, 

variations of the grid step result in new variations of 

polyhedra, which represent new discrete models of the 

focal-directorial surface provided they are within the limits 

of the permitted deviation.  

We performed the modeling of several surfaces, 

both in a spherical and Cartesian grid, parallelly for both 

versions of point selection. In the case of the spherical 

grid, we can say that the outcome of applying the 

convex hull algorithm is a triangulated surface. Almost 

all sides of the obtained polyhedron are triangles, except 

a very small number of quadrilaterals that do not have 

much significance in the preview. Therefore, the authors 

of this paper accepted the triangular mesh generated by 

the script itself as the result in the case of the spherical 

grid, without any additional research on whether some 

triangles belong to the same plane and make multilateral 

polyhedra.  

We can practically say that through the application of 

the convex hull, we performed surface triangulation. 

Figure 4 shows the obtained triangular mesh of the focal-

directorial surface P.2. with two directrices and one focus, 

a continuous model  of which was already presented in the 

previous section of the paper.  

 

a) top view 

 
b) right view 

 

c) right view 

Figure 4. Discrete model of the focal-directorial surface P.2. 
- triangulation-convex hull in a spherical grid 
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Convex hull algorithm is implemented on a set of 

points whose sum of distances to the directrices and the 

focus differs from the defined sum S by less than δ = 

0.2625 . The change of the spherical grid, i.e. step ϕ  and 

θ , would affect the size of the triangles, theoretically, it 

would be a new polyhedron, but in any case, it is a 

triangulated surface.  

A Cartesian grid yields far more interesting results. 

A discrete model obtained as a convex hull in the 

Cartesian grid is shown in Figure 5 (Example I). 

Convex hull algorithm is applied on a set of points of 

the Cartesian grid, whose sum of distances to the focus 

and directrices 
ijks  satisfies SsS ijk ≤≤−ε ,  where 

=ε 0.05. Discrete model is shown in the first row with a 

step for x and y 0.25, and the model in the second row 

with a step 0.5. The step for z  has not changed and 

equals 0.2. The change of step for x and y significantly 

affects the resulting polyhedron, which is naturally best 

seen in top view.  

Figure 5. (Example II) shows two versions of the 

discrete model of the same surface, but with different 

methods of selecting grid points on which the convex 

hull was applied.  

   

0.25; 

0.25; 

0.2 

 

   

0.5; 

0.5; 

0.2 

 

Example I Steps for x; y; z 

   

0.05 

   

0.01 

Example II δ  

Figure 5. Discrete model of the focal-directorial surface P.2. (examples I and II, convex hull with two different versions of point 
selection) 
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We selected points in the immediate vicinity of the 

surface ( δ≤− Ssijk
) with the permitted deviation of 

=δ 0.05 for the surface in the first row and =δ 0.01 for 

the surface in the second row. Discrete models shown in 

the picture above are just an illustration of possible 

variations, which are virtually unlimited in number. We 

selected an asymmetric focal-directorial surface for the 

preview so as to present the most general and 

comprehensive case possible. 

The symmetry is mirrored in the symmetry of the 

discrete mode. Figure 6. shows a model of a focal 

surface with focuses in the vertices of an isosceles 

triangle, which is the example described in detail in the 

previous section of the paper. Two planes of symmetry 

can be clearly read on the discrete model.  

a) top view 

 

a) front view 

 

c) right view 

 

Figure 6. Discrete model – An example of a focal surface 
with two planes of symmetry 

 
3. CONCLUSION  

 

The family of focally generated 3D elements include: 

sphere, Cassini surface and m-ellipsoid, [3], [6]. This 

paper discussed well-known focally generated 3D 

elements and a new type, focally-directorially 

generated 3D elements. By changing the small number 

of parameters (position of the focus and/or directrix), 

we can significantly influence the change of shape of 

the generated element, hence these forms can be 

adapted, adjusted and transformed according to the 

requirements of the architectural task. Because of their 

geometrically definable forms, flexibility of shape, and 

morphological compatibility with the feasible 

structures, favored by current trends in design, focally-

directorially generated elements provide a basis for 

exploring their suitability in the design of architectural 

and urban spaces.  

This paper first presented an algorithm of 

continuous focal-directorial models in a spherical grid. 

The model represents a good approximation of a focal-

directorial surface in terms of the ability to achieve 

sufficient preview accuracy. Through the variation of 

the spherical grid, we come to the variation of 

isocurves, which represent a good basis for the variation 

of discrete spatial structures that display the same 

surface. By connecting the appropriate points of the 

isocurves, we can achieve triangulation in a simple 

manner, which is a standard procedure omitted from this 

paper because of its scope.  

The Displayed triangulation is obtained with a 

Convex hull with the origin of the spherical grid in the 

center of gravitz, which enables an even distribution of 

the triangles. Of course, triangles are not congruent, nor 

equal in size, their shape and size depend on the local 

behavior of the surface. However, if we significantly 

displaced the coordinate origin from the centroid, it 

would cause significant differences in the shape and size 

of the triangles. They would be grouped by size, small 

ones on one side, significantly larger ones on the other, 

which may be the subject of further research in the field 

of applied architecture.     

In the case of the Cartesian grid, the position of the 

coordinate system is irrelevant. A significant role in this 

case belongs to the grid step. Two coordinates globally 

determine polygon sizes, and the step for the third is 

responsible for the accuracy of the surface preview. 

Obtained polyhedral structures are the result of the step-

third coordinate ratio and the required accuracy in point 

selection. Through variations of that ratio, we get 

different polyhedral surfaces.   

When it comes to preview accuracy, greater 

deviations may be allowed. In that case, we could talk 

about discrete spatial structures inspired by focal-

directorial surfaces, instead about the modeling of 

such surfaces. In contrast, if we demanded small 

deviations and if we coordinated grid step with the 

required preview accuracy of surface points in the 

grid, the expected result would be a triangulated 

surface as a very good approximation of the focal-

directorial surface. This model has not been realized in 

this paper.   
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МОДЕЛОВАЊЕ ФОКАЛНО-

ДИРЕКТРИСНИХ ПОВРШИ ЗА 

ПРИМЕНУ У АРХИТЕКТУРИ 

 

Љ. Петрушевски, М. Петровић, М. Деветаковић, 

Ј. Ивановић 

 

Тема овог рада је моделовање фокално-директрисних 

површи полазећи од њихове дефиниције, као 

геометријског места тачака чији је збир растојања до 

фокуса и/или директриса константан и унапред задат. 

Предложен је један хеуристички алгоритам за 

моделовање површи и њихових изолинија који је 

реализован помоћу визуелног графичког едитора 

Grasshoper у RhinoCeros окружењу. Генерисање 

површи и њихових изолинија реализовано је у 

сферном гриду, правоугли грид се показао као 

неподесан за постављени задатак и приступ. У овом 

раду је, додатно, предложен и алгоритам моделовања 

дискретне варијанте фокално-директрисних површи. 

Као начин моделовања, предложен је 3D convex hull 

примењен на скупу тачака површи и изабраних 

тачака блиских тој површи. Дискретни модел је 

реализован у правоуглом, и у сферном гриду. 

Добијени су резултати који се значајно међусобно 

разликују. 

 

 

 

 

 

 

 

 

 

 

 

 

 


