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Exploration of GRA Based Multiobjective 
Optimization of Magnetic Abrasive 
Finishing Process using Simulated 
Annealing  
 
Magnetic abrasive finishing (MAF) process is an advanced super-finishing 
process that is capable of achieving surface-finish in micro to nano range. In 
this study a hybrid module, Taguchi based grey relational analysis (GRA) 
coupled with simulated annealing (SA) approach is developed for multi-
objective optimization of micro-finished aluminium 6060 via MAF process. The 
performance responses ‘change in roughness’, ‘raise in temperature’ and 
‘change in hardness’ are considered to minimize their impact on micro-finished 
aluminium 6060. These responses are used to calculate the grey relational 
coefficient for individual response and are then converted into a single response 
variable i.e. grey relational grade (GRG) value. The meta-heuristic based 
simulated annealing algorithm is used to predict the most desired process 
parameter setting i.e. working gap (2 mm), abrasive weight (15 g), voltage (6 V) 
and rotational speed (50 rpm). This setting has been selected based on the 
highest GRG value predicted by hybrid Taguchi based SA-GRA approach.. 
 
Keyword: Magnetic abrasive finishing, Surface roughness, Surface temperature, 
Hardness, Grey relational analysis, Simulated annealing. 

 
 

1. INTRODUCTION  

Magnetic abrasive finishing process was introduced to 
improve the surface texture of novel materials such as 
metals-composites, superalloys and ceramics [1]. This 
process uses the magnetic field to control the flexible 
magnetic abrasive brush (FMAB) responsible for 
removal of material from the target surface. FMAB is 
formed with the alignment of magnetic particles (ferrous 
particles) and abrasive particles (alumina, silicon 
carbide) under the magnetic field in the working gap. 
Magnetic abrasive particles arrange themselves in the 
form of FMAB in a magnetic field due to their 
ferromagnetic nature, the strength of FMAB depends on 
the magnetic flux density in the working gap. Finishing 
is achieved when these magnetic abrasive particles are 
placed into working gap between target surface and 
magnetic poles [2]. Finishing is achieved by relative 
motion between target surface and FMAB [3]. This 
FMAB acts as multi-point cutters which removes the 
material from the surface in form of micro-chips. 
During finishing a substantial amount of heat is 
generated on the target surface due plastic deformation, 
fracture and frictional heat. This heat might affect the 
surface integrity of workpiece target surface and basic 
aim is to minimize the generated heat. Hardness is 
another surface property which affect the surface quality 
of workpiece surface 

To understand the effects of surface temperature on 

the target surface of workpiece, both theoretical and 
experimental studies was done. Komanduri et al. did 
theoretical temperature analysis using silicon nitride 
ceramic (Si3N4) workpiece and chromium oxide (Cr2O3) 
abrasive particles to derive a thermal solution based on 
moving heat theory of Jaeger. That model considerably 
calculated the produced flash temperature during 
finishing and flash time at an interaction point [4]. Other 
attempt was made by Kumar et al. in developing a finite 
element model to reveal the effect of surface tempe-
rature on the target surface. Conclusions were drawn 
that surface temperature was elevated due to escalation 
in magnetic abrasive particle velocity and magnetic 
potential [5]. Further, Mulik et al. did an experimental 
investigation of surface temperature on the workpiece-
FMAB interface during Ultrasonic MAF process 
(UAMAF) and they took ferrous alloy as a workpiece 
for conducting the experiment. Temperature directly 
depends on voltage, weight of abrasive particles and 
pulse on time were the key finding of their work [6].  

To reveal the influence of MAF process on the 
hardness of target surface, M.naif studied the effect on 
hardness of a brass plate when finishing was done using 
MAF process [7]. He did a regression analysis for 
predicting the most significant process parameter affec-
ting the response parameters. It was founded that value 
of hardness increases when powder volume and coil 
current increases and it decreases with an increase in 
rotational speed and machining gap. Further, Shather et 
al. did an experimental study to reveal the impact of 
design parameters and process parameters on mecha-
nical properties (micro-hardness, surface roughness and 
material removal) of the processed surface through 
MAF process [8]. They applied analysis of variance 
(ANOVA) for finding the most significant process 
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parameters affecting the response parameters. It was 
concluded that amplitude of pole geometry, finishing 
time and current were the most significant factors on 
which hardness of processed surface depended.  

To study the role of multi-objective optimization in 
the machining and finishing process for the appraisal of 
their performance, numerous studies were also con-
ducted. The multi-objective optimization results enhan-
ce the manufacturing process performance and were 
also very well adopted for industrial applications. 
Lakshminarayanan et al. used Taguchi based L9 ortho-
gonal arrangement (OA) and ANOVA test for cla-
ssifying the important factor altering the strength of 
friction stir welded RDE-40 Al alloy joints [9]. Taguchi 
philosophy has a limitation to solve multi-optimization 
problem but it can be overcome by converting multi-
objective problem into a single response with a use of 
grey relational analysis (GRA). Chan et al. integrated 
the artificial neural network with simulated annealing to 
enhance the surface finish of pure tungsten workpiece 
machined through wire electro discharge machining 
(WEDM). This hybrid approach had effectively 
optimized the performance of the WEDM and optimal 
settings were obtained for improving the productivity 
[10]. Kolahan et al. also successfully implemented 
simulated annealing algorithm with GRA to optimize 
the multi-responses in the turning operation. Simulated 
annealing (SA) was used to enhance the optimal process 
parametric setting for maximum productivity and 
performance of turning process. Combination of GRA-
SA approach was successful in achieving the objective 
of the work performed [11]. 

Azhiri et al. developed a hybrid multi-objective opti-
mization approach by combining adaptive neuro-fuzzy 
system with GRA. Objective was to optimize the cutting 
velocity and surface roughness of an aluminium based 
metal matrix composite processed by WEDM. Their 
experimentations were based on the Taguchi’s   ortho-
gonal arrays were ANOVA revealed the most significant 
process parameter [12]. Kumar et al. optimized four 
performance response of the WEDM using desirability 
function based on Box-behnken design. They opted for 
titanium to study the performance characteristics between 
six process parameters to four responses. Finally, their 
design successfully optimized the optimal setting 
required for maximum productivity of WEDM [13].   

Goswami et al. investigated the rate of material 
removal, wire wear ratio and surface integrity of 
WEDM on Nimonic 80A alloy using Taguchi method 
and GRA. Their study reveals that an interaction bet-
ween process parameters was significant. Scanning 
electron microscope (SEM) was later performed to 
investigate about the changes in micro-structure after 
doing machining process [14]. Tripathy et al. applied 
technique for order of preference by similarity to ideal 
solution (TOPSIS) and GRA to optimize the multi-
response of powder-mixed-EDM. Their results showed 
an enhancement in the performance characteristics of 
0.161689 and 0.2593 in preference values by using 
TOPSIS and GRA, respectively [15]. Mittal et al. used 
response surface methodology and desirability approach 
to optimize the performance measure of abrasive flow 
machining. They used Aluminium based SiC metal-

matrix composite that is highly needed in the industries 
as the workpiece. Also, significance of process 
parameters was obtained using the ANOVA method. 
Their results were improved by using the above 
approaches [16]. Agarwal et al. developed a hybrid 
(GRAANN) model to predict optimal setting of 
electrochemical machining (ECM) parameters with 
highest GRG value for material removal rate, under-cut 
and etch factor [17]. The artificial neural network 
(ANN) component also delivers an acceptable perfor-
mance for trends investigation for a specified set of 
tests. In this study, a surface curve is a plot which rep-
resents the machining characteristic in a better way. 
Gopal et al. used multi-criteria optimization module 
based on Taguchi-GRA-TOPSIS to minimize the effect 
of cutting force, temperature and surface roughness in 
end milling of Mg hybrid MMC. Their developed mo-
dule had successfully achieved 0.198µm surface roug-
hness, 63.92N cross feed force, 42.6N thrust force, 
68.96oC temperature and 139.48N feed force [18]. 

Literature review reveals that most of the multi-
objective optimization was done on machining process 
by using hybrid optimization approaches. To fill the 
voids of previous investigations, the present study 
focuses on conducting Taguchi based grey relational 
analysis of aluminium 6060. The material is finished 
through MAF process. Here, for enhancing the results of 
GRA, metaheuristic based simulated annealing is 
coupled with Taguchi based GRA. In this study, an 
attempt has been made to develop a robust optimization 
module using SA-GRA based Taguchi optimization 
philosophy. This approach is used to optimize the 
performance measures of aluminium 6060 when micro-
finished via MAF process. The performance responses 
‘change in roughness’, ‘raise in temperature’ and 
‘change in hardness’ are opted for multi-objective 
optimization to minimize their effect in order to get 
desired micro-finishing value. Further, the contribution 
of process parameters is analysed by ANOVA in respect 
to Taguchi based GRG, this inclusive step helped in 
better development of the predictive meta-heuristic SA-
GRA module.   

 
2. EXPERIMENTATION ON ALUMINIUM 6060 

USING MAF PROCESS 
 

In this study, aluminium 6060 was opted as a workpiece 
(100X100X10 mm3) for micro-finishing through MAF 
process. Taguchi L9 orthogonal array is used in deter-
mining the appropriate number of experiments. Before 
micro-finishing operation, surface roughness and 
hardness of workpiece were measured [19]. Surface 
roughness measurement was done by Handysurf surface 
tester and the initial surface roughness of workpiece 
were between ‘1.43µm to 1.56 µm’.  Then, hardness test 
was performed using vicker’s hardness. Vicker’s 
hardness of workpieces was found between ‘31 HV - 34 
HV’. In order to measure the surface temperature during 
micro-finishing, three 2.0 mm through hole at the 
specific location were drilled into considered work-
pieces. After these K-type thermocouples with 1.6 mm 
probe were inserted in the former holes. Figure (1) 
shows the schematic representation of surface tempe-
rature measuring methodology [20].  
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Then, aluminium 6060 workpiece with thermo-
couples was placed on the worktable of MAF set-up as 
shown in figure (2). The required working gaps between 
electromagnetic tool and workpiece were maintained by 
using slip gauges. The magnetic flux density in the 
working gap is measured using EMF-PORTABLE digi-
tal gaussmeter (range 0-2.0 T). Magnetic flux density in 
working gap is found to be between 0.65 T to 1.02 T 
when voltage between 10-18 V is provided as input. 

 
Figure 1. Method of insertion of k-type thermocouple probe 

Three 100 g samples of magnetic abrasive particles 
were created by mixing silicon carbide in a fixed 
proportion i.e. 20g, 25g, 30g in iron powder. The 
particles size of silicon carbide were 400 mesh and iron 
were 300 mesh. After this, working gap is filled with 
magnetic abrasive particles in required proportions. 
Flexible magnetic abrasive brush was formed when DC 
supply was fed and FMAB acted as multipoint cutting 
tool to erode the surface of aluminium 6060.  

 
Figure 2. Magnetic abrasive finishing experimental set-up 

Table 1 - Selected process parameters range 

Sr no Process parameter Units  Range 
1 Working gap (P1) mm 1.0-2.0 
2 Abrasive weight (P2) g 20-30 
3 Voltage (P3) V 10-18 
4 Rotational speed (P4) rpm 100-300 

 
Before performing the main L9 OA experiments, pilot 

experiments were conducted to examine the performance 
of the MAF set-up and to define the process parameters 
range. The selected process parameters are listed in table 
(1) and their range were selected as per MAF set-up 
performance and constrained. While performing pilot 
experiment, it is seen that raise in temperature became 
constant approximately around 20 minutes. Hence, the 
main L9 OA experiments were conducted for 20 minutes to 
micro-finish the aluminium 6060. During micro-finishing, 

maximum 9o C raise in temperature is recorded for expe-
riment-3 and lowest 3o C is recorded for experiments 1 and 
8, as shown in table (2). After successful completion of 
experiments, final surface roughness and hardness of 
micro-finished surface were measured. The ‘change in 
roughness (ΔRa)’, ‘raise in temperature (ΔT)’ and ‘change 
in hardness (ΔH)’ of micro-finished aluminium 6060 were 
selected as performance responses of MAF process for 
multi-objective optimization, listed in table (2). 

 
3. GREY RELATIONAL ANALYSIS (GRA) 
 
Grey relational analysis (GRA) is a normalization tec-
hnique introduced by Professor Deng in 1982 for solving 
multi-objective response by translating the multiple expe-
rimental data into on a single response measure called 
grey relational grade [21]. GRA produces GRG, which is 
further analysed for predicting the most optimal solution 
for the desired performance of any system or process. 

GRA method consists of the following steps: 
1) Conduction of experiments at settings of parameters 

according to Taguchi orthogonal array [22]. 
2) Normalization of experimental results. 
3) Determination of grey relational code (GRC). 
4) Calculation of grey relational grade (GRG) and 

their corresponding rank. 
5) Selection of optimal process parameters. Multiple 

outcome of experiment was investigated using 
GRA. GRA approach allows conversion of multiple 
responses such as material removal, cutting force 
and surface roughness into a single grey relational 
grade (GRG) [9]. 

 
3.1 Data Normalization 
 
GRA starts with normalizing experimental data (Table 
2) retrieved via micro-finishing on aluminium 6060 
using MAF process. Normalization of experimental 
data is done in a range between 0 and 1 by applying 
machining characteristic i.e. ‘lower is the best’ using 
equation (1) to ‘change in roughness’, ‘raise in tem-
perature’ and ‘change in hardness’. Where Xi(k) is 
comparability sequence and Xi*(k) sequence afterward 
data pre-processing. Table (3) illustrates the norma-
lized sequence aimed at all the responses founded on 
their corresponding performance characteristics. 

max ( )( )
max ( ) min ( )

Yi k YiXi k
Yi k Yi k

−
=

−
                 (1) 

3.2 Grey Relational Coefficient (GRC) 
 
After defining deviation sequence, GRC is determined 
by using the equation (3) where ξ is defined as an iden-
tification coefficient. The GRC for all the sequences of 
‘change in roughness’, ‘raise in temperature’ and ‘chan-
ge in hardness’ are given in table (4), In this case, all the 
process parameters were given an equivalent preference 
by considering ξ=0.5, while Δ max. and Δ min. shows 
the maximum and minimum absolute variance.  

min max( )
0 max

i k
i

θξ
θ

Δ + Δ
=

Δ + Δ
                  (3) 
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Table 2 – Surface Temperature Experimental Results  

Experiment no. Process parameters  Responses 
P1 

(mm) 
P2 
(g) 

P3 
(V) 

P4 
(rpm) 

ΔRa 
(µm) 

ΔT 
(0C) 

ΔH 
(HV) 

1 1.0 20 10 100 0.15 3.0 3.3 
2 1.0 25 14 200 0.19 5.0 4.3 
3 1.0 30 18 300 0.23 9.0 5.2 
4 1.5 20 14 300 0.17 4.0 3.8 
5 1.5 25 18 100 0.21 7.0 4.6 
6 1.5 30 10 200 0.18 5.0 4.1 
7 2.0 20 18 200 0.19 5.0 3.7 
8 2.0 25 10 300 0.16 3.0 3.1 
9 2.0 30 14 100 0.17 4.0 4.5 

Table 3- Data normalization and deviation sequence of experimental responses   

Experiment 
no. 

 

Data Normalization Deviation Sequence 
ΔRa ΔT  ΔH ΔRa ΔT  ΔH  
Xi(1) Xi(2)  Xi(3) Δoi(1) 

 
Δoi(2) 

 
Δoi(2) 

 
1 1 1 0.9047 0 0 0.0958 
2 0.5 0.6667 0.4285 0.5 0.3333 0.5719 
3 0 0 0 1 1 1 
4 0.75 0.8333 0.6666 0.25 0.1667 0.3333 
5 0.25 0.3333 0.2857 0.75 0.6667 0.7146 
6 0.625 0.6666 0.5238 0.375 0.3333 0.4769 
7 0.5 0.6666 0.7142 0.5 0.3333 0.2854 
8 0.875 1 1 0.125 0 0 
9 0.75 0.8333 0.3333 0.25 0.1667 0.6667 

 
3.3 Grey Relational Grade (GRG)  
 
At last, GRG (γi) is calculated using the equation (4) to 
evaluate the multiple performance characteristics. GRG 
for each experiment is intended by collecting the mean 
values of the GRCs for ‘change in roughness’, ‘raise in 
temperature’ and ‘change in hardness’. The rank of each 
experiment was tabularized grounded on the highest 
GRG, as listed in table 4. The higher value of GRG is 
extremely desired for favourable parametric setting 
during multi-attribute optimization. 

1
1 ( )n

ki k
n

γ ξ== ∑                (4) 

Table 4- Grey Relational Coefficients 

Experiment 
no 

Grey relational 
coefficient  

Grey 
relational 

grade 

Rank

ΔRa 
(1)iξ  

ΔT, 
(2)iξ

ΔH , 
(3)iξ   

1 1 1 0.84 0.7100 1 
2 0.5 0.6 0.4667 0.3917 7 
3 0.3333 0.3333 0.3333 0.25 9 
4 0.6667 0.75 0.6 0.5047 3 
5 0.4 0.4281 0.4175 0.3184 8 
6 0.5719 0.6 0.5125 0.4205 6 
7 0.5 0.6 0.6364 0.4340 5 
8 0.8 1 1 0.7000 2 
9 0.6667 0.75 0.4281 0.4613 4 

 
3.4 GRG for process parameters level 
 
Table (4) shows that experiment no. 1 has the best mul-
tiple performance characteristic because this combination 
of machining process parameters has highest grey 

relational grade (GRG) value. Since the experiments are 
orthogonally designed, the GRG for various levels can be 
sorted out by calculating the mean of GRG for process 
parameters at same levels. This can be computed for 
every process parameter at same level [23].  

Here, GRG value for parameter A (working gap, P1) at 
1st level 1 (1 mm) can be determine by the mean value of 
corresponding GRG values of experiment no. 1-3. The 
calculated mean GRG for other process parameters for 
various levels is given in table (5). Calculating the mean of 
parameters for different levels gives the best optimal 
setting on the basis of desired performance responses. 
Table (5) shows that for parameter A (working gap, P1) the 
optimal results for ‘change in roughness’, ‘raise in 
temperature’ and ‘change in hardness’ are achieved at 3rd 

level (2 mm). In the same way optimal results for other 
parameters are also calculated. 
Table 5- Mean GRG of Process Parameter 

S NO Process parameters GRG 
Level 1 Level 2 Level 3

A P1 (Working gap)  0.4505 0.4117 0.5318
B P2(Abrasive weight) 0.5494 0.4672 0.2236
C P3 (Voltage)  0.6103 0.4523 0.3313
D P4 (Rotational speed) 0.4937 0.4155 0.4847

 
For distinguishing the optimal results for each process 

parameters, the calculated mean GRG value at different 
levels are plotted, as shown in figure (3). Primarily, 
greater GRG value represents the optimal setting of 
process parameters. Figure (3) shows the most optimal 
process parameter’s value based on the highest GRG 
which are A3B1C1D1. The predicted Grey relational 
grade (GRG) of the optimal process parameters level for 
the experiment can be calculated using equation (5): 
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Figure 3. Optimal process parameters setting by GRA 

 

1
ˆ ( )n

m i miγ γ γ γ== + −∑                (5)                                             

Where, γm and γi represent total mean of GRG and GRG 
mean at an optimal level, respectively and n is the total 
number of process parameters. The predicted GRG is 
calculated as follows:  

( ) ( )
( ) ( )
ˆ 0.46469 0.5318 0.46469 0.549419 0.46469

0.610302 0.46469 0.493798 0.46469
ˆ 0.8013

γ

γ

= + − + − +

− + −

=

  

 
4. REGRESSION PRIDICTIVE MODEL 
 
Regression is a sophisticated technique to develop a 
predictive empirical model for predicting the behaviour 
of process parameters and grey relational grades 
associated with each experiment responses [24]. Present 
modelling is done using MINITAB 18 statistical 
software. The linear GRG regression model is given by 
equation (6). Here working gap (P1), abrasive weight 
(P2), voltage (P3) and rotational speed (P4) are the 
process parameters.  

1 2

3 4

1.270 0.0812 0.01720
0.03486 0.000045

GRG P P
P P

= + − −

− −
  (6) 

 
4.1  Model validation and ANOVA results 
 
Analysis of variance (ANOVA) is a mathematical way to 
determine precision and adequacy of regression model-
ling. The adequacy of a regression model is examined by 
coefficient of determination (R2), as it indicates the accu-
racy of fit for the regression model. In the present case, 
determination coefficient (R2) and adjusted determination 
coefficient (adj. R2) are 87.61% and 75.21% respectively, 
which depicts high significance of the regression model. 
ANOVA is used for predicting the individual percentage 
contribution of the process parameters with respect to 
GRG value. Table (6) shows that voltage with 59.75% 
value is the most important value followed by abrasive 
weight (22.73%), working gap (5.07%) and negligible 
contribution of rotational speed (0.06%).  

ANOVA predicted the significance of each process 
parameters with respect to GRG. It is founded that 
voltage and abrasive weight are the most significant 

process parameters influencing the GRG. Working gap 
and rotational speed has an insignificant influence on 
the GRG as shown in Table (6). Here, the effect of 
rotational speed on GRG is almost negligible, so it can 
be treated as idle process parameter in GRG predictive 
model. So, by idling the rotational speed there would be 
no substantial effect on the GRG value of multi-
objective predictive model. 

 
5. OPTIMIZATION USING SIMULATED ANNEALING  
 
In this study, simulated annealing (SA) algorithm is 
used to develop a meta-heuristic SA-GRG predictive 
model, for better prediction of the optimal set of machi-
ning parameters [25]. SA is a meta-heuristic algorithm 
competent to find approximate global optima without 
stuck in local optima. SA algorithm is adapted from the 
physics of annealing of solid materials. SA had substan-
tiated a connection for solving realistic problems. SA is 
implemented using the optimization tool box in 
MATLAB 2014. Objective function derived using GRG 
regression model is further used to optimize the GRG 
response using SA. Objective function is imported in 
optimization tool box and the initial conditions are 
provided. Its starts with defining initial starting point, an 
upper bound and lower bound of the objective function, 
chosen from the different processing conditions given in 
table (2). The next step is to define stopping criteria and 
annealing parameters. Finally, simulated annealing 
acceptance criteria is provided to find the target solution 
of the GRG. All the important SA criteria and para-
meters are listed in table (7). Figure (4) shows conver-
gence plot of the best function value of 0.6632 SA-GRG 
at 100 iterations for experiment 1. 
 

Objective function y=GRG(x) 
y= (1.270+0.0812*x(1)-
0.01720*x(2)0.03486*x(3)+0.000045*x(4)); 

end 
 

SA algorithm starts with an initial possible solution 
and stepwise explores the solution domain for the 
optimal solution. At each iteration a new solution in the 
neighbourhood of the current solution is generated and 
evaluated. A move to new solution is then made under 
the following conditions: 
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(a) If the new objective function value is less than the 
old, the new point is always accepted.  

(b) Otherwise, the new point is accepted at random with 
a probability depending on the difference in objec-
tive function values and on the current temperature.  

 
Fig (4). Best GRG function value via simulated annealing 

The acceptance probability is: 

1

1 exp
max( )T

⎛ ⎞Δ
+ ⎜ ⎟

⎝ ⎠

               (7) 

where, Δ = new objective – old objective, and T is the 
current temperature. The probability of acceptance is bet-
ween 0 and ½ for the positive value of both Δ and T. Lar-
ger Δ leads to smaller acceptance probability. Also, sma-
ller temperature leads to smaller acceptance probability. 
 
5.1  Simulated Annealing-Grey Relational Grade 
 
The meta-heuristic SA-GRG predictive model simu-
lated experimental results with an error between -
9.2639% to +7.3321%, which is an adequate pre-
diction rate. SA-GRG global optimal solution for all 
nine experiments was obtained, shown in table (8). 
SA-GRG is highest for experiment-1 i.e. 0.6632, 
which is the best optimal condition for ‘change in 
roughness’, ‘raise in temperature’ and ‘change in 
hardness’ for obtaining best performance for micro-
finishing of aluminium 6060 through MAF process. 
Least SA-GRG value is obtained for experiment-3 i.e. 
0.2316, which is the worst optimal condition for 
micro-finishing. Table (8) shows the percentage error 
between the GRG and SA-GRG for all the nine-
experiments.  

Table 6 - Analysis of Variance 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 
Regression 4 0.171094 87.61% 0.171094 0.042774 7.07 0.042 

P1 1 0.009901 5.07% 0.009901 0.009901 1.64 0.270 
P2 1 0.044383 22.73% 0.044383 0.044383 7.33 0.054 
P3 1 0.116686 59.75% 0.116686 0.116686 19.28 0.012 
P4 1 0.000124 0.06% 0.000124 0.000124 0.02 0.893 

Error 4 0.024204 12.39% 0.024204 0.006051       
Total 8 0.195298 100.00%             

S R-sq R-sq(adj) PRESS R-sq(pred)    
0.0777880 87.61% 75.21% 0.201300 0.00%    

Table 7- Simulated annealing parametric criteria 

Stopping criteria Annealing parameters Acceptance criteria 
Maximum iteration: 

100 
Annealing function: 
Boltzmann annealing 

Temperature update 
function: Exponential 

temperature 

Initial 
temperature: 

500 

Acceptance 
Probability function: 
Simulated annealing 

Table 8- SA-Grey Relational Grade 

S.No  P1 P2 P3 P4 GRG SA-GRG %Error
1 1.0 20 10 100 0.7100 0.6632 6.5915
2 1.0 25 14 200 0.3916 0.4267 -8.9523
3 1.0 30 18 300 0.2500 0.2316 7.3321
4 1.5 20 14 300 0.5041 0.5336 -5.8467
5 1.5 25 18 100 0.3100 0.3388 -9.2639
6 1.5 30 10 200 0.4209 0.4456 -5.8768
7 2.0 20 18 200 0.4340 0.4699 -8.2538
8 2.0 25 10 300 0.7000 0.6538 6.5942
9 2.0 30 14 100 0.4613 0.4328 6.1692

Table 9 - Comparative results 

Method Optimal Parametric Setting GRG % Improvement in 
GRG Working Gap Abrasive Weight Voltage Rotational Speed 

Taguchi-GRA 2 mm 20 g 10 V 100 rpm 0.8013  
Taguchi-SA-GRA 

(predicted) 
2 mm 20 g 10 V 100 rpm 0.8218 2.5% 

Taguchi-SA-GRA 
(optimized) 

2.5 mm 15 g 6 V 50 rpm 0.9194 12.84% 
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5.2  SA-GRG for process parameters  
 
The optimal parametric setting for Taguchi-based Grey 
Relation Analysis (A3B1C1D1) were simulated using a 
meta-heuristic simulated annealing. The predicted output 
(SA-GRG) after simulation was observed to be 0.8218. In 
order to obtain the optimal parametric setting via 
simulated annealing model, one process parameter was 
varied into multiple level whereas the others remained 
constant at the predicted optimum level. The process 
parameter A (working gap, P1) level was varied from 1.5 
mm to 2.5 mm, while the others were kept constant at the 
predicted optimal level (B1C1D1).  

For parameter B (abrasive weight, P2), the level was 
varied from 15g to 25g, while the others were kept 
constant at the predicted optimal level (A3C1D1). Next 
parameter C (voltage, P3) level was varied from 6V to 
14V, while the others kept constant at the predicted 
optimum value (A3B1D1). The simulation results for 
factor A, B and C upon GRG are depicted in Figure 5,6 
and 7, respectively. The ANOVA results show that pro-
cess parameter D (rotational speed, P4) is insignificant, so 
it is kept constant as per SA-GRG results. 

 
5.3  Verification tests 
 
The verification test has been done to recheck the opti-
mal parametric setting predicted by L9 OA of Taguchi-
based SA-GRA with the experimental results. Simula-
tion based on the predicted process parameters via 
Taguchi-based SA-GRA was conducted. Final predicted 
SA-GRA value was found to be 0.9194. Table (9) 
shows the experimental results that were obtained by 
using the optimum process limits predicted via by L9 
OA of Taguchi- GRA module and L9 OA of Taguchi-
based SA-GRA module. The predicted GRG of process 
parameters via L9 OA of Taguchi-based SA-GRA mo-
dule has been improved by 12.84% which (Table 9) 
shows the satisfactorily performance of aforementioned 
optimization module. The highest GRG results indicated 
the desired values of the process responses. 

 
Figure 5. Simulation Result for Multiple Levels of voltage 

Hence, it is found that ‘change in roughness (ΔRa)’, 
‘raise in temperature (ΔT)’ and ‘change in hardness 
(ΔH)’ can be simultaneously optimized using a L9 OA 
of Taguchi-based SA-GRA module. Moreover, the 
robust optimization can be executed through the assis-
tance via simulated annealing model, predicting the 
values outside the specified level of process parameter. 

 

6. CONCLUSIONS  
 
Taguchi based hybrid meta-heuristic SA-GRA multi-
objective optimization is done to enhance the perfor-
mance of the magnetic abrasive finishing process. ‘Cha-
nge in roughness (ΔRa)’, ‘raise in temperature (ΔT)’ and 
‘change in hardness (ΔH)’ are the response that affects 
the micro-finished surface of aluminium 6060. The 
proposed optimization module is effective in evolving a 
strong, adjustable and flexible mass production systems 
GRA coupled simulated annealing model can ingenio-
usly take care of multi-objective variables into its funda-
mental grading overcoming the constraint of prevailing 
Taguchi based optimization approaches. And for future 
research, this developed methodology can be well used 
for multi-objective optimization to enhance the 
machining performance of advanced machining process 
such as AJM, EDM, ECM, UAMAF etc. The major 
findings of multi-objective optimization are as follows,  
1. Taguchi based hybrid meta-heuristic SA-GRA gives 

the improve optimal solution to produce the desired 
surface quality by reducing the impact of ‘change in 
surface roughness (ΔRa)’, ‘raise in temperature 
(ΔT)’ and ‘change in hardness (ΔH)’ on the micro-
finished aluminium 6060 using MAF process.  

2. ANOVA performed on the GRG revealed the percen-
tage contribution of each process parameters. Voltage 
contributed most with 59.75%, followed by abrasive 
weight with 22.73% and least by working gap with 
5.07%. Rotational speed with 0.06% which is almost 
negligible to contribute in affecting the GRG.  

3. The simulation via meta-heuristic SA-GRA pre-
dicted that working gap (2.5mm), abrasive weight 
(15 g), voltage (6 V) and rotational speed (50 rpm) 
produces the highest GRG to maximize the per-
formance of micro-finishing of aluminium 6060.  

4. The predicted GRG of process parameters via L9 
OA of Taguchi-based hybrid meta-heuristic SA-
GRA is improved by 12.84%, which shows a 
satisfactorily performance of above-mentioned 
optimization module. 
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ИСТРАЖИВАЊЕ ВИШЕЦИЉНЕ БАЗИРАНЕ 
НА GRA МЕТОДУ ОПТИМИЗАЦИЈЕ 

МАГНЕТСКЕ АБРАЗИВНЕ ЗАВРШНЕ ОБРАДЕ 
ПРИМЕНОМ СИМУЛАЦИЈЕ ЖАРЕЊА 

 
Р.К. Синг, С. Гангвар, Д.К. Синг 

 
Процес магнетске абразивне завршне обраде (МАF) 
је напредан супер-процес завршне обраде који се 
врши од микро до нано нивоа. У раду је развијен 
хибридни модул Тагучијеве греј релационе анализе 
и симулације жарења с вишециљном оптимизацијом 
завршне микро-обраде алуминијума 6060 применом 
МАF процеса. Сматра се да се перформансама као 
што су промена храпавости, повећање температуре 
и промена тврдоће минимизира њихов утицај на 
завршну микро-обраду алуминијума 6060. Наведене 
перформансе су коришћене за израчунавање греј 
релационог коефицијента за сваку перформансу 
посебно, које су потом преведене у појединачне 
променљиве, тј. вредност греј релационог 
градијента. Метахеуристички алгоритам за симула-
цију жарења је коришћен за предикцију најпо-
жељнијих параметара процеса: радни размак (2мм), 
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тежина абразива (15г), напон (6V) и брзина ротације 
(50rpm). Овај скуп параметара је одабран на основу 

највеће вредности GRA предвиђене на основу 
Тагучијеве SA-GRA методе.  

  
 

 
 

 
 
 

 


