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How Platonic and Archimedean Solids 
Define Natural Equilibria of Forces for 
Tensegrity 
 
The Platonic and Archimedean solids are a well-known vehicle to describe 
certain phenomena of our surrounding world. It can be stated that they 
define natural equilibria of forces, which can be clarified particularly 
through the packing of spheres. [1][2] To solve the problem of the densest 
packing, both geometrical and mechanical approach can be exploited. The 
mechanical approach works on the principle of minimal potential energy 
whereas the geometrical approach searches for the minimal distances of 
centers of mass. The vertices of the solids are given by the centers of the 
spheres. 
If we expand this idea by a contrary force, which pushes outwards, we 
obtain the principle of tensegrity. We can show that we can build up 
regular and half-regular polyhedra by the interaction of physical forces. 
Every platonic and Archimedean solid can be converted into a tensegrity 
structure. Following this, a vast variety of shapes defined by multiple 
solids can also be obtained. 
 
Keywords: Platonic Solids, Archimedean Solids, Tensegrity, Force Density 
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1. PLATONIC AND ARCHIMEDEAN SOLIDS 
 

Platonic and Archimedean solids have systematically 
been described in the antiquity. They denominate all 
convex polyhedra with regular faces and uniform vertices 
except the prisms and antiprisms. They obviously have 
edges of only one length. Platonic and Archimedean 
solids are considered optimal structures when it comes to 
the question: How to enclose a maximum volume with an 
especially low number of uniform edges. It can roughly 
be stated that the more vertices a polytope has, the more it 
approximates a sphere. This characteristic is known as 
sphericity [3]. If we follow a mechanical approach we 
can suppose, that Platonic and Archimedean solids are 
configurations based on a minimal potential of energy. 
Nature is known for finding optimal forms during a long 
term of development. Since we find some of the 
previously described forms in environments with rather 
uniform and constant forces, like in the world of 
Radiolaria [4], we can consider this as a validation of the 
assumption [5]. 

 
2. PACKING SPHERES 

 
The first mathematician who published an essay on the 
subject how equal spheres can be packed in such a way 
that they fill up a given space as much as possible, was 
Johannes Keppler back in the 17th century [6]. It is a 
well-studied question, which is relevant for topics like 
math, crystallography, but also biology and engineering. 
The densest packing of spheres is related to the so-

called “kissing number” problem. The kissing number 
problem is asking for the maximum possible number of 
congruent spheres, which touch another sphere of the 
same size without overlapping. In three dimensions the 
kissing number is 12. This number corresponds to the 
vertices of the icosahedron and the faces of the dode–
cahedron, relates to the cuboctahedron and the rhombic 
dodecahedron (a Catalan solid with a single edge 
length), or as a part, the tetrahedron.  

There are several common types of sphere packings. 
Body-centered cubic structures, face centered cubic 
structures and hexagonal dense packed structures. There 
are different scenarios of packing spheres, from which 
we will only consider densest packings of spheres of the 
same size [7].  

 
Figure 1. Packing Spheres: BCC (a), HCP (b), FCC (c),    
FCC (d) 
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Figure 2. Polyhedra: Tetrahedron, Cube, Octahedron, 
Cuboctahedron 

The hexagonal structures are based on two dimen–
sions on a hexagon were in each corner lays a circle 
with the radius defined by half of the length of the 
edges. In the center of the polygon fits a circle of same 
size such that it touches each of the other six circles. If 
we form a hexagonal grid, this defines the first layer of 
dense packed spheres in three dimensions. A second 
layer is packed onto the first layer such that each sphere 
of the top layer rolls into a triangular trough of the 
bottom layer. Not all troughs can be filled which is 
important for differentiation. Now we have two options 
to stack the next layer. If we continue to lay the third 
layer in the same manner as the second we have a so-
called ABC layering which is the face centered cubic 
structure (FCC) shown in Fig. 1(c) and (d). If we lay the 
third layer such that it is straight above the first, the 
result is an ABA layering, which is a hexagonal dense 
packed structure (HCP) as wqe see in Fig. 1(b). In 
Figure 1 and 2 the layer A is light grey highlighted, the 
layer B grey and the layer C in a darker grey. The body-
centered cubic structures (BCC), as shown in Fig. 1(a) 
are formed based on a quadrangular grid where four 
circles are placed on the corners. In the plane, the circles 
do not touch. If we set the next layer all troughs are 
filled. If we continue the layering, eight other spheres 
touch each sphere. The radius is given by the quarter of 
the length of the diagonal of the defining cube. To 
compare the efficiency of the different packings, we use 
the atomic packing factor (APF) defined by the volume 
of particles in relation to the volume of the related 
polyhedron. Of course, that means that the APF can 
differ for the same structure of spheres. The lattices of 
spheres which achieve the highest average density is the 
FCC. Most of the Platonic and Archimedean solids can 
be found in one of the three structures by connecting the 
centers of spheres. Tab. 1 shows on which layering the 
structure is based, the atomic packing factor and, as 
information, the amount of edges or vertices to compare 
the structures. Interesting is, that the icosahedron and 
the dodecahedron have a centric sphere which is 

touched by 12 other spheres. For this two polyhedra, 
there is no configuration with equal spheres, where 
every adjacent sphere is touching each other. It is 
nevertheless a structure, which is often found in nature 
because it defines a near ideal equilibrium of forces. We 
will show that the icosahedron has a more efficient 
structure than the cuboctahedron, althought the 
cuboctahedron has the better APF. Based on the 
potential of forces. Another comparative size shall be 
the ratio of the edge length to the distance from the 
vertices to the mass center. The maximum 1 is reached, 
if we cut a polyhedron out of the HCP or FCC so that 
the “kissing number” is reached, what is shown by the 
cuboctahedron in Fig. 2 [7].   

 

Figure 3. Polyhedra: Icosahedron, Dodecahedron 
 
3. INTRODUCTION TO TENSEGRITY 

 
A tensegrity system has a stable state of equilibrium and 
works independently from gravity. The system can be 
preloaded. It consists of ropes or a flowing fabric, on 
which only tensile forces act.  And a second group of 
com–pressed components that absorb the pressure 
forces and moments, but never tensile forces. The 
compressed components do not touch each other and are 
connected either at their ends forming a framework or 
even over the entire element with extensive tension 
elements. We can divide tensegrity structures into 
different degrees of "purity”. The purest are the 
structures, where no strut touches another and where 
only linear members are involved. In the broadest sense, 
however, any systems in which any configuration of 
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elements under pressure is kept in balance by a network 
of ropes, membranes or any tensile elements may be 
referred to as tensegrity. Pneumatic structures can also 
be described as a tensegrity structure, e.g. a pumped-up 
football. This involves the skin as a tension element and 
the air molecules inside as the pressure elements. Since 
molecules are modeled as a system of spheres, all the 
geometric patterns of consecutive spheres become 
spheres. So, it is possible to represent the configuration 
of a tensegrity with spherical packages. There is a 
special group of tensegrities in which all struts have the 
same length and all cables either. Such structures are 
called regular tensegrity structures [5,8].  

There is always the possibility to reach an equili–
brium by constructing tensegrities with a pressure 
center. Therefore, every corner is connected with the 
mass center to build a strut and every edge is a cable. 
Within this configuration struts and cables have the 
same potential and define an especially even construc–
tion so as the presented polyhedra do. Another way is to 
downscale the used polyhedra and connect the equi–
valent corners. We have an outer skin defining the 
polyhedra and an inner tension layer which produces the 
tensegrity configuration. If the inner layer has a uniform 
potential, the struts will intersect in the mass center. We 
need an uneven force distribution, so that the struts do 
not touch themselves anymore. We need three force 
vectors to hold a point in three dimensions. We can 
reduce the inner polyhedra so that every knot is held by 
two cables and one strut. With the direction of the 
vectors and their lengths as normalized force the knot is 
stable, if the sum of the vectors has the length zero. If 
we look at this with a geometrical approach we see, that 
an equilateral triangle defines the most uniform vector 
equilibrium in a plane with three angles of 120°. The 
edges of a triangle shown as vectors illustrate that the 
sum is zero. The angle of 120° is described by the three 
vectors oriented on the lines connecting the center of a 
triangle with the corners where the center describes the 
knot to hold. The angle between the three vectors should 
never be 90° or less. The principle can also be applied in 
a three-dimensional structure. Based on this knowledge 
we claim that the polyhedra with triangle faces have the 
more stable configuration. The less stable configuration 
is the cube. To define the outer skin, we need four 
elements because the vectors or edges lay orthogonal. 
Of special interest are the polyhedra a higher amount of 
faces and a good ratio of faces to edges like the icosa–
hedron and the dodecahedron. They can be represented 
by a more efficient equilibrium because two knots in the 
outer skin can be stabilized by one strut. [1,5] 

 
4. FORCE DENSITY METHOD 

 
To show that there is a stable equilibrium within a 
Platonic or Archimedean solid, we will use the force 
density method which is defined by:  

( )TNC QC F n=   (1) 

Where N is a matrix that saves the coordinates of the 
nodes, C is a binary like matrix in which all information 
about the connectivity of elements is stored and where 

diagonal matrix Q defines the force densities. Every 
force density qi is one entry in Q. The force density is a 
quotient of the magnitude of the force or the normal 
stress and the length of action of the force. Respectively 
the distance of two neigboring nodes. The equation 
system established for the solution is linear and allows a 
fast and numerically stable determination of the 
equilibrium form.  The external forces F(n) are not 
necessary in our case. The part we want to look at is the 
Connectivity matrix D = CTQC. It is known that a 
system is stable, if the rank of Matrix D is rD  = n -4 
where n is the number of nodes. In this case, four nodes 
that parametrize the results are sufficient to create a 
spatial, reticular, and self-supporting system. In order to 
check whether a structure developed by the force 
density method is stable, one has to check the matrices 

 for their definiteness. If all eigenvalues are greater or 
equal to 0, the matrix is positive-definite and the struc–
ture is stable. Matrix  saves all information about con–
nectivity and about the qualitative distribution of forces. 
Therefore, for every eigenvalue of D, which becomes 
zero one rank will be dropped. We can analyze the 
Connectivity Matrix through the characteristic polyno–
mial. The roots of the characteristic polynomial are the 
eigenvalues, so we can look under which condition 
three of them become zero. The force density method 
was invented to calculate big membrane like structures. 
In this case, there are held knots and free knots. In (1) 
they would be separated. Nevertheless, tensegrity have 
no held knots so we don’t need to separate (1). For a 
more detailed explanation, read article [9] or [10]. A 
detailed discussion of the derivation would go beyond 
the scope. We can construct Matrix C directly after 
following conditions: 

i j

ij i j

1,  if element vec. ends at knot 

1,  if element vec.  begins at knot  

0,  if theres no connection

m n

C m n
⎧
⎪

= −⎨
⎪
⎩

 (2)  

The Rows represent the elements and the columns 
the knots. In every diagonal element of D there is one 
force density indicated related to the corresponding 
element. Normally to use the force density method there 
are two approaches. Either one defines all force 
densities and calculates the node location or you find 
the force densities for specified knot locations. Our 
method will be explained in chapter 6 [9,11,[12].  

 
5. EQUILIBRIUM MATRIX 

 
The equilibrium matrix stores a lot of important 
information about a system. It is helpful to analyse this 
matrix to understand a given system and its confi–
guration. The number of bias states s, the number of 
movement possibilities m and the pretension states can 
be determined by analyzing this matrix.  It has the 
dimension (axe), where e indicates the number of 
elements of the structure and the number of nodes 
divided into all coordinate directions. The matrix is 
filled with the normalized element vectors. Figure 4 
shows the construction of the Matrix for a three-
dimensional example system. 
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Figure 4. Equilibrium Matrix 
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In Figure 4 no bearing is available. If one of the nodes 
is a fixed bearing, all three rows of the associated node 
are deleted from the equilibrium matrix. In order to 
determine s and m, one has to determine the rank of the 
node equilibrium matrix. For this purpose, the singular 
value decomposition of the matrix A is proposed. From 
the singular values, geometrical properties of the structure 
can be directly derived. These are useful in assessing the 
usefulness of tensegrity structures. The singular value 
decomposition is defined as followed: 

TA U V= ∑   (4) 

The diagonal matrix ( ) mxn
ij s= ∈∑ R  contains the 

singular values of A. The number of singular values 
other than zero is equal to the rank rA of matrix A. Since 
for many structures there are no singular values that are 
equal to zero, values that fall below a defined bound are 
considered zero. The tolerance must be reselected for 
each structure. Pellegrino (1993) suggests that all values 
less than the largest singular value times 10-3 be con–
sidered zero [13]. In further investigations one recog–
nizes that for some structures the tolerance must be 
selected clearly higher. With the rank now determined, 
the values s and m are as follows: 

As e r= −   (5) 

A3  m n c r= − −   (6) 

Here, c is the number of degrees of freedom held. 
Since tensegrity structures have only articulated nodes, 
the number of supports for these is three times c. If 
some nodes are stored, you have to adjust the degrees of 
freedom accordingly. The singular-value decomposition 
has the following form: 

( )

i
mxn mxm

m

j
mxn nxn

i m

n

   

diag ; ;  

u
A

u

v

v
σ σ

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
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⎡ ⎤
⎢ ⎥

∈ ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

R

R R

 (7) 

You can now read the rank of the matrix, since the 
sum of the nonzero values is equal to the rank. 
Tensegrity structures have normally one pretension 
condition. In the case that the system is sustainable, the 
pretension state can be read from the right-singular 
vectors of A, which is the last column of the matrix VT. 
Furthermore, one can read from the decomposition 
products in which direction a force has to act in order to 
initiate a movement of the structure. This information is 
contained in the last column of the matrix U. Because it 
is an attribute of tensegrity structures, that they can be 
stabilized by pretension, there is always an infinitesimal 
possibility of movement. The most important infor–
mation we got from the calculation is whether the 
system is stable or not. This is the case when at least the 
last singular-value becomes zero. The pretension condi–
tion must not be confused with the force densities. To 
come from the pretension to the densities we have to 
divide them with the lengths of the elements [11,12].  

 
6. METHOD 

 
The investigation of Platonic and Archimedean tense–
grities will follow the upcoming steps: 
1. Group the elements so that there is an especially 

low number of different force densities.  
Our preferred configuration would be a system with 
only one coefficient for struts and one for cable. 
Sometimes you cannot reach the configuration you want 
with only two different coefficients. In this case we 
have to find groups such as outer cables and inner 
cables. If we do not see a rhythm in the system we can 
use the pretension condition out of the analyzation of 
Matrix A to see which elements should be grouped.  
2. Set up the Connectivity Matrix D with general 

force densities 
3. Search the characteristic polynomial defined by 

D nχ det(λ )E A= −  and determine the eigenvalues λ 
from A. 

4. Choose the eigenvalues that should become zero 
and set them zero. 

Now we can choose force densities, which satisfy the 
chosen equation. It makes sense to choose the values so 
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that they barely differ. This ensures a more homoge–
neous structure. We also have the possibility to continue 
with general values. 
5. Solve (1) with general knots and parameterize the 

results after four of them.  
6. Test whether the desired body can be mapped with 

the calculated equations 
There are several reasons why this approach is 

beneficial. We not only show, that the tensegrities we 
analyze are stable but also, that there is an infinite 
amount of other forms which fulfill the same conditions. 
Furthermore, we can recognize symmetries in the sys–
tem, which gives us a better understanding of the cons–
tructions. With the stability condition of chapter 5 and 
the analysis of the eigenvalues, we have two ways to 
validate our results. For some systems the shown met–
hod is too computationally expensive so we will use a 
geometric approach that is validated with the equili–
brium matrix. 

To compare these different structures, we will always 
set the biggest factor 1. With this, we can sum up the 
pretension condition of all members in a structure to 
show how big the potential energy is which is needed to 
depict the structure. Also, it is important to calculate the 
difference between the highest and lowest power, as well 
as the average force per element. We will always look at 
the absolute of the forces so that the high of the force is 
relevant and not if it is a pressure or tension force. 

i
v i v i i v

  
, max min ,  

i
v

F v D v v A= = − = ∑∑  (8) 

 
7. INVESTIGATION 

 
7.1 Tetrahedron 

 
4 Struts, 6 Cables, Proportion is 3, 
s = 1, m = 6 

At first, we will analyze the tetrahedron shown in 
Figure 4. We indicate the knots with roman numerals 
and the element vectors with arabic ones. The num–
bering and orientation can be found in the drawing. We 
allocate cables and struts into a group. We assume that 
the pressure center will always be the average value of 
the other nodes. The analysis leads to the result: 

c s
1
4

q q= −     

or with the ratio of cable to length of struts 

c s0.41v v= −    

In this case the both coefficients always have the 
same relationship so it does not matter how they are 
chosen. If we parameterize after the center knot the end 
result is 

5 1 2 3 4
1 ( )
4

n n n n n= + + +  

The formula is satisfied by configurations that have 
a point symmetry. For every Patonic and Archimedean 
tensegrity with a pressure center the result will be 
similar.  

 
Figure 5. Tensegrity tetrahedron with pressure center 
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4 Struts, 10 Cables, Proportion is 2/5, 
s = 1, m = 11 

Table 1. Polyhedra  

Polyhedra Vertices Edges Faces Form APF Edge/Center Structure 
Tetrahedron 4 6 4 Triangle 0.78 0.61 HCP & FCC 

Cube 0.68 BCC 
Cube 

8 12 6 Square 
0.74 

0.87 
FCC 

Octahedron 6 12 8 Triangle 0.72 0.71 FCC 
Dodecahedron 20 30 12 Pentagon 0.74 0.71 – 
Icosahedron 12 30 20 Triangle 0.73 0.95 – 

Cuboctahedron 12 24 14 Triangle & 
Square 0.78 1.00 FCC 

Anti-Cuboctahedron 12 24 14 Triangle & 
Square 0.78 1.00 HCP 
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The next possibility we show is a construction with 
an inner and an outer tension layer as described in 
chapter 3. If both layers have the same amount of cables 
and the same potential, we will have a point symmetric 
structure were all the struts intersect in the middle. To 
define the outer edges, we need all cables in this layer. 
But the inner structure can be reduced. We can remove 
two cables so that a continuous band is preserved. If we 
want a structure which fulfills the definition of a classic 
tensegrity, we have to load the cables in an unrhythmic 
way. When we review the structure according to chapter 
5, we realize how the elements are grouped. Table 2 
shows, that due to the calculation there are 6 groups of 
elements with similar forces. Every value is scaled so 
that the highest number is set to one. The exact 
calculation is too computationally intensive so that we 
limit ourselves to calculate with the equilibrium matrix. 
Table 2. Tensegrity tetrahedron with pressure center 

 1 2 3 4 5 6 
vi 0.68 0.64 0.49 0.42 0.31 -1.00 
qi 0.67 1 0.15 0.13 0.10 -0.39 
li 0.31 0.20 1.00 1.00 1.00 0.78 

 
For the tetrahedron we see, that the structure with a 
pressure center is the better one when we overlook the 
fact that it is not a pure tensegrity. The benchmark is as 
follows: 

v v v6.45;  0.59; 0.645F D A= = =   

 
Figure 6. Tensegrity tetrahedron 

For the second structure, we see that the total 
potential is higher without reducing the average poten–
tial per element so the first tensegrity structure is 
technically better.  

v v v9.08;  0.69; 0.645F D A= = =   
 

7.2 Cube 
 

8 Struts, 12 Cables – Proportion is 2/3, e3 
s = 1, m = 8 

In this case, the stability criteria are met under the 
following conditions: 

c s
1
2

q q= −  or c s0.58v v= −   

From now on we will write the solutions as matrices 
to have a better overview. The four redundant nodes are 
represented by the rows and the ones to calculate by the 
columns.  
Table 3. Tensegrity Cube with pressure center 

 n5 n6 n7 n= n9 
n1 -1  1  -1 
n2  2 2 2 2 
n3 1 -1 -1   
n4 1  -1 -1  

 
If we analyze the matrix of Figure 7 we see, that in 

all cases were three nodes depending on each other they 
will form a straight line in a cube. If we choose the 
corresponding vertices to a random cube, the solution 
will exactly define the boundary. For the cube is it not 
possible to form a pure tensegrity like in Figure 6. This 
occurs because the vertices are defined by edges which 
stay orthogonal to each other. Therefore, the const–
ruction can always be deflected. We see, that the total 
potential of the structure rises compared to the 
tetrahedral one, which correlates to the rise of elements.  

v v v14.96;  0.42; 0.748F D A= = =  

 
Figure 7. Tensegrity Cube with pressure center 

 
7.3 Octahedron 

 
6 Struts, 12 Cables, Proportion is ½, 
s = 3, m = 6, knots = 7 

With the tetrahedron, the symmetry properties are 
not easily recognized. But if we look at it more accurate 
ly we also see the symmetry. The centre knot n7 can be 
parameterized after three knot pairs. So, it has to lay 
between every pair of nodes. Also, every defined knot 
pair has a point symmetry to another pair through the 
centre point. With this knowledge, we can conclude that 
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the configuration of the octahedron is contained in the 
sample space. 

c s
1
4

q q= −  or c s0.35v v= −   

3 5 2 4 1 6 2 4;  n n n n n n n n+ = + + = +   

7 2 4
1 ( )
2

n n n= +    

Fig
ure 8. Tensegrity octahedron with pressure center 

5 Struts, 8 Cables – Proportion is 5/8 
s = 3, m = 6, knots = 7 
There is a second possibility, where we can reduce the 
overall elements (Figure 9). For that we implement a 
ring of pressure and a center strut. We divide the 
elements into four groups. The upper layer of cables q0, 
the lower layer of cables qu, the circumferential struts qs  
and the central strut qc.  

If the following two conditions are met, the rank of 
the coefficient matrix is 2 as required for a stable const–
ruction: 

o u o u
s c

o u o u

4 41 ;  
2

q q q q
q q

q q q q
⎛ ⎞

= − = −⎜ ⎟+ +⎝ ⎠
 

 

A possible solution is: 

o u s c1;  1;  1;  2q q q q= = = − = −   

This results in the following parameterization: 

5 2 3 4 6 1 2 4n n n n n n n n= − + = − + +   

With general force densities is the solution: 

 

2 o 6 o 1 u 2 u
4

o u

3 o 6 o 1 u 3 u
5

o u

2 2

2 2

n q n q n q n q
n

q q
n q n q n q n q

n
q q

− + + −
=

+
− + + −

=
+

  

6 Struts, 16 Cables, Knots 12, Proportion is  3/8, 
s = 1, m = 13 

The third approach uses an inner tension ring. 
Therefore, six struts show from the outer layer to the 
mass centre but are deflected because they should not 
touch each other to satisfy the classic definition of ten–
segrity. The groups are coloured and shown in Fig. 13. 

Structure with pressure center: 

v v v10.2;  0.65; 0.567F D A= = =   

Structure with main strut: 

v v v5.24;  0.65; 0.40
0.35; 0.35; 0.35; 1o u s c

F D A
v v v v

= = =
= = = − = −

  

Pure tensegrity Structure: 

v v v15.74;  0.833; 0.656F D A= = =   

 
Figure 9. Tensegrity octahedron reduced 

In this case, we see how the total potential massively 
decreases from the first to the second structure. If we 
include the potential per element we see, that it is not 
just about the reduction of the elements. The third 
structure is again less efficient but meets the condition 
of a pure tensegrity. 

 
7.4 Dodecahedron 

 
20 Struts, 30 Cables – Proportion is 2/3 
s = 1 – m = 14 – Knots 20 

The dodecahedron with a centred knot will be tested 
with the equilibrium matrix to avoid an unclear result 
and to reduce the computational effort. The analyzation 
of the singular values shows us, that the configuration is 
absolutely stable. For the cables we get a tensioning 
factor of 0.9341 and for the struts -1.00 and force 
densities of -1.00 and 0.7639. 

10 Struts, 30 Cables – Proportion is 1/3 
s = 1 – m = 21 – Knots 20 

The dodecahedron can be represented through a pure 
tensegrity with only 10 struts and 30 cables. There is 
exactly one possible option to connect them so that two 
vertices are connected through one strut. To reach this 
configuration, no homogeneous distribution of forces is 
possible. The right singular vector shows us, that we 
need 6 groups of members, which means that 6 different 
pretension conditions are needed to achieve the 
searched configuration.  
Table 4. Tensegrity dodecahedron 

 1 2 3 4 5 6 
vi -0.88 -0.50 0.30 0.38 0.61 1.00 
qi -0.38 -0.22 0.30 0.38 0.61 1.00 
li 1.00 1.00 0.44 0.44 0.44 0.44 

 
There is another configuration in which all cables 

have the same force density. But it must be divided into 
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“horizontal” and “vertical” struts. When the cables have 
a force density of 1.00 the horizontal struts have a force 
density of -0.63 and the vertical struts of -0.37. In this 
case, only the lower and upper polygons are preserved. 
All the others are deformed. 

 
Figure 10. Tensegrity dodecahedron 

Structure with pressure center: 

v v v48.03;  0.066; 1.20F D A= = =   

Reduced tensegrity dodecahedron: 

v v v22.87;  0.697; 0.572F D A= = =  

The first structure is very homogeneous, which is 
shown by the small difference value of the maximal and 
minimal potential. Nevertheless, the total potential can 
be reduced substantially in the second structure. 
Therefore, it is the better and more efficient one.  

 
7.5 Icosahedron 

 
12 Struts, 30 Cables – Proportion is 2/5 
s = 9 – m = 6 – Knots 12 

In this case, the symmetries are clearly visible again. 
The parameterizing knots define the triangle of one of 
the 20 faces. The fourth knot is the mass center. We 
have written the ratios as numerical values to ensure the 
best possible overview. The first three columns define 
straight lines and with that the opposite face of the 
icosahedron. Knot 4, 6 and 8 are one group which are 
connected with the base face through one cable and 
thereby define the higher lying vertices. Knot 5, 7 and 9 
in their group define the lower vertices connected thro–
ugh two cables. The nodes have the same numbering as 
in Figure 11, with the central node numbering 13. 

6 Struts, 24 Cables – Proportion is ¼ 
s = 1 – m = 7 – Knots 12 

The second more efficient approach is illustrated in 
Fig. 11. We can not only reduce the number of struts but 
also the outer cables which define the edges of an 
icosahedron. At every knot there are 5 elements which 
have the same orientation of element vectors so the 
cables and struts can have an even coefficient. 

c s
1

(5 5)
q q=

− +
   

Table 5. Tensegrity icosahedron with pressure center. 

 n1 n2 n3 n4 n5 
n10  -1  1 0,618 
n11   -1 -0,618 0,618 
n12 -1   -0,618 -1 
n13 2 2 2 1.236 0,764 

 
 n6 n7 n8 n9 

n10 -0,618 -1 -0,618 0,618 
n11 1 0,618 -0,618 -1 
n12 -0,618 0,618 1 0,618 
n13 1.236 0,764 1.236 0,764 

 

c s
2
3

q q= −  

 
Table 6. Pure tensegrity icosahedron 

 n2 n3 n4 n5 n6 n7 n8 n9 
n1 5 -1 -3 4 4 4 4  
n10 -4 12 8 1 1 8 8 7 
n11 7 -14 -7 7 -7 -14 -7 -14 
n12 -1 10 9 -5 9 9 2 14 

 
Structure with pressure center: 

v v v

c s

16.36;  0.855; 0.39
0.1453; 1

 
 

F D A
v v

= = =
= = −

  

 
Figure 11. Pure tensegrity icosahedron 

Reduced tensegrity icosahedron: 

v v v15.80;  0.592; 0.527F D A= = =   

The difference of the total potential is small in this 
case. Nevertheless, the distribution of forces becomes 
more homogenous in the second structure. This makes 
the structure more effective. 

 
7.6 Cuboctahedron 

 
12 Struts, 24 Cables – Proportion is ½ 
s = 4 – m = 7 – Knots 13 
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As for the examples that have allready been shown, 
there is a stable equilibrium within a construction with a 
centred pressure knot. The difference is that there is no 
homogenous partition for cable and strut coefficient. If 
we want to get the default configuration, we have to 
divide the elements into 10 groups. The uneven force 
distribution is caused by the different angles of the 
element vectors in the outer layer. 

12 Struts, 24 Cables – Proportion is ½ 
s = 7 – m = 7 – Knots 12 

There is one possibility to build up a tensegrity with 
an even distribution of cable and strut coefficient.  For 
that we lay 4 isosceles triangles into the cuboctahedron. 
This creates groups of forces that act in a circle and 
absorbs the pressure forces.  

c s
2
3

q q= −  

Table 7. Homogenous octahedron tensegrity 

 n2 n3 n4 n5 n6 n7 n8 n9 
n1  -3  3 -3 3 -3  
n10 2 1 2 -1 2 1 3 -1 
n11 -1 4 2 -1 2 -2 3 1 
n12 2 1 -1 2 2 1  1 

 
The total potential of the first structure is almost half the 
size of the second structure presented. However, it is 
virtually unusable, since the differences in the potential 
of the elements are almost 100 percent.  

v v v13.30;  0.992; 0.37F D A= = =   

 
Figure 12-1. Homogenous octahedral tensegrity 

 
Figure 12-2. Homogenous octahedral tensegrity 

Compared with the structures constructed out of the 
other polyhedra the homogenous octahedral tensegrity 
has an average difference of potentials so as the 
potential per element. It is therefore to be classified as a 
structure that best reflects a cuboctahedron. 

v v v21.24;  0.615; 0.59F D A= = =    
 

8. BUILDING KITS 
 

Every tensegrity which is identified as stable can be put 
together and forms a new stable construction. Therefore, 
the faces which correspond are put together so that the 
multiple knots lay together. The only thing which is 
changing is the number of bias states which just get 
added together. But there is a second method to combine 
the different construction within which the classic 
definition of tensegrity is preserved. We put two 
equivalent faces together and rotate them so that the 
triangular faces form hexagons or the square gets an 
octagon. Or in other words, the edges of a surface are 
split and form new nodes for the overlying element. We 
connect the polygons through cables and add new cables 
which draw together the multiple polyhedra tensegrity. 
Fuller [5] described this proceeding for the tetrahedron as 
stacking cubic elements as a tower were the vertices of 
the tetrahedron lay exactly so that they create cubes. The 
cubic stacking will subside to reach a stable equilibrium. 

 
9. CONCLUSION 

 
In conclusion, it has been proved that each Platonic 
solid consists of an equilibrium of forces which evolves 
from a pressure center. Even though the cuboctahedron 
comprises best sphere packing, it seems to lack in 
providing most efficient balance of power. This finding 
could also explain why the shape of the icosahedron is 
found more often in nature. Furthermore, it has been 
shown that tensegrities with a higher number of faces 
are corresponding to bodies which require fewer 
elements. These pure tensegrities include better pote–
ntial of forces. Moreover, they show that not necessarily 
all spheres of a packing have to interact with each other 
to accept the shape of the corresponding sphere 
package. Tensegrity structures have established them–
selves as a particularly efficient structure in some cases. 
Furthermore, it has been shown that even with smaller 
order polyhedra tensegrity is constantly presented, 
besides orthogonal outer edges. Although these are less 
efficient than those with a pressure center, they can be 
useful in Bio-Tensegrity and orthopedics to model mo–
vements. The idea of packing spheres is useful for 
finding forms which preserve a low potential of energy. 
As a consequence, they are particularly stable, and the 
reduction to polyhedra gives us the possibility to const–
ruct modular kits, which can be arbitrarily extended. It 
has been also demonstrated successfully how the cons–
tructed elements can be used as a kit, and these can be 
made even more efficient by the idea of sphere packing. 

Based on the investigations on polyhedra, two options 
have been identified for analyzing and para–meterizing 
cable-strut-systems and their contained tensegrity. Since 
you already need information about the structure for this 
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analysis tools, it seems reasonable to progress from a 
geometric development of tensegrity to a force-controlled 
one. These inquiries, especially about the assembly of 
unit cells, can be continued for an expanded period of 
time by using these methods. All calculation methods are 
programmed for Grasshopper, whereby an efficient 
analysis tool for constructing tensegrity is available [14].  

 

 

 
Figure 13. Building Kit & octahedron 
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NOMENCLATURE 

qk force density of element k 
nj node j 
rD rank of matrix D 
C connection matrix 
Q force density matrix 
N matrix of nodes 
D connectivity matrix 
F(n) external forces at node n 
e number of elements 
ra rank of matrix a 
s number of bias states 
m movement possibilities 
A equilibrium matrix 
U left-singular vectors 

Σ diagonal matrix of singular values 
n number of knots 
c number of degrees of freedom 

 
 

КАКО ПЛАТОНОВА И АРХИМЕДОВА ТЕЛА 
ДЕФИНИШУ ПРИРОДНУ РАВНОТЕЖУ СИЛА 

ТЕНЗИГРИТЕТА 
 

М.Ф. Ајхенауер, Д. Лордик 
 

Платонова и Архимедова тела добро су познатa 
средствa за описивање одређених феномена нашег 
окружења. Може се рећи да они дефинишу 
природну равнотежу сила која се може посебно 
објаснити кроз паковање сфера. [1] [2] Да би се 
решио проблем најгушћег паковања, може се 
користити и геометријски и механички приступ. 
Механички приступ заснива се на принципу 
минималне потенцијалне енергије, док геометријски 
приступ користи минималне удаљености тежишта. 
Врсте крутих тела дефинисане су центрима сфера. 
Ако ову идеју проширимо реактивном силом, која 
делују ка споља, добијамо принцип тензег–ритета. 
Можемо показати да је могуће изградити правилни 
и полу-правилни полиедар интеракцијом физичких 
сила. Свако Платоново и Архимедово тело може се 
претворити у тензигритетску структуру. Након тога, 
може се остварити и велика разноликост облика 
дефинисаних мултипликацијом појединачних 
полиедара. 
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