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Symbolic Regression Metamodel 
Based Multi-Response Optimization of 
EDM Process 
 
Electrical Discharge Machining (EDM) is a popular non-traditional 
machining process that is widely used due to its ability to machine hard 
and brittle materials. It does not require a cutting tool and can machine 
complex geometries easily. However, it suffers from drawbacks like a poor 
rate of machining and excessive tool wear. In this research, an attempt is 
made to address these issues by using a metamodel coupled with global 
optimization approach to predict suitable combinations of input para-
meters (current, pulse on-time and pulse off-time) that would effectively 
increase the material removal rate and minimize the tool wear. The 
metamodels are built by using a novel symbolic regression approach 
carried out using Genetic Programming (GP). On comparative evaluation 
against traditional response surface methodology (RSM) metamodels, the 
GP metamodels show much better and accurate estimation. GP 
metamodels are then coupled with a genetic algorithm to carry out multi-
objective optimization of the EDM process. 
 
Keywords: EDM, Genetic Algorithm, Genetic Programming, Micro-
Machining, Optimization. 

 
 

1. INTRODUCTION 
 

The electric discharge machining (EDM) was initially 
found by an English chemist J. Priestly in the year 1770 
to cause an erosive effect over the work material. After 
Many years later in 1943 the great scientist Lazarenko 
invented an EDM to cut the extremely hard material like 
tungsten [1]. In EDM spark is used to make the intrinsic 
shape in any electrically conducting material 
irrespective of their hardness and strength [2]. By using 
the ordinary tool any complex shape can be made with 
high precision [3]. In EDM the tool and work material 
submerged in a dielectric fluid and the material removal 
takes place due to the spark erosion. By the application 
of voltage, the potential difference developed between 
the tool and work piece. Due to the potential difference 
the high velocity of electron moves towards the 
workpiece which helps to erode it [4]. The dielectric 
fluid is neutral in nature and it evaporates due to the 
leakage current by the moving electron. Due to moving 
electron, a plasma channel created between the work 
piece and tool, and it creates a crater in both tool and 
work piece. Once the plasma channel extinguishes the 
flow of dielectric fluid removed material is flushed [5]. 

The EDM performances can be analysed by material 
removal rate (MRR), surface roughness (SR), electrode 
wear rate (EWR), tool wear rate (TWR) etc. Ideally the 
desire of the experiment is to maximize the MRR to 
enhance the productivity with a least surface finish. The 
discharge energy released during sparking is directly 

related to the SR and MRR [6]. At higher discharge 
energy the MRR is more but it severely affects the SR 
[7]. The discharge energy is directly related to the input 
parameters like discharge current, pulse on time, pulse 
off time gap voltage etc [8]. Generally, increasing the 
discharge current, gap voltage, pulse frequency, pulse 
duration leads to increase the MRR but it lowers the 
surface finish [4]. Like MRR the TWR is also an 
important parameter for the calculation of machining 
cost in EDM. The discharge current, gap voltage, pulse 
on-time and pulse off-time are the fundamental 
machining parameters involved in EDM. Gap voltage is 
the voltage applied between the electrode and the 
workpiece during the EDM process. The current applied 
to the electrode during pulse on-time is referred to as 
discharge current. Pulse on-time is the time for which 
the current is applied to the electrode during each EDM 
cycle [5]. Pulse off-time is the waiting time between 
two pulse on-times and during that time the particles are 
removed from the setup.  

The effect of process parameters on the performance 
of EDM is very vital for the researchers and for its 
analysis a parametric study is very much essential. The 
parametric analysis can be done by changing the input 
parameter while keeping the other variable constant. 
However, to make a clear analysis a huge number of 
experiments have to be carried out which increase the 
cost and time. Additionally, it is also vital to find out the 
combination of input parameters to get an optimum 
result. A metamodel can be used to find out the combi-
nation of all the input parameters to achieve the aimed 
response parameters. The most widely used metamo-
deling technique for the optimization of manufacturing 
/machining process is the Response Surface Metho-
dology (RSM), which is essentially a polynomial regres-
sion approach [9-13]. Some authors have also used 
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some advanced metamodeling techniques like artificial 
neural network (ANN) [14-16], ANFIS [17], gene 
expression programming (GEP) [3] in the machining 
operation. By developing the metamodel it can be 
coupled with a global optimization algorithm to find the 
optimum machining parameters. The Metaheuristic 
algorithm is the most commonly used optimization 
algorithm and out of all metaheuristic algorithm genetic 
algorithms (GA) are perhaps the most popular and have 
been applied to all classes of optimization problems 
with a better success. Ragavendran et al. [4] developed 
an RSM model by using a Box-Behnken design (BBD) 
set to optimize the current, pulse off-time and pulse on-
time. Subsequently, they used a GA to minimize SR and 
maximize the MRR Kumaran et al. [18] relied on Grey 
fuzzy optimization to optimize deburring in CFRP. 
Hourmand et al used the RSM technique to metamo-
deling to express MRR and EWR as a function of vol-
tage, duty factor current and pulse on time [19]. Chiang 
[20] also used RSM to find the influence of pulse on 
time, current, duty factor and discharge voltage on SR, 
MRR and EWR. RSM was used in combination with 
NSGA-II by Baraskar et al. [21]. Hewidy [22] too used 
RSM to optimize the process parameters of wire elec-
trical discharge machining (WEDM) process. Świercz et 
al. [23] also took the help of RSM metamodeling to 
build empirical relationships between current, pulse on 
time, pulse off time with MRR, SR and white layer 
thickness. Maity and Mishra [24] used an ANN to build 
a metamodel to predict the MRR, Recast Layer thick-
ness and overcut effect. An ANN metamodel was also 
used by Yusoff et al. [25] for predicting SR MRR, 
sparking gap and cutting speed. 

Due to the excellent mechanical properties, Inconel 
based alloys are widely used in different areas like 
aeronautical, chemical, nuclear and medical industries. 
Inconel has excellent resistance to corrosion, creep and 
fatigue at high temperatures. Thakur et al. [26] carried 
out an observation which confirms that more than 50% 
of the materials used in the aeroplane engines are made 
of Inconel alloys. Out of all the Inconel alloys Inconel 
718 is the most popular and widely used material for the 
manufacturing of turbine disks, blades, combustors, etc. 
[27]. Due to the low thermal conductivity of Inconel 
alloys a very high temperature is induced while grinding 
and cutting the material which is a serious problem [28]. 
It is really very tough to machine the Inconel alloys by 
using the conventional machining process due to its 
high strength to weight ratio. EDM can be extensively 
used for the machining Inconel alloys due to its non-
contact material removal mechanisms and the low 
process forces of EDM produce burr-free intricate shape 
with a very high aspect ratio [29]. 

In the present research, copper is taken as an elec-
trode material for the machining of Inconel 718. 
Further, it is seen that researchers so far have relied 
mainly on RSM for building empirical relationships 
between input and output parameters of EDM process. 
Thus, in this work, a novel metamodeling approach-
genetic programming (GP) based on advanced machine 
learning features is used. By comparing with a tradi-
tionally applied metamodeling technique- RSM, the 
comparative advantages of GP are highlighted. MRR 

and TWR are experimentally studied based on a BBD 
design. The GP metamodels for MRR and TWR are 
coupled with a GA to carry out multi-objective Pareto 
optimization. As compared to a straight forward single 
objective optimization, multi-response Pareto optimi-
zation are more beneficial because this presents the user 
with a host of candidate solutions where a suitable com-
promise between the maximized MRR and minimized 
TWR is obtained. 
Table 1. Factors and levels used in the research. 

Levels Factors -1 0 +1 
Current (I) 4 7 10 
Pulse on-time (Ton) 50 125 200 
Pulse off-time (Toff) 50 85 120 

 
2. MATERIALS & METHODS 

 
2.1 Design of Experiments 

 
For the purpose of building predictive models or meta-
models a Box-Behnken design (BBD) is used in this 
study to conduct a set of EDM experiments that would 
serve as the training data. The EDM experiments are 
conducted at three different levels of each input 
parameter (current (l), pulse-on-time (Ton) and pulse-off-
time (Toff)). Table 1 lists the factors and levels used in 
this research. Material removal rate (MRR) and tool 
wear rate (TWR) are considered as the response varia-
bles (i.e. the outputs). The experimentation data as per 
BBD design is reported in Table 2. 
Table 2. Design of experiments by Box-Behnken design. 

Coded input 
parameters Un-coded output parameters Exp. 

No. I Ton Toff MRR 
(mm3/min) 

TWR 
(mm3/min) 

1 1 0 -1 2.3621 0.9986 
2 0 1 1 1.69358 0.056981 
3 1 -1 0 2.0964 0.1129 
4 -1 0 -1 2.0369 0.89317 
5 0 -1 -1 1.6971 0.06598 
6 1 1 0 1.9397 0.96859 
7 0 0 0 1.5691 0.091139 
8 -1 -1 0 1.2698 0.08831 
9 0 1 -1 1.9287 0.12879 
10 1 0 1 2.4891 0.15561 
11 -1 0 1 1.4693 0.05938 
12 -1 1 0 1.5214 0.10987 
13 0 -1 1 1.8879 0.064298 

 
2.2 Experimental Details 

 
In this research, a Die sinking EDM is used for the 
machining of the Inconel 718. A cylindrical copper tool 
with a diameter of 2 mm is used as an electrode for the 
machining of the work piece. The work piece and elec-
trode are separated by a moving dielectric fluid EDM 
oil. The Inconel 718 has a chemical composition of C-
0.8%, Mn-0.35%, Ni- 54%, Cr- 20%, Ti- 0.75% with 
balanced Fe.  

Material Removal Rate (MRR) and Tool Wear Rate 
(TWR) in the experiments are calculated by the weight 
loss method using precision electronic balance weighing 
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machine with a least count of 1 mg. MRR is calculated 
by measuring the weight loss of work piece as per the 
eqn. (1), 

b aw w
MRR

t
−

=    (1) 

where wb and wa are the weight of work-piece before 
and after machining respectively. t is the machining 
time in minutes. 

TWR is calculated by measuring the weight loss of 
tool as per the eqn. (2), 

b atw tw
TWR

t
−

=    (2) 

twb and twa are the weights of the tool before and after 
machining respectively.  

Each experiment is carried out thrice and its average 
is considered as the working value, to account for un-
certainties in experimentation. The average experimen-
tal values of MRR and TWR along with the standard 
deviations of the experiments are presented in Figure 1. 

 
Figure 1. Average experimentally recorded values along 
with their standard deviations for (a) MRR (b)TWR. 
 
2.3 Response Surface Methodology 

 
Response Surface Methodology (RSM) is a combination 
of statistical and mathematical techniques that reduce a 
complex input-output system into easily understandable 
polynomial equations. Using the training dataset RSM 
fits a curve of the a priori selected polynomial form. In 
general, the RSM fitted empirical equation may be 
represented as, 

( )1 2 3, , ,..., ky f x x x x ε= +   (3) 

Here, f denotes the approximate response surface 
and ε is the normally distributed statistical error. x's 
represent each independent parameter (inputs) while k is 
the maximum number of independent parameters.   

In this research, a second order polynomial model of 
the following form is selected a priori, 
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Here β's are the coefficients of regression. These 
coefficients of regression help in describing the 
response (y) as a function of predictor variables (x's). 

Using the BBD design points listed in Table 2, an RSM 
model is fitted based on multiple regression fitting sche-
me. The difference between the predicted value ( ˆiy ) 
and the actual experimental value (yi) is called residue.  

ˆi i iy yε = −    (5) 

The coefficients of regression in eqn. (4) are selected 
such that the sum of squared residuals (SSR) is mini-
mum. Since residuals are the errors in the fitting, 
sometimes SSR is also referred to as the sum of squared 
error in predictions (SSE). 

2
1

n
iiSSE ε==∑    (6) 

ANOVA is then performed to identify and eliminate 
the non-significant terms of the fitted RSM model [30-
31].  

 
2.4 Genetic Programming 
 
Genetic Programming (GP) is a powerful 
computational intelligence technique that can perform 
symbolic regression to build explanatory models based 
on the provided training datasets. It is a highly auto-
mated process that requires no manual intervention 
once the algorithm is started. On the contrary, a 
polynomial regression carried out by RSM may require 
the use of additional statistical tests like ANOVA to 
determine the significance of the polynomial terms in 
the model. The GP on the other hand self-prunes the 
insignificant terms because of the inherent evolu-
tionary traits.  

GP starts with a randomly generated population of 
candidate solutions called individuals or GP trees. This 
population is called as generation zero. Each GP tree is 
made up of two key ingredients - functions and termi-
nals. Mathematical operators like +, -, *, / etc.; trigo-
nometric functions like sin, cos etc., exponential func-
tions, logarithmic function etc. form the functions. Ter-
minals, on the other hand, are comprised of constants 
and variables. Fitness for each GP tree of the population 
is calculated. The fitness is calculated using some pre-
defined metric like mean squared error or coefficient of 
determination. In case of using mean squared error as 
the metric lower values are considered better. Similarly, 
in the case of the coefficient of determination higher the 
values, the better. Next, the population in generation 
zero is improved by using three key genetic operators 
called selection, crossover and mutation. An additional 
genetic property called elitism is also used in the current 
work. Crossover is the process of randomly grafting 
chosen parts from one GP to another GP tree. This is 
done by associating a higher probability of selection for 
the crossover of higher fitness GP trees.  Mutation is 
used to create new GP trees for the new population by 
randomly altering a small part or node of the selected 
GP tree. Elitism is the act of copying a small proportion 
of the fittest GP trees, unchanged into the next 
generation. This improved population makes up the 
subsequent generation. This process is repeated until a 
predefined accuracy on the metric scale or the 
maximum number of generations is reached.  
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2.5 Optimization using Genetic Algorithm 
 
In this work, multi-objective Pareto optimization is 
carried out by using Genetic Algorithm (GA).  GA and 
GP work on the same concept i.e. Darwin’s laws of 
natural selection [32]. Instead of trying to build a 
function relation like GP, GA is engaged in exploring 
the search space to find a suitable combination of input 
parameters that would maximize or minimize the target 
response. 

Like GP, GA also starts by initiating a random popu-
lation and calculating its fitness. Based on the proba-
bility associated with each fitness, individuals are selec-
ted for operation by various genetic operators. New 
individuals are created for the next generation by cros-
sover (random combination of parts from two parents to 
form two children) and mutation (random small modifi-
cations in individuals created by the flipping of the 
binary encoded genes). These operations are carried out 
until the maximum iterations are reached [33]. While in 
any single objective optimization, the search for optima 
is straight forward; in case of multi-objective Pareto 
optimization a non-dominated sort algorithm is used to 
rank the optimal solutions such that each solution in 
Pareto set is not dominated by any other solution.  
Table 2. Experimental results and metamodel predictions 
for training dataset. 

MRR (mm3/min) TWR (mm3/min) Exp.  
No. Exp. RSM GP Exp. RSM GP 
1 2.3621 2.2606 2.3887 0.9986 0.5270 0.9981 
2 1.6936 1.6907 1.6792 0.0570 0.0560 0.0796 
3 2.0964 2.1555 2.1285 0.1129 0.1361 0.1124 
4 2.0369 1.9605 2.0154 0.8932 0.4959 0.8944 
5 1.6971 1.7789 1.7634 0.0660 0.0720 0.0914 
6 1.9397 1.9844 1.9231 0.9686 0.2866 0.9680 
7 1.5691 1.5376 1.5696 0.0911 0.0881 0.0870 
8 1.2698 1.3039 1.2847 0.0883 0.0793 0.0769 
9 1.9287 2.0249 1.8588 0.1288 0.1873 0.1037 

10 2.4891 2.4867 2.4731 0.1556 0.2183 0.1186 
11 1.4693 1.4919 1.4695 0.0594 0.0667 0.0538 
12 1.5214 1.5411 1.5090 0.1099 0.1142 0.1356 
13 1.8879 1.8706 1.8958 0.0643 0.0587 0.0906 

 

 
Figure 2. Fitness improvement of GP metamodels across 
generations in the training phase. (a) Best fitness (b) 
Average fitness. 

 
3. RESULTS & DISCUSSION 

 
3.1 Comparative Assessment of Metamodels  
 
The EDM experiments listed in Table 2 are used for 
training the RSM and GP based MRR and TWR meta-

models. The RSM is trained using DesignExpertTM, a 
popular statistical package and the GP is realized by 
using an author complied FORTRAN program. The 
predicted values of the MRR and TWR are listed in 
Table 3. The iterative improvement of the GP meta-
model across the training generations is seen in Figure 
2. In Figure 2(a), it is seen that the GP best fitness for 
MRR increases sharply till 10th generation and achieves 
about 90% R2. Beyond these a gradual increase in its 
best fitness is seen till it achieves a near ideal fitness of 
99.27%. The RSM metamodel on the other hand achi-
eves a maximum R2 of 97.4%. Similarly, for the TWR 
GP metamodel, stepwise improvement in the best 
fitness is seen. For the TWR, RSM and GP metamodels 
have a R2 of 83.85% and 99.74% respectively. In Figure 
2(b) it is seen that for both MRR and TWR, the GP 
average fitness increases rapidly up to generation 20, 
beyond which it becomes very the increase becomes 
gradual. The iterative improvement of average fitness 
eventually becomes sluggish. This means that the 
selected number of 50 generation limit is appropriate as 
training beyond this would perhaps lead to over fitting. 
A comparative plot of predictions made by RSM and 
GP metamodels against the experimental points is 
shown in Figure 3. It is seen that for MRR prediction 
both metamodels have similar prediction capability, 
with perhaps GP being marginally better. However, for 
TWR, GP is seen to be significantly better than RSM.  

 
Figure 3. Predictive performance of RSM and GP meta-
models while predicting (a) Material Removal Rate (MRR) 
(b) Tool Wear Rate (TWR) 

The prediction power of the metamodels is further 
assessed using two different error metrics—MAE (mean 
absolute error) and RMSE (root mean squared error). It 
is seen from Table 4 that the GP has marginal impro-
vement of 1.78% over RSM on MRR metamodel, howe-
ver in case of TWR the improvement is about 21%. 
Similar drastic improvements in MAE and RSME are 
also seen. 
Table 4. Relative improvement of GP over RSM metamodels. 

Response Metric RSM GP Relative % 
improvement 

R2 0.9742 0.9915 1.78 
MAE 0.0454 0.0230 49.29 MRR 

RMSE 0.0561 0.0312 44.39 
R2 0.8270 0.9973 20.59 

MAE 0.1332 0.0143 89.26 TWR 
RMSE 0.2562 0.0190 92.59 
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Figure 4. Contour plots of Material Removal Rate (MRR) at 
various parameter combinations. 

 

Figure 5. Contour plots of Tool Wear Rate (TWR) at various 
parameter combinations. 

3.2 Effect of current, pulse on-time and pulse off-
time on MRR and TWR  

 
Due to the non-linear relation between the input and 
response parameters in the experiments it is difficult to 
predict the response parameter for a particular set of 
input parameters. In this work, current (l), pulse-on-time 
(Ton) and pulse-off-time (Toff) are the input parameters. 
The combined effect of these three input parameters on 
MRR and TWR in the form of surface plots is shown in 
Figure 4 and Figure 5. The surface plots are drawn by 
varying any two process parameters between their 
experimental range, while the third parameter is hold 
constant at its mean level. As seen from Figure 4(a) and 
4(b), the increase in temperature, in general, increases 
the MRR. Pulse off time seems to have the least 
influence on the MRR among the three selected 
parameters. Similarly, in Figure 5, higher TWR are seen 

to be associated with higher current values.  Also, 
higher current on time is seen to aid in the tool wear. 
For machining of any material TWR is considered as 
one of the significant response parameters in EDM pro-
cess. The TWR is directly related to the MRR and 
practically those experiment having higher MRR will in 
general have higher TWR and vice-versa. 

 
Figure 6. Pareto front for MRR versus TWR. 
 
3.3 Mult-Objective Optimization 
 
A multi-objective genetic algorithm is used for finding a 
set of Pareto optimal solutions to maximize the MRR 
and minimize the TWR simultaneously. It is clear from 
the study of the involved independent parameters that 
both these objectives are contradictory. For example, 
while the high current could increase the MRR, it would 
also increase the TWR. Because of such conflicting 
agendas, single-objective optimization may not always 
be the best approach. Pareto optimal solution or the 
Pareto front represents a set of non-dominated solutions, 
mathematically each of which is a viable compromise. 
The Pareto front for MRR versus TWR is shown in 
Figure 6. It is clear from the Pareto front that the 
absolute maximum MRR and absolute minimum TWR 
cannot be achieved simultaneously, because with 
increasing MRR, TWR increases. Thus, the user is left 
with an option to choose what is best for the particular 
application. Using this Pareto curve, the user can choose 
any combination of input parameters, that he/she feels 
works best for the problem without violating any set 
constraints. The selection of the appropriate Pareto 
solution can be done based on prior experience or the 
help of multi-criteria decision-making approaches like 
TOPSIS, PSI etc. can also be employed.  
 
4. CONCLUSION 
 
In this research, a traditionally hard-to-machine material 
is machined using EDM. To maximize the productivity 
of the EDM process and minimize the tool costs, a 
metamodel coupled with global optimization approach 
is employed. To maximize productivity, material remo-
val rate (MRR) is sought to be maximized. On the other 
hand, to minimize the tool costs, tool wear rate (TWR) 
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is sought to be minimized. Using genetic programming 
(GP) metamodeling approach, MRR and TWR are 
expressed as functions of current, pulse on-time and 
pulse off-time. As compared to fixed-form polynomial 
RSM metamodels the genetically searched form-free GP 
metamodels were seen to perform about 2% and 21% 
better for MRR and TWR respectively. The evaluation 
of the error metrics also showed significant 
improvement for the GP metamodels. Thus, the present 
GP based metamodeling approach can be suitably used 
for predictive modeling of machining processes.  
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ОПТИМИЗАЦИЈА ВИШЕСТРУКОГ 
ОДГОВОРА КОД ЕДМ ПОСТУПКА 
КОРИШЋЕЊЕМ МЕТА-МОДЕЛА 

СИМБОЛИЧКЕ РЕГРЕСИЈЕ 
 

Р.К. Гхадаи, К. Калита, К-З. Гао 
 

Електроерозивна обрада (ЕDМ) је популаран 
поступак обраде који има широку употребу код 
тешко обрадљивих и кртих материјала. Није 
потребан резни алат и може да се користи код 
обрадака сложене геометрије. Међутим, недостаци 
су мала брзина скидања материјала и претерано 
хабање алата. Рад покушава да реши наведене 
слабости применом мета-модела заједно са 
свеобухватном оптимизацијом у циљу предвиђања 
одговарајућих комбинација улазних параметара 
(струја, успостављање и гашење електричног лука), 
што би довело до повећања брзине скидања 
материјала и хабање алата свело на минимум. Мета-
модели су развијени коришћењем нове симболичке 
регресије базиране на генетском програмирању. 
После компаративне евалуације у односу на 
конвенционалне мета-моделе методологије одговора 
површине, мета-модели генетског програмирања 
показују бољи и прецизнији прорачун. Мета-модели 
генетског програмирања су затим повезани са 
генетским алгоритмом у циљу вишеструке 
оптимизације ЕDМ поступка.  
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