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Acoustic Emission Based Deep 
Learning Technique to Predict 
Adhesive Bond Strength of Laser 
Processed CFRP Composites 
 
The high degree of  inhomogeneity in material and intricacies created by 
machining of carbon fiber reinforced plastic (CFRP) composites hinder 
the accurate prediction of residual strength of the adhesive bond joint 
using analytical models. Recently, artificial intelligence techniques are 
effectively utilized as an alternative method for predicting the results of 
complex phenomena. In this paper, attempts were made to predict the bond 
strength of laser surface treated and adhesively bonded CFRP composite 
specimens using the artificial neural network (ANN) from the acoustic 
emission (AE) parameter recorded during the shear test. Twelve adhesively 
bonded specimens whose surfaces were pre-processed with 3W Nd:YAG 
laser at different processing parameters. ANN was trained using 
segregated AE data according to the failure mechanism and the 
percentage of failure load (5 to 100%). Predicted values were compared 
with experimental values and the results were analysed for the suitability 
of ANN with AE in the application.   
 
Keywords: Acoustic emission, NDT, neural network, prediction, failure 
characterization. 

 
 

1. INTRODUCTION  
 
Aviation and space industries were always in thirst of 
reliable and sustainable material for the better perfor-
mance of their products [1]. CFRP composites are the 
ideal choice due to their superior mechanical properties 
like high tensile strength, good strength to weight ratio, 
radar absorption, water resistance and better impact re-
sistance [2]. CFRP composites are widely utilised in 
critical components of advanced aerospace applications 
like helicopter rotor blades, fighter jet nose cone, wind 
turbine blades and robotic manipulators [3,4,5]. Due to 
its macroscopic inhomogeneity, it creates unique 
technological challenges while joining. 

Adhesive bonding is preferred for a composite beca-
use of its distinct advantages like high fatigue strength 
and the lowest possible addition of weight [6]. In order 
to realise a good adhesive bond, the impregnated fibers 
should be made to expose out from bulk material prior 
to bonding. Because the outer matrix (epoxy) layer, be-
ing a binding element, will not bear any load and inherit 
the impurities from its manufacturing processes like 
grease, release agent and atmospheric dust and mois-
ture. These difficulties nessaciate surface preparation 
prior to bonding and it will also improve the adhesive 
bonding strength by inducing roughness and wettability 
[7]. Laser surface processing being a non-contact type 
and ability to precisely adjust the process parameter 
makes it a distinct candidate for the pre-treatment of 

CFRP composite [8]. Because of its high power density, 
matrix element will be evaporated and leaving the fibers 
unaffected by selecting appropriate processing para-
meters. Oliveria et al.[9] results depicted that the change 
in surface morphology of fibers by laser radiation can 
affect the bond strength. Recently, Sathiyamurthy et al. 
[10] experimentally proved that even a micron level 
change in the surface characteristic of laser processed 
specimens can deteriorate the bond strength of CFRP 
composite to a higher extent. 

The interaction of laser energy on CFRP composite 
is a complex phenomenon that makes it difficult to pre-
dict the surface morphology [11,12]. Predicting the final 
bond strength from the failure mechanism will pave the 
way to monitor a product in service and exploit it with 
confidence. Finite element analysis (FEA) was perfor-
med by Garinis et al. [13] for dynamic analysis of com-
posite rotor blade and Dinulovic et al. [14] developed a 
novel Pan’s theory based FEA model to predict mec-
hanical properties of composite structures. Due to the 
complex failure behaviour of the composites, mathema-
tically calculating the final bond strength is a chal-
lenging task and needs extensive computational infras-
tructure. These reasons necessitate the need for a simple 
and reliable expert system.  

In recent times, deep learning, due to its simple 
mathematical operation and ability to fit the complex 
model, plays a vital role in various engineering doma-
ins, by learning the given problem and stating a more 
generalized result with acceptable error margin [15]. 
Simplest ANN will comprise three layers, namely input 
layer, hidden layer and output layer. Each neuron in a 
layer will be associated with every neuron in the suc-
ceeding layer through a communication link. The signal 
processed in a neuron will be transmitted to the adjacent 
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layer after it gets added with weight of the particular 
neuron and amplified by an activation function. Predic-
tion accuracy of ANN relies on the learning algorithm, 
network size, data set and activation function [16]. 
Typical ANN structure is shown in figure 1.  

 
Figure 1. Simple artificial neural network. (w – weight, b – 
Bias and TF – transfer function). 

AE technique is the method of detecting the sound wave 
generated while the failure of a specimen and charac-
terising the sound to a particular phenomenon of acti-
vities occurred inside the material [17]. A typical AE 
signal is shown in figure 2.  

 
Figure 2. A typical AE signal. 

Many researchers were attempted to characterise the 
failure mechanism by classifying AE signals amplitude 
collected during failure of composites. Berthelot and 
Rhazi [18] state that high amplitude signals belong to 
fiber failure and low amplitude signals are from matrix 
microcracking and debonding. Other researchers clas-
sified few amplitude ranges in between and associated it 
with corresponding failure mechanism [19-22]. Gong et 
al. [23] stated five failure types and distinguished it 
separately. Many studies were published using the com-
bination of AE parameters with soft computing tech-
nique. Walker [24] predicted the failure strength of 
CFRP specimen using low amplitude signals and repor-
ted 3.74% error as a worst-case prediction. While  other 
researchers reported the use of ANN in predicting the 
failure loads of composite specimens and reported 
prediction error up to two percentage [25-27]. 
 
2. MATERIALS AND METHODS 

Unidirectional (0Olayup) CFRP specimens were pro-
duced using a hot press process as a sheet of 35cm × 35 
cm using 5 plies of unidirectional carbon fiber sheets 
each with a weight of 220gms/m2. Commercially avai-
lable epoxy and accelerator were used. Mould was kept in 
hot press for 1 hour at 5 bar pressure and 150oC for 
curing as per the manufacturer recommendation and pla-
ced at room temperature for 48 hours for further curing. 
Samples as per ASTM-D5868 were marked and cut 
removed using a diamond edge cutter and edges were 
polished. Specimen dimensions are shown in figure 3. 

Laser surface treatment was performed on both the 
specimens one surface, using a 3 Watts (average power) 
Nd:YAG laser working at 20KHz emits a 532nm wave-
length and 0.15mJ constant pulse energy. Laser beam 
produced was linearly polarized (TEM00) Gaussian beam 
with a diameter of 90µm. Galvo scanner with a scanning 
range of 100mm×100mm and resolution of 0.1 µm was 
used to scan the beam parallel to fiber orientation. 

A single R15 AE sensor of 150kHz, the resonant 
type was used with a preamplifier of 35dB gain. AE 
data were processed and recorded using a Physical 
Acoustic Corporation DiSP AE system. Using an 
adhesive tape AE sensor was fastened 20mm below the 
width of the adhesive-bonded. Silicon vacuum grease 
was applied in the interface between sensor and speci-
men to reduce the transmission loss. By assessing the 
surrounding noise level, 35dB was fixed as a threshold 
limit. In order to In order to assure the operationality of 
AE system, pencil break test was conducted prior to the 
start of every experiment. Instron-5582 universal testing 
machine having a capacity of 100kN was used to load 
the bonded specimens until complete fracture at 
5kN/min. Data obtained from specimens which broke 
only on the adhesive bonded joints were considered for 
the study. ANN was programmed using MATLAB-16 
software. Schematic of the laser processing mechanism 
is depicted in figure 4.  

 
Figure 3. Specimen dimensions as per ASTM-D5868. 

 
Figure 4. Schematic of laser processing mechanism. 
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3.  RESULTS AND DISCUSSIONS 
 
3.1 Laser Processing 
 
CFRP composite specimens were processed by varying 
scanning speed, number of passes and percentage beam 
overlap in order to create different surface roughness. 
Specimens which are having only matrix ablation and  
different roughness values were considered for the 
study. Table 1 provides details of laser processing para-
meter, adhesive bond strength and roughness values. 
Table:1. Laser processing parameter and adhesive joint 
properties. (A-scanning speed (mm/sec), B-percentage 
beam overlap and C-number of passes) 

Specimen 
no. A B C 

Failure 
strength 
(MPa) 

Rz 
(µm) 

1 16 10 1 698 17.78 
2 16 10 5 670 22.09 
3 16 30 3 690 18.49 
4 16 50 5 665 24.22 
5 20 10 1 650 9.45 
6 18 10 3 715 12.05 
7 18 30 3 735 14.08 
8 18 30 5 688 18.59 
9 20 10 5 695 11.22 

10 20 30 3 672 10.05 
11 20 50 1 680 10.87 
12 18 50 3 710 16.22 
13 16 50 1 680 20.45 
14 20 50 5 710 11.78 
 
Scanning speed was varied between 16 mm/sec and 

20mm/sec in  step of 2mm/sec. The generated laser 
beam, due to the gaussian characteristics (TEM00) will 
lack an energy density in the outer 10% of the beam 
diameter. So, the minimum beam overlap was assigned 
to 10% and the maximum was fixed to 50% to cover the 
full half of the distribution. After each number of passes 
surface roughness was measured using white light 
interferometry (WLI) technique and found no consi-

derable increase in surface roughness after five number 
of passes. This is due to the fact that carbon fiber 
because of its high thermal conductivity, absorbs the 
laser energy and making it unable to penetrate further 
deep to create craters. So, maximum number of passes 
were fixed to five. With all these limits, experiment was 
designed using central composite design method in 
Minitab software. 

Figure 5 shows the WLI surface profile of 
specimens number 4 and 5, which is having highest and 
lowest roughness respectively. Specimen number 4 
(figure 5-a), due to the increased number of passes (5 
nos.), lowest scanning speed (16mm/sec) and extreme 
beam overlap (50%), much of the matrix element 
(epoxy) was ablated due to high heat input. Which leads 
to a deep craters between fibers, thus creating higher 
roughness of 24.22µm. It can be visualized from the 
deep valley and hills in 2D roughness plot (figure 5-c). 
Specimen  number 5, which delivered the lowest rough-
ness of 9.45µm prior to bonding, shows a bare fiber on 
the surface (figure 5-b) with moderate groove depths 
(figure 5-c) due to very low heat input from the process.  

  
3.2  Failure mode analysis 
 
AE data were acquired during loading of specimens 
until complete fracture. According to literature, there 
are five modes of failure mechanism in composites na-
mely matrix microcracking, delamination growth, fiber 
/matix decohesion, fiber/matrix pullout and fiber failure. 
Delamination type failure mode is rare in unidirectional 
fiber composites [16] but in case of adhesion bond, it 
will play a crucial role.  

Since the stress generated due to applied load will be 
transferred through the joint, delamination activity in the 
bonded area will deteriorate the joint performance. 
Collected AE data consist of a wide range of hit counts 
from amplitudes ranging from 35dB to 120dB. Gong et al. 
[21] model of AE classification was utilized in this study. 

 

 
Figure: 5. WLI surface profiles (a) specimen 4 and (b) specimen 5. 2D roughness profile (c) specimen 4 and (d) specimen 5. 
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According to the AE classification model, matrix 
microcracking, delamination growth, fiber/matix 
decohesion, fiber/matrix pullout and fiber failure are 
associated with signals with an amplitude range of 33 – 
45dB, 46 – 58dB, 59 – 68dB, 69 – 86dB and above 
87dB respectively.  

AE data generated while the failure of specimens 
was stored in a computer. Hit counts were segregated 
and summated according to the failure type up to the 
various percentage of failure load. Since no AE activity 
was recorded until five percentage of load, signals were 
segregated from five percentage to full load in the 
interval of  five percent up to thirty percent and thereon 
increased to ten percent. In order to unveil the failure 
mechanism, specimens numbered seven and five which 
are on the extremity of failure load (750MPa and 
650MPa respectively) were compared.  

By comparing both the graph on figure 6. The 
microcrack formation was initiated very earlier for 
specimen 5 and started growing at a steady pace. 
Whereas for specimen 7 microcrack started to grow 
after 5% and saturated after 70%.  
Similarly, delamination growth travelled in tandem with 
the generated microcracks, which is the main reason for 
the poor performance of specimen five. But in specimen 
seven microcracks generated in a gradual manner and 
the delamination grown at a very low pace until sixty 
percentage and thereafter it started to grow faster.  
Fiber breakage which is the main reason for poor joint 
strength started to occur in very early stage (10%) in 
specimen-5, whereas in  specimen-7 it started at forty 

percentage. Due to the fact that the fiber breakage signal 
count recorded for specimen-7 was much higher, it 
endured a much higher load than the other. In specimen-
7 due to the slow growth rate of delamination, fiber was 
holding the load and starts to fail after fifty percentage 
of load, which is proven by the increased activity of 
fiber/matrix decohesion. In the final stage of failure, 
both specimens (after 90% of load) emitted higher 
counts of fiber breakage and fiber pull-out signal. SEM 
images of both the specimens interface were 
investigated after failure. Figure 7 shows the SEM 
image of fractured specimens. Lower bond strength of 
specimen 5 was due to the growth of microcracks and 
its penetration into the bond interface. The penetrated 
microcracks created delamination, which leads to the 
occurrence of debonding and fiber pullouts. The 
presence of delamination flakes and fiber pullouts in 
SEM image (figure 7-b) confirms the AE interpretation 
discussed above.  

In contrast to specimen-5, specimen-7 shows no sign 
of excessive microcracks or fiber pullouts and shows 
heavy fiber fractures, this may be attributed to optimal 
interlocking between fibers and matrix. Better 
interlocking in specimen 7 is proven by the delayed start 
of fiber breakage (after 40%) and low count of 
fiber/matrix pullout. Also, it can be noted from the 
graph of specimen 7 (figure 6) that when ever the fiber 
breakage starts to accelerate, the fiber pullout curve is 
getting flattened. Only at the last stage of failure both 
the specimens exhibit fiber breakage accompanied by 
massive fiber pullouts, which is a natural phenomenon.  

 
Figure 6. Cumulative hit count until failure. (1–matrix microcracking, 2–matrix/matrix friction or delamination growth, 3–
interface decohesion or fiber/matrix decohesion, 4–fiber/matrix pullout and 5–fiber breakage).  
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Figure 7. SEM Image of (a) Specimen 7 and (b) Specimen 5. 

 
Figure 8. Schematic representation of ANN used for prediction.  
 
3.3  Artificial neural network 
 
AE data collected were segregated according to the five 
failure mechanism with respected to various percentages 
of failure load for all twelve specimens. So the input layer 
of ANN consist of five neurons, that is one neuron each 
to process data of each failure mechanism at the 
corresponding percentage of the load. In the real-life 
condition, two parameters are necessary to ensure the 
reliability and safety of the structure in service. First is 
the expected failure load and the second is anticipated 
residual strength. Both the parameters were accommo-
dated inside ANN by providing two neurons in the output 
layer, one each for predicting the current percentage of 
load consumed and another for final failure strength.  

In order to reduce the time of training, supervised 
training method was used. Supervised training of neural 

network needs two sets of data one for training and 
another for testing. Training data set will consist of both 
input and the corresponding exact output, but the testing 
set will consist only of the input and the network will be 
made to predict the output. Data of specimens three, four 
and six due to the varied failure strength were selected for 
testing and the output will not be shared with the ANN. 
Further, the training set was divided into three sets 
namely training (75%), testing (15%) and validation 
(10%) for the better convergence. Training data set will 
be randomized before feeding into the ANN.  

Supervised learning needs a special backpropagation 
mechanism to alter the weights and biases for better 
prediction. Levenberg-Marquardt algorithm being the 
fastest backpropagation algorithm was deployed to 
improve the learning rate of ANN. Various network 
dimensions were tested by altering all the network 
parameters (number of neurons, number of hidden 
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layers and activation function). The number of neurons 
per layer was limited to hundred due to computational 
limitation and to conserve convergence time. Network 
dimension of 5-50-25-2 (Input layer – Hidden layer 1 – 
Hidden layer 2 – Output layer) predicted the testing data 
with better accuracy. Schematic layout of the network is 
shown in figure 8.  

Better performance was achieved at 1303rd iteration 
after which the training stopped due to the increase in a 
validation error. The convergence plot for the network 
is shown in figure 9. ANN fitted the entire data set for 
training (training, validation and testing data sets) with 
better accuracy as shown in the regression plot (figure 
10). The initial learning rate (momentum) was fixed to 
0.00001. The network was allowed to decrease mo-
mentum at the rate of 0.001 when moving down and 
increase the momentum to 5 when moving uphill. 
Maximum validation fails were permitted for six 
iterations after which the network will stop learning. 
Prediction of the network for the data of three untrained 
specimens for the percentage of load and final failure 
load is depicted in figure 11.  

Prediction of the network for percentage failure 
load was very turbulent below forty percentage, after 

which the accuracy was within five percent mark. The 
same trend was followed in failure strength prediction 
also. Failure load prediction of ANN for the three 
specimens was provided graphically in figure 12. 
Especially at five percentage, the prediction was very 
poor. This is due to the fact that the AE activity at five 
percentage was more or less similar to all the 
specimens and below forty percentage was less 
distinguishable. So the ANN was unable to predict 
with much accuracy. 

 
Figure 9.  Convergence plot 

 
Figure 10. Regression plots 

4. CONCLUSION 
 
Laser processed and adhesively bonded CFRP speci-
mens with different surface roughness were tested 
mechanically for joint strength. Failure mechanisms 
were analysed with a real-time acoustic emission tech-
nique. Supervised learning type artificial neural net-
work was designed and trained to predict the per-
centage of failure load deteriorated and its full failure 
load using AE data. From the results following 
conclusions were drawn: 
• Segregation of AE data according to failure modes 

yields better results in ANN simulation. 

• ANN with the structure of 5-55-25-2 predicted the 
percentage failure load and failure strength more accu-
rately.  

• Accuracy of prediction for percentage failure load 
was more accurate and precise above the 40% load. 

• Accuracy of prediction for percentage failure load 
was neither accurate nor precise below 40% of load 
and varies from 41% to 8% error.  

• Final failure load was predicted with great accuracy 
of 3.5% to 0.1% error margin.  

• Thus ANN coupled with AE monitoring can be 
used as an efficient and effective tool for real-time 
health monitoring of CFRP composite structures.  
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Figure 11. Percentage failure load predicted. Magnified view of (a) 5 to 25% load and  (b) 15 to 40% load.  

 
Figure 12. Failure load predicted by ANN for different Samples.  
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                        Figure 13. Standard deviation in prediction errors.                 
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ТЕХНИКА ДУБОКОГ УЧЕЊА БАЗИРАНА НА 
АКУСТИЧНОЈ ЕМИСИЈИ ЗА ПРЕДВИЂАЊЕ 

ЈАЧИНЕ АДХЕЗИЈЕ КОД ЛАСЕРСКИ 
ТРЕТИРАНИХ CFRP КОМПОЗИТА 

 
Р. Сатијамурти, М. Дураиселвам, Севел П. 

 
Висок степен нехомогености материјала и проблеми 
настали обрадом CFRP композита онемогућавају 
примену аналитичких модела за прецизно пред-
виђање заостале чврстоће везе добијене адхезијом 
споја. У новије време користе се технике вештачке 
интелигенције као алтернативни метод за предви-
ђање резултата ове сложене појаве. Рад приказује 
покушај предвиђања јачине споја код површине 
третиране ласером и адхезијом добијене везе код 
узорака CFRP композита коришћењем вештачке 
интелигенције на основу параметара акустичне 
емисије добијених испитивањем на смицање. Извр-
шена је предобрада површине 12 узорака ласером 
3W Nd:YAG при различитим параметрима обраде. 
Вештачка интелигенција је тренирана одабраним 
подацима добијеним акустичном емисијом на ос-
нову механизма отказа и оптерећења отказа (5 – 
100%). Предвиђене вредности су упоређене са вред-
ностима добијеним експериментом и извршена је 
анализа резултата у циљу утврђивања могућности 
примене вештачке интелигенције са акустичном 
емисијом.     

 
  
 
 

 

 
 
 
 
 
 
 
 


