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A Revisit to Normalization Methods for 
Purpose of Stress Mode Shapes 
In order to accurately interpret the results of modal analysis for the pur-
pose of stress mode shapes (SMSs), this work revisits the normalization 
methods in computational structural dynamics. Firstly, the fundamental 
principle of structural dynamics analysis and mode of normalization were 
concisely introduced, and the critical parameters affecting SMSs were 
discussed. Secondly, the displacement and mass normalizations were 
applied to the case study of a beam structure. Detailed comparisons were 
considered between the SMSs and the conventional displacement mode 
shapes (DMSs) with different normalization methods. Lastly, some 
important characteristics were obtained. Present study can serve as an on-
going research effort aimed at evaluating both the SMSs and DMSs for 
future dynamic damage/failure analysis. 
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1. INTRODUCTION

It has been widely-accepted that both modal analysis 
and local stress response are critically important for 
mechanical systems by using numerical approaches, 
such as finite element modelling and analysis. Such 
procedures involve much knowledge of structural 
dynamics. In many applications, modal properties and 
dynamic stress analyses are frequently interplayed and 
have achieved much progress [1-8]. 

As the function of second derivatives of the classical 
displacement mode shapes (DMSs), strain mode shapes 
[9] have been applied in structural dynamic modelling,
damage detection and dynamic design due to having
high sensitivity [10-14]. In recent years, strain mea-
surement based methods have been successfully deve-
loped to improve the local outperformance of model up-
dating [15-17]. In the comparison of classic and strain
experimental modal analysis (EMA), Kranjc et al. [18]
pointed out that the advantage of strain EMA was the
usefulness for an experimental investigation of the
stress–strain response, which can be important for
dynamic fatigue and damage detection. To obtain the
mode shapes, the mass normalization can be performed
with the classic EMA, but generally cannot be per-
formed with strain EMA only. To handle this difficulty,
Kranjc et al. [19] had proposed an approach based on
the mass-change strategy. Roy et al. [20] used
normalized fundamental DMSs and their normalized
derivatives in damage localization. Sung et al. [21]
proposed damage detection using the normalized cur-
vature. Baghiee et al. [22] recently confirmed that
modal curvatures were sensitive to the normalization
methods in structural damage detection. As another
second derivative, stress mode shapes (SMSs) have also

been proposed for fast calculation of dynamic stresses 
[23, 24], of which the accuracy and efficiency are 
critically important for vibration fatigue in the frequ-
ency domain [25, 26]. It has been verified that stress 
modal approaches could largely speed up the evaluation 
process of fatigue damage for mechanical structures 
subjected to random dynamic loads [27-30]. For dyna-
mic stress modelling, Zhou [31] has recently proposed a 
method for local finite element refinement via SMSs 
information. These studies have preliminarily shown the 
promising utilization of SMSs in structural dynamics 
and damage evaluation. 

As well known, the normalization methods have 
been well developed in computational modal analysis, 
which are naturally the scaling procedures that do not 
change the intrinsic dynamic characteristics of linear 
systems. However, in modal analysis for predicting 
structural damage severity/patterns or evaluating the 
critical hotspots of dangerous stresses, the scaling 
procedures that applied for mode shape normalization 
may have a significant influence. Under such back-
ground, this study revisits the normalization methods for 
SMSs consideration. Firstly, the fundamental theory 
was concisely reviewed. Secondly, a numerical case of a 
beam-type structure was investigated via finite element 
modelling, and comparisons were analyzed. Lastly, 
some conclusions were drawn. 

2. FUNDAMENTAL THEORY

A continuous structural system can be discretized into a 
multiple degrees of freedom (DOFs) system utilizing 
finite element method, and the dynamic equation of the 
discretized system with n DOFs is 

( )t+ + =M C Ku u u f (1) 

where M, K, and C denote the (n × n) mass, stiffness, 
and damping matrices, and u is the (n × 1) disp-
lacement vector, and f is the (n × 1) loading excitation 
vector. Once the global system matrices are nume-
rically constructed, the eigenvalue ω of the matrix 
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system, and the resonant mode shape Ԅ, are defined by 
solving the following generalized undamped eigen-
value problem 

KԄ = ω2MԄ    (2) 

r r

T
r

It can be seen that the mass M and stiffness K are 
the main global properties that affect the overall modal 
response of a system. The corresponding frequencies are 
f = ω⁄2π. The two quantities can define the orthogonality 
of the eigenmodes with respect to the matrices K and 
M, which are ԄT

r KԄ  = kr and ԄT
r MԄ  = mr, 

respectively, where kr and mr are the rth modal stiffness 
and modal mass respectively.  

Substituting u(t) = Φq(t) into the dynamic equation, 
with q being the modal coordinate and Φ (n × n) being 
the DMSs matrix, premultiplying the result by ΦT and 
mass-normalizing the mode shapes φ  leading to unit 
modal mass rm , it yields 

2 T+ + =q q q fΓ Λ Φ  (3) 

where 1T
r r =Mφ φ , 0T

r s =Mφ φ  (r ≠ s), Γ = diag(2ω1ζ1,
2ω2ζ2, ····, 2ωnζn) and Λ2 = diag(ω2 ,1, ω

2 ,2, ····, ω
2 ,n). It is 

the common practice to mass-normalize the mode shape 
vectors to uncouple the equations for dynamic response 
calculation. Herein, φ  denotes the mass-normalized 
DMSs, while using φ  denotes the displacement-nor-
malized DMSs. 

For simplicity but without loss of generality, herein 
consider the beam-type structure with rectangular cross-
section (length L, height h, width b). According to the 
basic theory of finite element method, the strain at any 
point within all structural elements can be expressed as 
ε = BTu, where T is the transformation relationship 
between the elemental local coordinate and the struc-
tural global coordinate. For the straight beam system, 
the elemental coordinate agrees with the global coor-
dinate, therefore, the strain mode (normal strain on the 
beam surface) along the x- direction (longitudinal direc-
tion) is 

Ԅ εx(x) = -(h/2)·BԄ (x)  (4) 

where h denotes the beam’s height, B is the strain–
displacement matrix. Furthermore, to be relevant with 
material strength such as vibration fatigue evaluation, 
modal stresses in a finite element model are related to 
the modal strains as shown below 

Ԅ σx(x) = D Ԅ εx(x)  (5) 

where D is the elasticity matrix in finite element 
method, and Ԅσ

x(x) is the SMSs along the longitudinal 
direction of the straight beam. Because of the matrix B, 
the distribution of strain mode shapes in the structural 
model change with the modification of model 
parameters, especially the distribution near local abrupt 
change of the geometric details. Then, because of the 
matrix D, the SMSs also depend on the material 
properties. Derived from the DMSs, therefore, it can be 
seen that different normalization methods will yield 
different magnitudes of SMSs. 
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3. FINITE ELEMENT MODELLING

The model of a straight beam with rectangular cross-
section is as shown in Fig. 1. In the finite element 
modelling, the encastre type were chosen for boundary 
condition settings on the two ends (u1 = u2 = u3 = ur1 = 
ur2 = ur3 = 0), i.e., the clamped-clamped beam. The 
linear elastic material of titanium alloy was used with 
the following parameters: Young’s modulus E = 108 
GPa, the Poisson’s ratio ν = 0.34, and the mass density ρ 
= 4.5 × 103 kg/m3. The in-plane and twist modes were 
kicked out, which are out of scope in present study. 
Therefore, only the bending modes in the xz plane were 
considered, which results in displacements in the z-
direction and normal strains in the x-direction. The 4-
node conventional shell elements with reduced 
integration were selected to mesh the model. Lanczos 
method was used in modal analysis. 

Unit: mm

L = 500

b = 50

h = 5z

x

z

y

Figure 1. Geometry and boundary condition of the straight 
beam with rectangular cross section 

4. RESULTS AND DISCUSSION

Fig. 2 gives the first six mode shapes of the beam, where 
the maximum deflection in the DMSs were normalized to 
unity. The displacement distribution ranges from -1 to 1, 
with the colour from the blue to the red. For visualization 
purpose, the deformation scaling factor was set to 10 
during outputting the mode shapes. Fig. 3 gives the first 
six mode shapes with mass normalization. From the 
comparison within the mass-normalization modes, it can 
be seen that the normalizing factor were different from 
each other, which was different from the case in 
displacement normalization. Because the deformation 
values are rather high in mass normalization, the 
deformation scaling factor was set to 0.1 during 
outputting the mode shapes for observation. Although 
different normalization methods were performed, it 
should be noted that the intrinsic dynamic property of 
DMSs do not change for present linear structure. 

However, for purpose of SMSs application, different 
normalization methods maybe bring about some problems 
for the stress evaluation. Herein, the normal stress along 
the longitudinal direction of the beam is the principal 
component. Therefore, the x-direction stress on the top 
surface of the beam was chosen to compare. Fig. 4 gives 
the first six SMSs under displacement normalization, 
which exhibited a totally different distribution compared 
with the DMSs. For example, relative high magnitudes of 
SMSs distributed at the fixed end of the beam. Fig. 5 gives 
the first six SMSs under mass normalization. From the 
legend, we can see that the magnitudes of mass-normalized 
SMSs are extremely high, which can be ascribed to the 
large deflection in the mass-normalized DMSs. Fig. 6 
compares the maximum magnitudes and the ratios of the 
SMSs with the two different normalizations, from which 
the detailed difference can be observed.  
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Figure 2. The first six DMSs of the beam with displacement 
normalization 

In the dynamic response calculation, the mass nor-
malization is generally used, but it is also faced with 
difficulty at certain situations, such as under the ambient 
excitation. 
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Figure 3. The first six DMSs of the beam with mass 
normalization 
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Figure 4. The first six SMSs of the beam with displacement 
normalization 

1st

2nd

4th

3rd

5th

6th

Figure 5. The first six SMSs of the beam with mass 
normalization 

The modal effective mass is involved in the mass-
normalization method. Meanwhile, the scaling factor 
exhibits a discrepancy for different mass-normalized 
modes, such as ≈ 64.5 at the 3rd mode while ≈ 68.1 at 
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the 6th mode for present simulation case. Therefore, 
additional attention should be paid to this fact when 
evaluating the SMSs for the localization of critical-but-
local stress hotspots as the vibration fatigue did [30]. 
Also, in displacement-normalization method it is con-
venient to observe and localize the critical stress points, 
which will be helpful to compare the stress states of dif-
ferent modes at the same maximum deformation. 
However, it is possible that some of the SMSs hotspots 
can be discarded because of the minor participation into 
the overall dynamic stress response, such as the high-
frequency modes in the most situations. At such cases, 
the identification of predominant modes will be of 
critical importance. 
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Figure 6. Maximum magnitudes and the ratios of the SMSs 
with the two normalizations 

5. CONCLUSION

In this paper, an on-going effort on stress mode shapes 
(SMSs) was made, aiming at evaluating beam-like 
structures by using stress modal analysis performed via 
finite element method for numerical structural dynamics 
simulation. It is ascertained that differences exist bet-
ween the two normalization methods, which have an 
influence on the visualization of the SMSs for dynamic 
stress and damage evaluation. It can be seen that both 
displacement and mass normalizations have their own 
advantages and drawbacks. It needs to mention that 
present structure was very simple. In the future study on 
complex structures, different normalizations for SMSs 
applications should be carefully examined and used. 
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NOMENCLATURE  

b width of the beam 
B strain–displacement matrix 
C damping matrix 
D elasticity matrix 
E Young’s modulus 
f loading vector 
f frequency in Hz 
h height of the beam 
K stiffness matrix 
kr rth modal stiffness 
L length of the beam 
mr rth modal mass 

rm rth unit modal mass 
n degrees of freedom 
q modal coordinate 
T transformation matrix 
t time 
u displacement vector 

Greek symbols  

ωr rth modal frequency 
ν Poisson’s ratio 
ρ mass density 
ζr rth modal damping ratio 
Ԅ displacement mode shape 
φ mass-normalized mode 

φ  displacement-normalized mode 
Ԅε

x strain mode shape 
Ԅσ

x stress mode shape 
Φ displacement modal matrix 

Superscripts  

ε strain 
σ stress 
T transpose of matrix 

ПОНОВНО РАЗМАТРАЊЕ МЕТОДА НОРМА-
ЛИЗАЦИЈЕ РЕЖИМА ДЕЛОВАЊА НАПОНА 

Ј. Чоу 

У циљу прецизног тумачења резултата анализе ре-
жима деловања напона, у раду се поновно разматра 
метод нормализације у рачунарској структурној 
динамици. Прво се уводе основни принципи анализе 
структурне динамике и начин нормализације а потом 
се разматрају критични параметри код режима 
деловања напона. Друго, примењена је нормализација 
померања и масе код студије случаја структуре греде. 
Извршено је детаљно поређење режима деловања 
напона и конвенционалног режима померања са 
различитим методама нормализације. Добијене су 
неке значајне карактеристике. Истраживање може да 
послужи као основа за перманентну процену режима 
деловања напона и режима померања код анализе 
динамичког оштећења и/или отказа. 




