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Heat Transfer and Entropy Generation 
for Natural Convection by Adiabatic 
Obstacles Inside a Cavity Heated on 
the Left Side 
 
By using finite difference method, the problem of heat transfer and entropy 
generation for natural convection of a fluid inside a square cavity with 
inner adiabatic bodies has been investigated numerically. Calculations 
have been made for Rayleigh numbers ranging from 102 to 5·104 for two 
obstacles with different heights. Results are presented as streamlines, 
isotherm contours and Nusselt number for Prandtl number of 0.71  
(assuming the cavity is filled with air). The obtained results demonstrate 
the effects of pertinent parameters on the fluid flow, thermal fields and 
heat transfer inside the cavity. The results show that the heat transfer rates 
generally increase with the shrink of the obstacle size and with the 
increase of Rayleigh number. The entropy generation is higher at locations 
with large temperature gradients. Excellent agreement is obtained with 
previous results in the literature. 
 
Keywords: natural convection, cavity, entropy generation, adiabatic 
obstacle. 

 
 

1. INTRODUCTION  
 

Natural convection heat transfer phenomena inside 
cavities have been and continue to be the subject of 
many research activities over the past decades. It has 
extensive applications in different environmental situ-
ations and industrial processes with many engineering 
fields such as ventilation of buildings with radiators, 
double-glazed windows, solar collectors, cooling of 
electronic equipment, thermal storages and drying 
technologies [1]. Very intense reviews are available [2-
4]. In engineering, the look is constantly focusing on the 
methods to enhance the overall heat transfer efficacy in 
a lot of applications by the realization of a wide range of 
techniques from design optimization to the use of new 
materials [5]. Yet, it is evident that the accuracy of ther-
mal systems will be affected by fluid flow irreversibility 
and heat transfer irreversibility. For that, to optimize the 
efficiency of the system, the systems irreversibility must 
be checked and minimized [6]. There are numerous 
optimization methods to achieve this goal, among them 
the entropy generation minimization where reviews are 
available [6]. 

The coupling between the fluid and thermal 
transport phenomena often complicates the physics 
governing such buoyancy driven flow. Heat transfer 
inside a cavity with an obstacle at the centre has 
pertinence in modeling of baffle as a heat transfer 
controlling device [7], and controlling the heat rate by 
the aspect ratio of the adiabatic obstacle [8]. For the 

purpose of determining the thermal conductivity and 
Reynolds number effect on the core region and velocity 
fields, the problem of mixed convection flow and heat 
transfer in a shallow enclosure with a series of block-
like heat generating component [9], and the inclination 
effect in a square cavity containing a conduction block 
[10] are studied . Using finite element method, natural 
convection heat transfer enhancement is investigated in 
a cavity using a heat-conducting horizontal circular 
cylinder [11] and adiabatic block [12]. The effects of 
arc-shaped partitions, in the corners of a shallow cavity 
on characteristic parameters of natural convection heat 
transfer and fluid flow is studied using The finite 
volume approach [13]. Also, the effect of obstacle 
positions on the heat transfer and entropy generation is 
investigated numerically using finite difference method 
[14]. Entropy generation in flows is studied for different 
nanofluids, with silver and copper nanoparticles [15], 
employing innovative turbulator [16] and inside a single 
slope solar still [17]. 

Based on literature reviews, there is a large number 
of numerical studies on natural convection of different 
fluids inside enclosures with different boundary 
conditions, but few of them are focusing on natural 
convection in cavities with an inside adiabatic obstacle. 
In this work, the problem of natural convection 
heat transfer, fluid flow and heat generation in a square 
enclosure containing air and with two thin adiabatic 
obstacles located at its inside and with a fixed 
temperature drop between the vertical walls, is 
investigated by finite difference method based. The 
results in the form of streamlines, entropy rate contours 
and isotherms plots and average Nusselt number are 
presented for a wide range of Rayleigh numbers and 
size and location of the adiabatic thin obstacles. Com-
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parison of the present results with previous numerical 
data are also presented. 

 
2. PHYSICAL MODEL 

 
2.1 Problem statement 

 
In this study, we consider heat transfer and entropy 
generation in a square cavity, characterized by a length 
W with a heated left plate and filled with a viscous 
fluid. The heated surface is taken to TH, and the right 
surface is taken to the environmental temperature TC 
and the two other surfaces are assumed to be adiabatic. 
Inside the enclosure there are two adiabatic obstacles 
fixed at the horizontal walls. They are characterised by 
the height h and distance from the left plate by  and  
respectively (fig.1). 

 
Figure 1. Geometry and prescribed plate temperatures for 
the cavity. 

2.2 Governing equations 
 

In this work the fluid is considered as a Newtonian fluid 
with constant properties apart from density in the 
momentum equation for body force term. Incompre-
ssible flow with thermal convection is assumed in its 
steady state. The Boussinesq approximation, which rela-
tes the density changes to the temperature variations, 
assumes that variations in density have no effect on the 
flow field, except that they give rise to buoyancy forces 
thus couples temperature-field with the flow field. 
Radiation and heat production in the cavity domain is 
negligible and the gravity acts in the vertical direction. 
The governing equations for the natural convection flow 
with conservation of mass, momentum and energy can 
be written as [8]: 
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where u and v are the velocity components in the  and 
y directions respectively, T represents the temperature, 
p and  depict the pressure and density respectively, g 
represents the gravity magnitude and μ and α represent 
the viscosity and thermal diffusion. The governing 
equations can be given in dimensionless form, by 
applying the dimensionless variable as follows: 
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where x', y', l', h', u', v', p' and θ are the dimensionless 
variables and Pr and Ra are respectively the Prandtl and 
Rayleigh numbers. The dimensionless form of the 
governing equations -where the apostrophe has been 
dropped for the sake of clarity- is obtained easily with 
these non-dimensional variables as [12]:  

 0u v
x x
∂ ∂

+ =
∂ ∂

                           (5) 

2 2

2 2
 u u p u uu v Pr

x y x x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

          (6) 

2 2

2 2
  Pr Pr  v v p v vu v Ra

x y y x y
θ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

    (7) 

2 2

2 2
 u v

x y x y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                     (8) 

The stream function is defined based on the 
continuity equation as follows [11]: 

u
y
ψ∂

=
∂

  and  v
x
ψ∂

= −
∂

                        (9) 

The rate of heat transfer across the walls of the 
enclosure was calculated using a wall surface Nusselt 
number (Nu), which is defined as the ratio of convective 
heat transfer to pure conduction across the boundary, 
along the heated wall of the cavity. The local Nusselt 
number and the averaged one along the upper wall of 
the cavity are expressed by, 

locNu
y
θ∂

= −
∂

   (10)  

1

0
locNu Nu dx= ∫                               (11)  

 
2.3 Boundary conditions 

 
To solve equations (5)-(11) one must have some boun-
dary conditions. The problem is subjected to no-slip 
boundary condition on the walls, i.e. u=v=0 on both 
four walls of the cavity and the obstacles. the following 
are the thermal boundary conditions are as follows: 

• 0
y
θ∂
=

∂
 on the horizontal walls, 

• 0
x
θ∂
=

∂
 on the obstacles, 
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• θ = 1on the left wall and  
• θ = 0 on the right wall. 

 
2.4 Entropy generation 
 
Based on the thermodynamic equilibrium of linear tran-
sport theory, the entropy generation for fluid flow is 
given as [6,18]: 

 h fS S S= +                                     (12) 

where Shis the irreversibility due to heat transfer in the 
direction of finite temperature gradients, and Sf is the 
contribution of fluid friction irreversibility to the total 
generated entropy [18]. These two functions are written 
in terms of the primitive variables as [6]: 
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3. NUMERICAL METHOD 

 
The governing equations are solved numerically by 
finite difference methods using the Gauss-Seidel 
techniquewith a house Fortran code. The governing 
equations are discretized by applying second order 
accurate central difference schemes and the discretized 
equations obtained were solved iteratively. The iterative 
calculus is launched by the velocity field followed by 
the energy equation solution and is continued until 
convergence is achieved. Convergence is attained by the 
sum of the absolute relative errors for each dependent 
variable in the entire flow field: 
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where, the superscript n refers to the iteration number, φ 
represents the variables u, v or θ and the subscripts i and 
j refer to the coordinates in an y directions. The value of 
ε is chosen as ε = 10-5  for all calculations. 

 
3.1 Validation 
 
To make sure of the validity and to verify the accuracy 
of the used numerical technique, the outcomes for 
Nusselt number are compared with the solution of  
Oztop et al.[14] for a fluid of Pr = 0.71 in a square 
cavity with top and bottom adiabatic plates, while the 
two others are taken cold with a heated obstacle inside.  
Another comparison is made with Famouri et al. [18].In 
his work, the cavity is filled with the air and have an 
inside heated obstacle with two side cold walls, while 
the top and bottom are insulated. Figure.2a-b show these 

two comparisons respectively which describe an 
excellent agreement between the present results and the 
presented solution for different values of Ra. The 
comparison takes on the averaged Nu along the hot 
wall. Also, a third comparison is made between the con-
sidered method and benchmark of solutions for a square 
enclosure, confining the air, with a heated left side 
without any obstacle inside. The comparison (Table.1) 
is taken for a lot of Ra numbers to calculate the Nu 
number and the results match very well with previously 
published results given by the refs [19-22]. 
Table 1.Comparison of averaged Nusselt number with pre-
vious works for a square cavity without obstacle and vari-
ous Ra numbers. 

Nu Present 
work 

Ridouane et 
al. [19] 

Barakos et 
al. [20] 

Davis 
[21] 

Fusegi et 
al. [22] 

50 1.010 1.000 - - - 
5.102 1.044 1.036 - - - 
103 1.128 1.121 1.114 1.118 1.105 
104 2.264 2.273 2.245 2.243 2.302 
105 4.521 4.586 4.510 4.519 4.646 
106 8.991 9.012 8.806 8.799 9.01 
 
3.2 Grid independency 
 
The solution was considered to be fully converged when 
the maximum absolute values of the dependent vari-
ables at any node from iteration to iteration are smaller 
than a prescribed value, chosen as  10-5. The numerical 
solutions were conducted using a two-dimensional grid 
with 121×121 uniformly spaced grid points. A grid 
independence test was conducted with different meshes 
of size N = 33,41,61,81,101,121,141,161 and 201. 
Figure 3 a shows, for various mesh sizes, the relative 
change in the averaged Nusselt number from the upper 
surface. The maximum deviations observed in terms of 
Nu within  0.39%  and  0.23%, when the grid of 
101×101 and 121×121  are considered respectively (Fi-
gure 3b). This justifies the selected grid size of 121×121 
as a reasonable compromise between computational 
effort and required accuracy. 

 
Figure 2.  Code verification with the results of a) Oztop et 
al. [14] and b) Famouri et al.[18]  
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4. RESULTS 
 
Heat transfer and entropy generation for natural con-
vection inside a square cavity heated in the side wall 
with two adiabatic obstacles are considered. The effect 
of the two obstacles fixed in the adiabatic plates with 
different positions and separate distances is examined in 
this study. The study is conducted for Rayleigh number, 
Ra, from 102 to 5·104. 
 
4.1 Heat transfer 
 
Figures 4 show the streamlines and isotherms obtained 
for different heights of the obstacles located at the 
centre of the two horizontal plates, L = l = 1/2, for all 
Rayleigh numbers;  Ra = 102, 104 , 5·104. The initial rise 
and drop of air temperature (temperature here and after 
means dimensionless temperature) at the vicinity of the 
heated plate begin by conduction mechanism of heat 
transfer. Later, owing to the appearance of a 
temperature difference inside the cavity, the heat 
transfer mechanism is changed to natural convection 
that induces flow movement.  

 
Figure 3.  Grid independence test of the numerical solution 
in terms of average Nusselt number. 

It is observed that when the separate distance bet-
ween the two obstacles is big, i.e. small obstacles 
height, only one cell is formed in the cavity for all 
Rayleigh numbers. The fluid motion in this case is 
symmetric for the small Rayleigh number due to 
conduction mechanism dominance. By increasing the 
Rayleigh number the convection becomes dominant 
over the conduction and the motion symmetry breaks 
down. When the inside plates  get closer to each other,  
h = 1/4 , one vortex is created in the left part of the 
cavity. While, three other cells are observed in right 
one; two near the top obstacle and one about the 

downone. As Rayleigh number increases, the two ed-
dies, top and bottom, become stronger and the medium 
one becomes more and more smaller. The height growth 
of the two obstacles to h = 15/32 creates the 
disappearance of the medium cell and the top and down 
vortices become stronger. It is also evident that the size 
of vortices in the left part of the enclosure is 
proportional to the height of the inside adiabatic bodies; 
h = 1/4 and h = 15/32. For the highest Rayleigh number, 
Ra = 5·104, the effect of convection mechanism is very 
clear.The primary cell is subdivided into its centre to 
two small vortices for  h  = 1/32, while a fourth vortex is 
created next to the lowest obstacle for the case where  h 
= 1/4. 

By the increase of the height of the two inside plates, 
the contours of temperature become stratified from the 
heated plate to the two adiabatic bodies especially when 
Rayleigh number is smaller. By the increase of the 
separate distance between these two obstacles, the 
conduction mechanism penetrates heating into the right 
part of the cavity.   

 
a) 

 
b) 
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c) 

Fig.4 Streamlines overlaid isotherms for h = 1/32, 1/4, 15/3, l 
= L = 1/2 and  a) Ra = 103, b) Ra = 104, c) Ra = 5·104. 

Figure 5 illustrates the streamlines and temperature 
contours for different obstacles height and in their 
respective positions l = 1/4 and L = 3/4  for Ra = 104. 
When the height of the inside bodies is h=1/4, the same 
number of vortices is created and there is no great change 
in their form. Considering the case where  h = 1/2 , the 
primary cell seen in Fig. 5b is divided into two vortices 
by the effect of the first obstacle. While the two eddies 
observed in the same figure next to the second obstacle 
gained more space inside the cavity. By increasing the 
adiabatic bodies’ height (Fig. 5c), another eddy is created 
in the right part of the square enclosure. The heat inside 
this cavity is almost taken by the flow movement. 

a) b)

c)  

Figure 5. Streamlines overlaid isotherms for l = 1/4, L = 3/4 
a) h = 1,  b) h = 1/2, c) h = 3/4 and Ra = 104. 

At the right parts of the cavity, the flow is induced 
by natural convection while the isothermalvalues are 
zero and equal to the temperature of the side walls. The 
increase of the obstacles height increases the cooling 
inside the right part of the cavity and has no great effect 
on the left one. It is clear in this case that, at the left 

upper side of the enclosure, the fluid temperature is 
greater than the temperature next the obstacles, and the 
heat transfer direction is from the air to the inside plates. 
Conversely, at the right half of the cavity, the direction 
of heat transfer is from the obstacles to the air. The 
growth of the Rayleigh number has a good effect on the 
heat penetration inside the right part of the cavity from 
the opening created by the two inside bodies.  

0,0 0,2 0,4 0,6 0,8 1,0
0,00

0,02

0,04
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0,08

Ra=5 104

N
u lo

c

y

 1/32
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Figure 6. Local Nusselt number for different obstacles height 
for L = l = 1/ and Rayleigh number Ra = 103, 104 and 5·104. 

Figure 6 plots the variation of local Nusselt number 
along the left wall for different obstacles heights at 
Rayleigh numbers  Ra = 103, 104 and 5·104. When the 
Ra number is higher, the amount of heat added to the 
fluid in the left-upper  region of the enclosure becomes 
larger, which consecutively intensifies fluid convection. 
In the upper region of the left plate the cold fluid that is 
brought there by the recirculation patterns from the 
lower part of the cavity is heated up. As a result, the 
local Nusselt number becomes higher there. The heated 
air from the upward of the left wall reaches the left 
enclosure corners, losing heat to the inside cold air, and 
thus the local Nusselt number becomes lower in these 
regions. As the obstacles height increases, the heat is 
prevented from penetrating  inside the cavity right side 
which enhances the local Nusselt number. 

 
4.2 Overall heat transfer 
 
The overall heat transfer is pointed out in terms of mean 
Nusselt numbers. In figure 7a, mean Nusselt number 
was plotted for different height of the obstacles and at 
different Rayleigh numbers. As the height of the 
obstacles increases for fixed Ra numbers,  mean Nusselt 
numbers increase. Besides, for constant height of 
obstacles, when Rayleigh numbers are increased an 
analogous increase of mean Nusselt number value is 
created. It can be observed that for low Rayleigh 
numbers,  Ra = 102 and = 103 , as Nu is quite close to 
unity the pure conduction heat transfer mechanism is 
effectively the dominant. The heat transfer rates show a 
large increase for the highest obstacles height at 
Rayleigh number values higher than 104. 

Fig.7b illustrates ψmax for different Ra and obstacles 
height values. As seen, ψmax values increase with obs-
tacles height for a fixed Ra number. The effect of Ray-
leigh number on the intensification of the fluid circulation 
is evident in this figure, where as Rayleigh number is 
increased the ψmax value is analogously increased.  
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Figure 7. a )Average Nusselt number and b) Max stream 
function for different Rayleigh numbers, obstacles height 
and L = l = 1/2. 

4.3 Entropy generation 
 
Figure 8 reports entropy generation rate, Ns, contours 
inside an enclosure with two interior adiabatic bodies, 
with height  h = 1/4 at different Rayleigh numbers.  

 
  a)   b) 

 

  c)   d) 

Figure 8. Entropy generation rate for l = L = 1/2, h = 1/4 and 
a) Ra = 102, b) Ra = 103, c)Ra = 104 and d)Ra = 5·104. 

It is worth noting that, by increasing Ra number 
there is more vigorous mixing and hence there are 
severe temperature gradients at the top left corner and a 

high drop in its gradient next the right part of the 
enclosure ; which is proved by variations of the entropy 
generation rate (Fig. 8).  

It is observed that, for any arrangement of the 
partition, the active sites of entropy production are 
regions close to the left side of the adiabatic inside 
bodies where the highest flow movement and heat flux 
can be detected due to the presence of the heat source, 
i.e. the left heated wall.  

As it is seen, the entropy generation is higher at high 
temperature gradients. This is due to heat transfer 
irreversibility because large heat transfer is confined to 
these locations. It is clear from Fig.8 that for all cases of 
obstacles heights, entropy generation is mainly confined 
to the left side of the cavity and the adiabatic bodies, 
while, there is no entropy generation at the enclosure 
right side where there is no significant variation in the 
temperature.There is no great changes in the tempera-
ture profile in the cavity centreline going from Ra = 102 
to Ra = 103, while the entropy generation starts its 
increase in the left down part of the cavity due 
essentially to the beginning of the convection effect. 

 
4.4 Temperature profile 
 
In the goal to assessing the penetration depth ofthe 
temperature boundary layer formed on the left wall of 
the enclosure, the temperature distribution in the middle 
plane of the enclosure,  y=0.5, is shown in Figure 9. In 
particular, for every Rayleigh number studied, the 
temperature takes the unit value at the left of the middle 
plane of the enclosure and then decreases with 
increasing distances from the left wall for Rayleigh 
numbers till 104.  But, for high Ra number, Ra = 5·104, 
the temperature in the middle plane decreases to θmp,min 
then it increases until θmp,max, near the two adiabatic 
obstacles where it drops for the second time. These 
temperature variations inside the cavity are observed 
especially for the lowest height of the obstacles. 
Table 2. Asymptotic values of middle plane temperature at 
Ra = 5·104 and different h values. 

h 1/4 3/8 15/32 

θmp,min 0,4285 0,4062 0,3476 

θmp,max 0,4585 0,4322 0,4256 
 
As the opening, given by the two adiabatic 

obstacles, is big the temperature fronts penetrate from 
the left wall deeply inside the fluid body of the right 
part of the cavity. But, when this opening 
becomessmaller the temperature is affected by a sudden 
decrease-increase near the obstacles,which is translated 
by the no temperature's penetration to the right part of 
the enclosure until the highest Ra number; Ra = 104. 

In the case of the lowest obstacles height, there is no 
asymptotic value of the middle-plane temperature in the 
core region of the enclosure. In this case the temperature 
is in constant decrease with x  coordinates. The increase 
in the obstacles height causes a decrease in the 
asymptotic values of the middle-plane temperature in 
the core region, for high Rayleigh number where  the 
dominance of convective heat transfer (TABLE 2). 
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a) 

 
b) 

 
Figure 9. Temperature in the middle plane for different 
Rayleigh numbers and obstacles height a) h = 1/4, b) h = 3/ 
and c) h = 15/32. 

5. CONCLUSION 
 
In the present study, finite difference method is applied 
to simulate the natural convection fluid flow, heat 
transfer  and entropy generation of air inside a square 
cavity equipped with two adiabatic obstacles. The effect 
of the Rayleigh number, height and position of the two 
obstacles in the flow pattern, temperature field and the 
characteristics of heat transfer and entropy generation 
were investigated. As a result, the average Nusselt 
number is increased by the Rayleigh number increase 
for fixed obstacles height and by the inside bodies 
height decrease for constant Ra number. Furthermore, 
the high obstacles’ opening allows the penetration of 
heat inside the right part of the cavity, which is not 
permitted for the lowest one. Also, for small height of 
inside bodies the increase of Ra number creates two 
vortices in the main circulation inner and develops other 

eddies in the right side of the cavity for big heights. 
Finally, the entropy generation is higher at locations 
where there is higher temperature gradients, due to heat 
transfer irreversibility created by large confined heat 
transfer. 
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ПРЕНОС ТОПЛОТЕ И СТВАРАЊЕ 
ЕНТРОПИЈЕ ЗА ПРИРОДНУ КОНВЕКЦИЈУ 
ФЛУИДА АДИЈАБАТСКИМ ПРЕПРЕКАМА 
УНУТАР ШУПЉИНЕ ЗАГРЕЈАНЕ НА ЛЕВОЈ 

СТРАНИ ЗИДА 
 

Ј. Балити, М. Хсикоу, Ј. Елгенуни, А. Мусауи,  
М. Алауи 

 
Метода коначних разлика је коришћена за 

нумеричко истраживање проблема преноса топлоте и 
стварања ентропије за природну конвекцију флуида 
унутар правоугле шупљине у којој се налазе 
адијабатска тела. Израчунавања су вршена помоћу 
Рајлијевог броја 102 – 5 · 104 за две препреке разли-
чите висине. Резултати су приказани као струјнице, 
изотермне контуре и Нуселтов број за Прандтлов број 
0,71 (под претпоставком да је шупљина испуњена 
ваздухом). Показано је да постоји утицај одго-
варајућих параметара на струјање флуида, топлотно 
поље и пренос топлоте унутар шупљине. Брзина пре-
носа топлоте се повећава са смањењем димензија 
препреке и повећањем Рајлијевог броја. Стварање 
ентропије је веће на местима са већим температурним 
градијентом. Наши резултати се у потпуности слажу 
са резултатима приказаним у литератури. 

 


