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Delamination of Multilayered Non-linear
Elastic Shafts in Torsion

Delamination cracks in multilayered circular shafts loaded in torsion are
analyzed in terms of the strain energy release rate. It is assumed that the
material in each layer has non-linear mechanical behaviour that is treated
by the Ramberg-Osgood constitutive law. Also, each layer exhibits smooth
material inhomogeneity in radial direction. It is assumed that the three
material properties involved in the Ramberg-Osgood constitutive law vary
continuously in radial direction of layers. A methodology for determination
of the strain energy release rate is developed that is applicable for shafts
made of arbitrary number of adhesively bonded concentric layers which
have individual thickness and material properties. The delamination
cracks are located arbitrary between layers. The methodology is used to
investigate a delamination in a multilayered clamped shaft. The dela-
mination is also studied by analyzing the energy balance for verification.
Parametric analyses of the clamped multilayered shaft are carried-out.
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1. INTRODUCTION

The delamination fracture behaviour of layered materials
and structures has been the subject of investigation by
many researchers from both theoretical and applied stand-
points in the last few decades. This is due to the fact that
the delamination, i.e. separation of layers, is one of the
most important causes for disintegration of layered struc-
tural members. The delamination phenomenon is studied
usually in terms of the strain energy release rate by
assuming linear-elastic behaviour of the material [1].
Recently, several papers on delamination fracture in
multilayered beam configurations which exhibit non-
linear mechanical behaviour of the material have been
published [2-4]. These publications are focused on
delamination in multilayered beams of a rectangular
cross-section. The beams are loaded in bending. Various
solutions to the strain energy release rate are derived for
the cases when the layers of beams are made of
inhomogeneous or functionally graded materials. It is
assumed that layers exhibit continuous (smooth)
inhomogeneity (usually, the modulus of elasticity varies
continuously in the cross-section of layers). It should be
noted that the strong interest towards the
inhomogeneous materials is due mainly to the fact that
the functionally graded materials as a new kind of
inhomogeneous composites which consist of two or
more constituents with gradual variation of their
microstructure over volume are ubiquitous in aeronau-
tics, nuclear reactors, microelectronics, biomedicine and
optics [5-9]. Although the ordinary laminated compo-
sites are widely used in engineering [10-16], the sharp
interfaces between their constituents lead often to
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failure from interfacial stress concentrations. Actually,
one of the important advantages of functionally graded
materials in comparison with the laminated composites
is the elimination of interfacial stress concentrations.

It should be mentioned that fracture analyses of con-
tinuously inhomogeneous (functionally graded) mate-
rials and structures are carried-out by using methods of
linear-elastic fracture mechanics which are applicable
for linear-elastic behaviour only [17]. Obviously, it
would be useful to develop fracture analyses with taking
into account the non-linear elastic behaviour of the
material. In the present paper, the delamination fracture
behaviour of multilayered non-linear elastic circular
shafts loaded in torsion is investigated assuming that
layers exhibit continuous inhomogeneity in radial direc-
tion. The main objective is to develop a methodology
for determination of the strain energy release rate when
the non-linear elastic behaviour of the material is des-
cribed by the Rambeg-Osgood constitutive equation
assuming that the three material properties involved in
the constitutive equation vary gradually in radial direc-
tion in contrast to previous studies which deal with the
case when only one material property (usually, the shear
modulus) vary in radial direction [18].

2. METHODOLOGY FOR ANALYSIS OF THE STRA-
IN ENERGY RELEASE RATE

Delamination cracks in multilayered non-linear elastic
circular shafts loaded in torsion are under consideration in
the present paper. Shafts are made of concentric longi-
tudinal adhesively bonded layers. The number of layers is
denoted by 7 . Each layer exhibits smooth material inho-
mogeneity in radial direction. The non-linear mechanical
behaviour of the material in each layer is treated by the
Ramberg-Osgood constitutive law. Delamination cracks
are located arbitrary between layers. A portion of a
multilayered shaft with delamination crack front is
depicted in Figure 1. The delamination crack front is a
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circle of radius, ;. The internal crack arm is a circular
shaft with radius, 7.

delamination crack

delamination crack front

Figure 1. Portion of a circular multilayered shaft with the dela-
mination crack front (the delamination crack is a cylindrical
surface with radius, r)

The external crack arm is a ring-shaped shaft with
internal radius, r;, and external radius, r,. The torsion
moment in the shaft cross-section ahead of the delami-
nation crack front is denoted by 7. The delamination
fracture behaviour is analyzed in terms of the strain
energy release rate by using the following formula [19]:
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where n; and n, are the numbers of layers, respectively,
in the internal and external crack arms, »; and rj; are,
respectively, the radiuses of the internal and external

surfaces of the i-th layer, u;a]l., u;a and u; are the

ol
complementary strain energy densities in i-th layer of
the internal and external crack arms in the cross-section
behind the crack front and in i-th layer in the shaft
cross-section ahead of the crack front, respectively.

The relation between the shear strain, y, and the
shear stress, 7;, in the i-th layer of the internal crack arm
is expressed by the Ramberg-Osgood constitutive law

Tl' T_l WTI
7:E+(HJ @

where Q;, H; and m; are material properties which vary
continuously in radial direction in each layer

0, =0(r) 3)
H; =H;(r) 4)
m; =m; (r) (5)

The complementary strain energy density in i-th
layer of the internal crack arm is calculated by the
following formula [20]:
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One of the characteristic features of the Ramberg-
Osgood constitutive law (2) is that the stress, 7;, can not
be determined explicitly. Therefore, 7; is expanded in
series of Taylor by keeping the first three members

Tz" (”bz’)

Tl.(r)zrl-(rbl-)-i- T (F—Vbl-)+
() ' (7N
T \ Ty 2
Py
where
v.+r.
rbi — i i+1 (8)
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By introducing of coefficients, q,, gz and g,
formula (7) is re-written as

Ti(”)zQai+qﬂi(r_rbi)+q5i(r_rbi)2 (10)

In order to use the Ramberg-Osgood constitutive law
(2) for determination of g,;, gs and gy, the shear strain
has to presented as a function of the radius, ». By
applying the Bernoulli’s hypothesis for plane sections,
the distribution of the shear strains in the internal crack
arm is written as

r
Y==7 (1)
1

where
0<r<p (12)

In (11), y, is the shear strain at the periphery of the
internal crack arm. It should be mentioned that the
applicability of the Bernoulli’s hypothesis for plane
sections follows from the fact that circular shafts of high
length to diameter ratio are under consideration in the
present paper.

By combining of (2), (10) and (11), one arrives at

r q(zi+qﬁi(r_rbi)+QEi(r_rbi)2
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In order to obtain equations for determination of g,
qg and g, first, » = r;; is substituted in (13). The result is

1

m;

Thi dai | Yai
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Further, by substituting of » = r;; in the first and
second derivatives of (13) with respect to r, one arrives at
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where Q;, H; and m;, and their derivatives, 0,0 ,H,
H , m;and m ,, are calculated at r = r,;. In equations
(14), (15) and (16),

i=1,2,3,..n (17)
1

Wi=— (18)
m.

1

Equations (14), (15) and (16) are worked out for
each layer in the internal crack arm. Thus, 3#; equations
whit 3n+1 unknowns, s, Gu, gp and qs, where =
1,2,3,...,n; are worked out. Another equation is worked
out by considering the equilibrium of the elementary
forces in the internal crack arm cross-section

i=m| Ti+1
= Z 2z j T; 2 dr (19)
i=1 ”i
where T is the torsion moment in the internal crack arm

cross-section behind the delamination crack front. By
substituting of (10) in (19), one derives
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Equations (14), (15), (16) and (20) should be solved
with respect to V6> Gai» i and gsi,, Where i = 1,2,3, ... ny,
, by using the MatLab computer program for particular
shaft geometry, external loading and material properties.
Then, the complementary strain energy density in each
layer of the internal crack arm is calculated by
substituting of (10) in (6).

The complementary strain energy density in the i-th
layer of the external crack arm is written as
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where the shear stress, 7, is expanded in series of
Taylor

74 (") = Pai + D i (r =11 )+ psi (7 =1 )2 22)

The coefficients, p;, ps and py;, where i = 1,23, ..n,,
are determined by using equations (14), (15), (16) and
(20). For this purpose, Ti, ni, s Gu> gp and g are
replaced with 75, ny, 74 pu» psi and pg, respectively.
Here, T, is the torsion moment in the external crack arm
behind the delamination crack front, y; is the shear

strain at the periphery of the external crack arm.

The shear stress, 74, in the i-th layer of the shaft
cross-section ahead of the delamination crack front is
also expanded in series of Taylor

T4(r) = sg; +5p (r=mi ) +5i(r =1 )2 23)

Equations (14), (15), (16) and (20) are used to
determine the unknown coefficients, s,, Sz and s,
where i = 1,2,3,...n. For this purpose, T\, 71, Vb, Qo> 4pi
and g are replaced, respectively, with 7, n, yr, Su, Spi
and s, where T is the torsion moment in the shaft cross-
section ahead of the delamination crack front, v, is the
shear strain at the periphery of the shaft. The comp-
lementary strain energy density in the i-th layer of the
shaft cross-section ahead of the delamination crack front
is expressed as

1+m,-
2 mj
L LY S
1
20 1
(1+m; ) H["

1

(24)

where 1; is found by (23).

The strain energy release rate for the delamination
crack in the multilayered circular shaft shown in Fig. 1 is
obtained by substituting of (6), (21) and (24) in (1). The
integration should be carried-out by using the MatLab
computer program for particular shaft structure.

3. APPLICATION OF THE METHODOLOGY

The methodology for analyzing the strain energy release
rate developed in section 2 of the present paper is
applied here to investigate delamination fracture beha-
viour of a clamped multilayered circular shaft loaded in
torsion. The shaft is shown schematically in Figure 2. A
delamination cylindrical crack of length, a, is located
arbitrary between the concentric layers.

The radius of the internal crack arm cross-section is
r1. The length of the shaft is /. The shaft is clamped in
its right-hand end. The loading on the shaft consists of
one torsion moment, 7, applied at the free end of the
external crack arm as shown in Figure 2. Thus, the
internal crack arm is free of stresses.
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Figure 2. Geometry and loading of a clamped multilayered
circular shaft

The continuous variation of the material properties,
0;, H; and m,, in radial direction of the i-th layer of the
shaft is described by the following tangent laws:

0, =0y, {ngirg( - ”H (25)

i =7 4
r—r. 1w

H; :H0i|:1+ghitg( : —H (26)
i1 1 4

r—r
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where
ST STy (28)

In formulae (25) — (27), Qu;, Ho: and my; are the values,

respectively, of O, H; and m; at the internal surface of

layer g,, gm and g, are material properties which

govern the material inhomogeneity in radial direction.
Since the internal crack arm is free of stresses,

*
Upgi = 0 (29)
where

i=1,2,3,..n (30)

The complementary strain energy density in the i-th
layer of the external crack arm is obtained by formula
(21). For this purpose, Ti, ni, s u» gp and gs are
replaced, respectively, with 75, 1, Y4, Pai» pgi and p;, in
equations (14), (15), (16) and (20). After substituting of
(25), (26) and (27) in (14), (15), (16), the equations are
solved with respect to Y4 Pai> Pgi and ps;, by using the

MatLab computer program. Then, u;azi is expressed by

substituting of (22) in (12).

Formula (24) is applied in order to calculate the
complementary strain energy density in the i-th layer in
the shaft cross-section ahead of the delamination crack
front. The quantities, y;, Sy Sp and s, are determined
from equations (14), (15), (16) and (20) by replacing of
T\, n1, Vo> Qai» qpi and g5 With T, n, T,n, Y7 s Sais Spi and
S5, respectively.

Finally, the strain energy release rate for the cylin-
drical delamination crack in the clamped shaft shown
Figure 2 is obtained by substituting of (21), (24) and
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(29) in (1). The integration in (1) is performed by the
MatLab computer program.

The delamination fracture behaviour of the multi-
layered clamped shaft (Figure 2) is studied also by
analyzing the energy balance in order to verify the solu-
tion to the strain energy release rate. For this purpose, a
small increase of the delamination crack length, da, is
assumed leading to the following equation for balance
of the energy:

T5¢:%—U5a+Gld,5a (31)
a

where ¢ is the angle of twist of the free end of the
external crack arm, U is the strain energy cumulated in
the shaft, [, is the length of the delamination crack
front. From (31), one derives the following expression
for the strain energy release rate:

_Top 1 U

= (32)
ldl Oa ldl oa
The delamination crack front length is
ldl = 272'1’1 (33)
Therefore, formula (32) is re-written as
T op 1 oU
S A a o A 34)

_27rr1 Oa 2rn Oa

The following integral of Maxwell-Mohr is applied
in order to derive the angle of twist of the free end of
the external crack arm:

a )
¢ =[ by, e [y, 7L ax (35)
0 gl a )

where x is the longitudinal centroidal axis of the shaft
(Fig. 2). In (35), M, is the unit torsion moment applied
at the free end of external crack arm. From (35), one
derives

p="L a1 (1-q) (36)

n n

The internal crack arm is free of stresses. Therefore,
the strain energy cumulated in the shaft is determined by
integrating of the strain energy densities in the layers of
the external crack arm and the un-cracked shaft portion

i=np i+l i=n'i+l
U:27raz I uoazirdr+27r(a—l)z J uordr (37)
where the strain energy density in the i-th layer of the
external crack arm, u,,; is calculated by the following

formula [11]:

1+m;
2 mj
s T,
fi fi
T L L — 38
Oapi 20, ni (38)
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FME Transactions



The strain energy density in the i-th layer of the un-
cracked shaft portion, u;, is written as:

1+m;
2 my
uol.:ri+d’—l (39)
20, v
(l+m )Hm’

The final expression for the strain energy release
rate is derived by substituting of (36) and (37) in (34)

G-T [7._f_7_dj_

27n 1 o)

(40)
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Vi
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The integration in (40) should be carried-out by
using the MatLab computer program. The strain energy
release rates obtained by (40) are exact matches of the
strain energy release rates calculated by (1). This fact
proofs the correctness of the delamination fracture ana-
lysis of multilayered circular shafts developed in the
present paper. It should be noted that the strain energy
release rate in the clamped shaft is analyzed also by
keeping more than three members in the series of Taylor
(7). The strain energy release rates obtained are very
close to these determined by using the first three mem-
bers (the difference is less than 2 %).

a)

T N\ 7Y
- [\
[
Vo
layer 1 Ll _\__//
layer 2 delamination crack

layer 3 a

iR D j
__\/

layer 1

layer 2 delamination crack

layer 3 ya

L™ =

>

L~ L™

Figure 3. Fragments of two three-layered circular shaft confi-
gurations with a delamination crack located (a) between layers 2
and 3, and (b) between layers 1 and 2

Parametric investigations are performed in order to
appraise the influences of material inhomogeneity, dela-
mination crack location in radial direction of the shaft
cross-section and the non-linear mechanical behaviour
of the inhomogeneous material on the delamination
fracture in the multilayered non-linear elastic clamped
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circular shaft. For this purpose, calculations of the strain
energy release rate are performed by applying the
solution (1). The obtained strain energy release rates are
presented in non-dimensional form by using the formula
Gy = GA Q). The material inhomogeneity in radial
direction is characterized by g,;, g and g,,;. In order to
appraise the influence of the delamination crack loca-
tion on the fracture behaviour, two three-layered shaft
configurations are studied. In the first configuration,
shown in Figure 3a, a cylindrical delamination crack is
located between layers 2 and 3. A shaft configuration
with a cylindrical delamination crack between layers 1
and 2 is also studied (Figure 3b).

Both configurations are loaded by a torsion moment,
T, applied at the free end of external crack arm. The
thickness of the layers in both configurations is . It is
assumed that # = 0.004 m and 7 = 20 Nm.

First, the effect of g,; on the delamination fracture
behaviour is appraised. The shaft configuration with
delamination crack located between layers 2 and 3 is
investigated (refer to Figure 3a). The strain energy
release rate in non-dimensional form is presented as a
function of g, in Figure 4 assuming that Oy/Qo; = 0.7
003/Qo1 = 0.5, Hy/Qo = 0.6, Hyp/Hyy = 0.5, Hys/Hyy =
0.8, mo; = moy = mpz = 0.4, g = g2 = g3 = 0.6, g1 =
22 = gm3 = 0.5. The curves in Figure 4 indicate that the
strain energy release rate decreases with increasing of
g, (this behaviour is explained by increase of the shaft
stiffness when g, increases). The strain energy release
rate derived assuming linear-elastic mechanical beha-
viour of the inhomogeneous material is plotted in non-
dimensional form against g,; in Figure 4 for comparison
with the non-linear solution.

Q()/’E

841

Figure 4. The strain energy release rate in non-dimensional form
presented as a function of g,; at (curve 1) non-linear mechanical
behaviour of the inhomogeneous material, and (curve 2) linear-
elastic behaviour. The three-layered shaft configuration with a
delamination crack located between layers 2 and 3 (refer to Fig.
3a) is analyzed

The curves in Figure 4 show that the material non-
linearity leads to increase of the strain energy release rate.
It should be noted that the linear-elastic solution to the
strain energy release rate is derived by substituting of H
— oo in the non-linear solution (1) because at H — oo the
Ramberg-Osgood constitutive law (2) transforms in the
Hooke’s law assuming that Q; is the shear modulus of the
inhomogeneous material in the i-th layer of the shaft.

The influence of g;; on the delamination fracture
behaviour is appraised too. For this purpose, the strain
energy release rate in non-dimensional form is
presented as a function of g in Figure 5 at g,; = 0.5
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and g,,; = 0.5 for both three-layered shaft configurations
depicted in Figure 3. It can be observed in Figure 5 that
the strain energy release rate decreases with increasing
of g;;. This finding is attributed to the increase of the
stiffness with increasing of gj,;.

Concerning the effect of the delamination crack
location on the delamination fracture behaviour, the curves
in Figure 5 indicate that the strain energy release rate is
higher when the delamination is between layers 2 and 3.

8.8 ’\
G o S8 2
0 x10 /
01’5 4.4 \
2.2
| | | 1
0.5 1.0 1.5 2.0

Eni

Figure 5. The strain energy release rate in non-dimensional form
presented as a function of g, for the three-layered shaft
configuration with a delamination located (curve 1) between
layers 2 and 3, and (curve 2) between layers 1 and 2 (refer to Fig.
3)

This finding is attributed to the fact that the stiffness
of the external crack arm is lower when the delami-
nation is between layers 2 and 3.

1
8.8 \
i
L 12
G ) 6.6
x10
Q{)[’Z‘ 4.4
2.2
| | | |
0.5 0.6 0.7 0.8

8ni

Figure 6. The strain energy release rate in non-dimensional form
presented as a function of g,,; at (curve 1) Hy,/Hy; = 0.5 and (curve
2) Hoz/Hm =3.0

In order to appraise the effect of g, on the dela-
mination fracture behaviour, the strain energy release
rate in non-dimensional form is presented as a function
of g, in Figure 6 at g, = 0.5 and g,;= 0.6 for two
Hy,/Hy ratios. The shaft configuration with a
delamination crack located between layers 2 and 3 is
analyzed. One can observe in Figure 6 that increase of
gn leads to decrease of the strain energy release rate
(this is due to the increase of the stiffness). The strain
energy release rate decreases also with increasing of
Hyy/Hy, ratio (Figure 6). This phenomenon is explained
by the increase of the stiffness with increasing of
HOZ/HOl ratio.

4. CONCLUSION

Delamination fracture behaviour of multilayered inho-
mogeneous non-linear elastic circular shafts loaded in
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torsion is analyzed in terms of the strain energy release
rate. The non-linear elastic behaviour of the material is
treated by the Ramberg-Osgood constitutive law
assuming that the three material properties involved in
the constitutive law vary continuously in radial direction
in each layer. A methodology for determination of the
strain energy release rate is developed that can be app-
lied for shafts made of layers which have individual
thicknesses and material properties. The methodology is
used to perform a parametric analysis in order to app-
raise the influence of material inhomogeneity on the
delamination fracture behaviour of the clamped shaft.
The analysis reveals that the strain energy release rate
decreases with increasing of g,, gu and g, (the
material properties, g,1, gn and g,,;, govern the material
inhomogeneity in radial direction of layer 1). The
influence of delamination crack location in radial
direction of the shaft cross-section on the fracture is
appraised too. It is found that the strain energy release
rate decreases when the stiffness of the external crack
arm increases. The effect of material non-linearity on
the delamination fracture behaviour is also studied. The
analysis shows that the strain energy release rate is
higher in multilayered shafts exhibiting non-linear
mechanical behaviour of the inhomogeneous material.
The methodology developed in the present paper
can be applied in design of multilayered functionally
graded shafts with considering of their delamination
fracture behaviour. The methodology can be used to
check for delamination crack growth. For this purpose,
first, the strain energy release rate has to be calculated
for a given magnitude of external loading by applying
the methodology. The calculated strain energy release
rate has to be compared with the delamination fracture
toughness in order to check for crack growth. The met-
hodology can be applied also to calculate the strain
energy release rate by using experimental data from
delamination fracture tests on multilayered inhomo-
geneous non-linear elastic shafts loaded in torsion.
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NOMENCLATURE
A crack length
G strain energy release rate
H material property
/ length of the delamination crack front
m material property
N number of layers
P coefficient in series of Taylor
0 material property
q coefficient in series of Taylor
r radius of cross-section
s coefficient in series of Taylor
T torsion moment
t thickness of layer
U strain energy
U strain energy density
Greek symbols
() angle of twist
Ve shear strain
T shear stress
/4 material property
Subscripts
a; subscript of coefficients in series of Taylor
bi subscript of coefficients in series of Taylor
0 subscript of coefficients in series of Taylor

JAEJAMUHAIINJA BULIECJIOJHE EJIAC-
TUYHE OCOBHUHE ONITEPEREHE TOP3NJOM

B. Pu3os

[Ipcruae nemaMuHAIMjEe KO BHINECIOJHUX KPYKHHX
OCOBHHA ONTepeheHnX TOp3ujoM ce MCIHTY]y ca acIieKTa
Op3uHE ocnobahama nedopmarmone eHepruje. [lomasu ce
OZ IPETIIOCTaBKe Jia Ce MaTepHjall CBaKor' CJI0ja IIOHAIIa
MEXaHMYKM HEJMHEapHO ILITO CE aHAIM3Upa HNPHMEHOM
Pambepr-OsrynoBor 3akoHa. CBaku CllOj MOKazyje
HEXOMOICHOCT MaTepHjajia y paaujaHOM [paBILy.
IIpermocTaBjba ce ha TPH CBOJCTBA MarepHjayia, Koja
yKJbyuyje PamOepr-O3rynoB 3aKoH, HEPEKUTHO BapHpajy
y paaujaHOM TpaBLy cliojeBa. Mertononoruja onpehu-
Bama Op3uHe ocnobahama nedopMarone eHepruje je pas-
BHjCHA TaKO J]a Ce MOXKEe PUMEHHUTH Ha OCOBHHE M3paljeHe
O]l TIPOU3BOJEHOT Opoja KOHLEHITUTPUYHHX CIIOjeBa CIIO-
JEeHHX aJaxe3WjoM, TpH YeMy CBakH CJ0j MMa oapelheHy
ne0JbiHY M CBOjCTBA Matepujasia. Mecra mpciuHa jena-
MHuHauuje u3Mely cnojeBa cy ozpeheHa HpPOM3BOJHHO.
Meroznonoruja ce KOPUCTH 3a HCTPaKUBAEE JEIaMH-
HallMje KoJ BHIlleciojHe (pukcupaHe ocoBuHe. [lenamu-
HallMja je aHaJTM3MpaHa U ca acleKTa CHEPreTCKe PaBHO-
TeXe y by Bepudukanuje. M3BpiieHa je mapamerapcka
aHasM3a QUKCHpPaHe BUIIECIIOJHE OCOBHHE.
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