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Wind energy has become a strong alternative to traditional sources of 
energy.  One important decision for an efficient wind farm is the optimal 
layout design. This layout governs the placement of turbines in a wind 
farm. The inherent complexity involved in this process results in the wind 
farm layout design problem to be a complex optimization problem. Particle 
Swarm Optimization (PSO) algorithm has been effectively used in many 
studies to solve the wind farm layout design problem. However, the impact 
of an important set of PSO parameters, namely, the acceleration 
coefficients, has not received due attention. Considering the importance of 
these parameters, this paper presents a preliminary analysis of PSO 
acceleration coefficients using the conventional and a modified variant of 
PSO when applied to wind farm layout design. Empirical results show that 
the acceleration coefficients do have an impact on the quality of final 
layout, resulting in better overall energy output. 
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1. INTRODUCTION  
 

Wind power has evolved as a promising energy source 
for sustainable development and a cost-effective alter-
native to fossil fuels for power generation. In addition, 
the perception of green and clean energy further 
promotes the utilization of wind energy at a commercial 
scale. These attractive factors have resulted in serious 
attention being given to wind energy in recent years. 
Consequently, a significant level of research and 
development has been observed in various sub-domains 
of wind energy. These sub-domains include sensors and 
instrumentation, design and characterization of wind 
turbines, assessment of wind energy potential, and the 
development of wind farms [1,2]. This paper deals with 
efficient design of wind farms. This efficient design 
demands optimal siting of wind turbines in a wind farm 
with considerations of several design objectives and 
constraints. 

Despite the availability of a number of commercial 
software tools for wind farm layout design, serious at-
tention has been paid by researchers to artificial intel-
ligence techniques for the purpose. One limitation of 
such commercial software is that, despite their sophis-
tication and ease of use, these software programs rely on 
human interactions in the form of an experienced and 
intelligent designer. Consequently, this could lead to 
layout designs that are not fully efficient [3]. Nature-
inspired algorithms (NIAs),which stem from the domain 
of artificial intelligence, have turned out to be effective 

approaches in solving a huge variety of complex 
optimization problems. It is due to the fact that NIAs 
require least level of human interaction and produce 
efficient solutions through their built-in intelligence.  

During the past recent years, various NIAs have been 
engineered to design wind farms in an optimal way [3-11]. 
These algorithms have proven efficient in generating the 
optimalor near-optimal wind farm layouts. The research 
has utilized various NIAs. In this regard, genetic algorithm 
(GA) has been the most utilized algorithm[12]. The genetic 
algorithm also gets the credit for being the first algorithm 
that was used in initial research works on wind farm design 
[12]. Until today, GA is being utilized in wind farm layout 
design problems [4,8,10,11,13,16,17]. Apart from GA, 
several other intelligent algorithms, such as simulated 
annealing [6,14,15], cuckoo search [3,7], imperialist 
competitive algorithm [9], differential evolution [16,17], 
and many others,have been employed for efficient layout 
design of a wind farm. Among these, particle swarm 
optimization (PSO) [18] has also found some interest by 
researchers working in the area of wind farm design 
[5,19,20-23], although the interest has been limited. This 
indicates that there is a potential in the PSO algorithm for 
more efficient wind farm layout designs, which could lead 
to improved energy outputs. The motivation for applying 
PSO to wind farm design is further strengthened due to the 
following facts. 
• PSO has been extensively and successfully applied 

to a number of complex optimization problems in a 
variety of disciplines [24].  

• PSO has fewer parameters to adjust, making the 
implementation of PSO relatively easier [25]. 

• PSO has an effective memory component since in 
PSO, each particle remembers its own previous best 
value as well as the neighborhood best [25]. 
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• PSO has higher efficiency in maintaining swarm 
diversity (i.e. diversity among solutions) [26]. 

• An important point to consider in any NIA is the 
algorithmic parameters. These parameters have a 
strong impact on the search capabilities of an NIA, 
leading to efficient solutions. Therefore, it is nece-
ssary to tune these parameters. In the context of PSO, 
acceleration coefficients, which are associated with 
the cognitive and social components of the algo-
rithm, play an important role in efficient search [27].     

• While the application of PSO in this study is on 
square shaped wind farm layout design, the algo-
rithm can be applied to other shapes such as circular, 
rectangular, or even irregular. This can be done by 
making necessary changes to the problem model 
which can effectively be incorporated within the 
PSO algorithm. This makes PSO a robust algorithm. 

• The versatility of the PSO algorithm is further 
amplified by the fact that the algorithm can be easily 
adapted to handle various layout design approaches. 
For example, the current study considers fixed 
number of turbines to be placed within a given 
layout. However, the algorithm can be effectively 
used to decide the optimal number of turbines 
provided that an appropriate problem model is used.    

Keeping in view the aforementioned reasons, this 
paper has two major contributions. The first is a 
preliminary analysis of the acceleration coefficients of 
the PSO algorithm, and its impact on the quality of 
solutions produced. The second contribution is a 
comparative analysis of the conventional PSO and  
modified PSO (MPSO) algorithm proposed by Rehman 
and Ali [23] in the context of wind farm layout design 
problem. The main idea behind MPSO is to utilize seed 
solutions generated by heuristics to improve the 
algorithm’s performance which would eventually result 
in better overall energy output.  

The rest of the paper is organized as follows. Section 
2 describes the wake and cost models used in this study. 
This is followed by a discussion on particle swarm 
optimization algorithm in Section 3. Section 4 provides 
the results and discussion. The paper concludes with 
Section 5. 

 
2. WAKE AND COST MODELING 

 
A variant of Jensen model has been used. It is motivated 
by the fact that the Jensen model has been employed in 
several old and recent studies for wake modeling [28-32]. 
The grid is divided into a 10 × 10 spacing, resulting in 
100 possible turbine locations, or cells as shown in Figure 
1. A turbine is  placed at the center of each cell, where a 
cell has an area of 5D × 5D, with D representing the rotor 
diameter. In this study, homogeneous turbine types with 
rotor diameter of 40 m are assumed. This defines the cell 
size to be 200m × 200m. A hub directly facing the wind 
direction is not affected by any wake, which makes the 
wind speed unaffected. To calculate the wake, generated 
power, and optimization objectives, equations have been 
adopted from Mosetti et al. [28]. These equations (Eqs. 
(2.1) to (2.12) are presented below for the sake of clarity 
and comprehensiveness of the paper. For more details on 

the wake and power efficiency model, readers can refer to 
Mosetti et al. [28]. 
 
 
 
 
 

 
Figure 1.  Wind farm layout divided into 10 x 10 grid with 
100 cells. The cell number is mentioned in each cell 
location.  

According to model of Mosetti et al. [12], we have: 
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Subjecting the turbine to only one wake affects the 
wind speed as follows: 
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However, subjecting a turbine to multiple wakes 

determines the wind speed as follows: 
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The radius rdo of the downstream wake immediately 
after a turbine is calculated using 
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The following equation is used to calculate the 
radius rd1 of the wake at a distance xij downstream of any 
wind turbine 

1 0  d ij dr x rα= +   (5) 

     Direction of Wind 
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The relationship between axial induction factor and 
thrust coefficient is given by 

( ) 4 1tC a a= −    (6) 

The thrust coefficient is normally known for the 
system. Therefore, the axial induction factor a can be 
calculated instead of Ct. The solution of Eq. (6) gives 
two values of a. The value which gives a real number 
for rd0 in Eq. (4) is selected. 

Finally, the entrainment factor α is found out using: 
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If N turbines are placed in the grid, the cost is 
calculated using the following equation [28] 
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Total power generated by N turbines under multiple 
wakes is calculated as follows 

3
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Total power generated by N turbines without any 
wake is calculated as follows 
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The efficiency of the wind power generation is 
calculated as follows 

Efficiency = Paxtual/Pideal  (11) 

Given the above, the wind farm layout design 
problem can be considered as the wind turbine 
placement problem where the objective is to minimize 
the total cost versus total power generated for N number 
of turbines. Therefore, the objective of this optimization 
problem can be stated as given in Eq. (2.12) below: 

min
actual

CostObjective
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3. PARTICLE SWARM OPTIMIZATION ALGORITHMS 

FOR WIND FARM LAYOUT DESIGN 
 
This section presents the PSO algorithms for designing 
the wind farm layout. The first approach is adaptation of 
the basic PSO algorithm with random initial placement of 
the given number of turbines in the 10×10 grid positions, 
while the second approach was proposed by Rehman and 
Ali [23] that incorporates heuristic based initial place-
ment of the given number of turbines in the 10×10 grid 
positions. The search space for PSO is a grid of 10×10. 
Each location in the grid represents a possible position for 
placement of a wind turbine (i.e., initially either randomly 
or using heuristic to place the turbine which later move to 
different places as guided by the algorithms). Two 
important parameters in the PSO algorithm are the 
acceleration coefficients which are used for exploration 

and exploitation to control the overall search process. The 
PSO algorithm performs an evolutionary search to 
minimize the objective function by placing wind turbines 
at different positions of the grid as guided by the 
algorithm for a particular set of operating parameters. 
 
3.1 Basic Particle Swarm Optimization Algorithm 
 
Particle swarm optimization is a swarm intelligence 
based algorithm used to solve optimization problems. 
The algorithm was proposed by Kennedy and Eberhart 
[18] and uses the physical movements of individuals 
(called particles) in the swarm. These movements are 
governed by a mechanism so as to control and enhance 
the global and local exploration abilities. The strength 
of PSO lies in its simple design since the algorithm does 
not require mathematical computations like derivatives 
or complex encodings. The algorithm maintains historic 
best position (i.e. the best solution) of each particle. In 
addition, the global best solution of the population is 
also maintained.  Due  to these features, the algorithm is 
less sensitive to getting trapped in local minima 
compared to many other optimization algorithms. 

PSO operates on a set of particles which are ran-
domly initialized in the solution space. Each particle in 
its current position represents a solution. The perfor-
mance of a particle is evaluated by an objective (fitness) 
function which is problem specific. The velocity, vj, of 
particle j corresponds to change in the position of the 
particle. The direction of movement of each particle is 
governed by its individual flying history as well as the 
overall swarm experiences. Each particle defines its 
movement towards a new solution on the basis of its 
own previous best position and previous best position of 
the whole swarm, represented by pj and pg, respectively 
[13]. The velocities and positions of particles are up-
dated according to the following equations 
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( ) ( ) ( )1  1j j js t s t v t+ = + +   (14) 

where t represents the previous iteration and t+1 refers 
to the current iteration, respectively. cj and cg are the 
acceleration coefficients associated with the particle’s 
own best position and the best positions of any particle 
in the whole swarm, respectively. The purpose of cj and 
cg is to allow the particle to cover the maximum 
distance in a single iteration. randj and randg refer to 
two random numbers between 0 and 1, both inclusive, 
associated with the best solution of a particular particle 
and the best solution of the whole swarm. The value of 
the objective function is computed using particles 
placed in new positions at iteration t+1. Eqs. (3.1) and 
(3.2) are repeatedly used to calculate the new position 
and new velocity until the stopping condition is met.  
The best solution found by the whole swarm is recorded 
when the pre-defined stopping criterion is reached. 
 
3.2 Impact of Acceleration Coefficients 
 
Since the focus of this study is on carrying out a preli-
minary investigation on the impact of the acceleration 
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coefficients, some discussion on this aspect is deemed 
necessary. The acceleration coefficients play an impor-
tant role in governing the particle’s search in the 
solution space and the convergence ability of PSO. The 
coefficientscj and cg are associated with the cognitive 
and social components respectively. 

If cj = cg, particles are attracted towards the average of 
pj  and pg. Most applications use cj = cg, but the ratio 
between these constants is problem dependent [29]. With 
cj>>cg, each particle is much more attracted to its own 
personal best position which results in excessive 
wandering in the search space [29]. However, if cg>>cj 
particles aremore strongly attracted to the global best 
position, which results in premature convergence to op-
tima [29]. Furthermore, low values for cj and cg  result in 
smooth particle trajectorieswherein particles roam far 
from good regions to explore before being pulled back 
towards good regions [29]. In contrast, high values of 
acceleration coefficients result in more acceleration, with 
sudden movement towards or past good regions [29]. 
 
3.3 Solution Structure 

 
A particle in PSO represents a potential solution (a 
layout). This solution is represented as a binary matrix 
with 100 possible positions (representing a 10 × 10 grid 
as shown in Figure 1). In terms of programming imple-
mentation, this grid is treated as a one-dimensional array, 
where each element in the array corresponds to a cell in 
the grid. A ‘1’ in a specific position shows presence of a 
turbine while a ‘0’ indicates absence of a turbine. Dif-
ferent configurations of this matrix represent different so-
lutions. An example of this solution structure is shown in 
Figure 2. In this figure, turbines are present in cells 1, 4, 
and 100 (among other turbines present at other locations 
not shown); while turbines are absent at locations 2, 3, 
and 5, (and many others not depicted in the figure). 
 

Cell #  1  2  3  4  5  ….  100 
Turbine  1  0  0  1  0  ….  1 

Figure 2.  Example of solution structure 
 
3.4 Initialization for Basic Particle Swarm Optimi-

zation Algorithm 
 

Since PSO is a population-based algorithm, a number of 
candidate solutions (seed solutions) are generated 
randomly in the initialization phase. During this phase, 
problem specific constraints are checked to ensure that 
only feasible solutions are generated. An example of a 
constratint could be the number of turbines defined by 
the designer. For example, if the designer defines that 
20 turbines should be present in any configuration, then 
in the initialization phase, all configurations (particles) 
which result in less than or more than 20 tubrines would 
be rejected. The process of generating feasible solutions 
continues until the number of solutions reaches the 
population size defined by the designer. The fitness of 
each solution is evaluated using Eq. (12) 

 
3.5 Constraint Handling 

 
During initialization as well as position update phases of 
the PSO algorithm, newly generated/ modified solutions 

are checked for constraint satisfaction. More speci-
fically, for the test scenarios considered in this study, 
the number of turbines are defined and fixed for each 
test case. If a new (or modified) configuration results in 
more or less number of turbines than defined, the 
modifed solution is not accepted and the immediate 
previous solution is restored.  

 
3.6 Solution Perturbations 

 
During a single iteration, each solution is perturbed 
through the velocity and position update using Eq. (13) 
and Eq. (14) respectively. A perturbation operation in-
terchanges ‘1’s with ‘0’s and vice versa in various 
positions. The positions which require perturbations are 
selected through Eq. (13). These perturbations could be 
done anywhere in the layout, while ensuring that the 
constraint is not violated. Once these perturbations are 
done, a new solution (i.e., a new layout configuration) is 
formed according to Eq. (14). Each solution is then eva-
luated based on the fitness function given in Eq. (12). 
 
3.7 Modified Particle Swarm Optimization Algorithm 

 
The MPSO algorithm [23] evolved from the basic PSO 
algorithm.  Unlike the basic PSO algorithm, which may 
start with a set of random initial solutions, the MPSO 
algorithm uses seed solutions which allow the algorithm 
to converge faster to an optimal solution. Seed solutions 
are pre-defined initial feasible solutions that are used by 
an optimization algorithm. Their purpose is to assist the 
algorithm in reaching the optimal solution in less 
amount of time as compared to random initial solution. 
Seed solutions are problem specific and are carefully 
constructed.  

In the context of wind farm layout design problem, 
the MPSO algorithm uses two types of seed solutions.   
In the first type, turbines are placed in specific confi-
guration. This seed solution is effective for situations if 
the prevailing wind is at 0o with the turbine. The second 
type of seed solution is a modification of the first seed 
solution and is obtained by random shuffle of rows and 
columns in the first seed solution. These two types of 
seed solutions are used alongwith random initial solu-
tions. That is, in the initial population, some solutions 
are generated randomly while others are generated using 
the two types of seed solutions. Specific details of the 
two seed solutions as well as the modified PSO can be 
found in [23].  

 
4. RESULTS AND DISCUSSIONS 

 
Simulations were performed and empirical results were 
generated for the basic and modified PSO algorithms. A 
swarm size of 10 was assumed, which means that the 
algorithms maintain 10 solutions in each iteration. Both 
PSO and MPSO algorithms were run for 30 minutes for 
Scenarios A and B, and for 50 minutes for Scenario C 
(see details below). The reason for using runtime is that 
the PSO and MPSO algorithms have a different 
structure, and therefore it is not fair to compare the two 
algorithms in terms of number of iterations. The 
comparison using runtime has also been advocated in 
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similar studies [24,33]. These runtimes were set after 
experimentation with different timing values. Note that 
our intention is not to study the optimal convergence of 
both basic and modified PSO algorithms, but to inves-
tigate their mutual relative performance. Therefore, at 
the end of allocated runtimes for the different scenarios, 
the quality of solution obtained by both PSO variants 
were mutually compared. 

In accordance with the standard practice for ana-
lyzing results of iterative heuristics (such as PSO), 30 
independent runs were made for each algorithm setup, 
and average of these 30 runs were reported. Two sets of 
experiments were done. The first set of experiments 
investigated the effect of acceleration coefficients on 
basic and modified PSOs to find out whether the search 
is influenced by particle’s own positions, swarm’s 
positions, or both. In the second set, a preliminary 
comparison between basic PSO and modified PSO was 
done. The results measured three aspects: fitness of 
solution (calculated using Eq. (12)), yearly power 
output, and efficiency of the wind farm with the 
obtained configuration. Three test scenarios were assu-
med which have been used in many previous studies 
[28,30,35,36]. For the sake of completeness, these 
scenarios are summarized below. Furthermore, only one 
wind turbine type has been considered with hub height 
of 60 m, turbine diameter of 40 m, and a thrust 
coefficient equal to Ct=0.88 which was kept constant for 
the wind speeds considered. Roughness is Zo = 0.3 
m.These parameters have been used in previous studies 
[28,30,37]. Furthermore, the power curve was adopted 
from the study of Mosetti et al. [28] which assumed 
variable power values at different speeds below 12 m/s, 
and became constant for wind speeds over 12 m/s. 
 
Scenario A 

In this scenario, a turbine is placed at the center of 
the cell. The cell is assumed to have dimensions of 
5D×5D in the grid. Wind is assumed to be uni-
directional with fixed speed of 12 m/s. Due to cell width 
of 5D with wind prevailing at an angle of 0o, there is no 
wake effect between grids in different columns. How-
ever, if turbines are places in the same column, then a 
turbine gets affected by the wake created by a turbine 
ahead of it in the same column. For evaluating this 
scenario, the number of turbines used were 26 and 30 
turbines. These numbers were adopted from previous 
studies [3,23,28,30].  
 
Scenario B 

In this scenario, the wind is assumed to be coming 
from all the directions with equal probability, with mean 
wind speed of 12 m/s. For simplified calculations, wind 
directions are divided into 36 equal intervals with 
difference of 10 degrees (i.e., 0o, 10o, 20o, …, 350o). It is 
implicitly assumed that each turbine is capable of rota-
ting in the direction of the prevailing wind. The turbines 
facing wakes from preceding turbines receive down-
stream wind speeds according to Eqs. (2.2) and (2.3) for 
single and multiple wakes, respectively. It should also 
be noted that since the wind may be approaching from 
all directions, it is essential to determine the wake 

effects geometrically on the turbines downstream. For 
testing, the number of turbines considered in this 
scenario were 19 and 39 turbines, same as used in some 
previous studies [3,23,28,30].  

 
Scenario C 

This scenario assumes that wind is coming from all 
directions with equal probability but with varying mean 
wind speeds of 8, 12, and 17 m/s. All other assumptions 
are exactly the same as in scenario B. The main 
difference between this scenario and scenario B is the 
varying  wind speed. The complexity of scenario C is 
higher than scenario B since the probability of having 
wind direction may be different for different mean wind 
speeds. The number of turbines used in this scenario for 
testing is 15 and 39 turbines, which were adopted from 
some previous studies [3,23,28,30].  

 
4.1 Effect of acceleration coefficients on basic PSO 

and modified PSO 
 
As mentioned earlier in Section 3.2, the acceleration 
coefficients govern the search of the PSO towards the 
particle’s own previous best position as well as the best 
position found by any particle in the whole swarm. The 
impact of unequal and equal values of the acceleration 
coefficients was also discussed earlier. Keeping that 
discussion in view, a sensitivity analysis of acceleration 
coefficients was performed with four different 
combinations ofcj and cg. The values ranged between 2 
and 4 for both cjand cg.These combinations were cj = 
4and cg = 2, cj = 2and cg = 4, cj = cg = 2, and cj = cg = 4.  

Tables 1 and 2 show the results for scenario A 
considering 26 and 30 turbines respectively. Note that 
the results for both PSO and MPSO were the same, 
since scenario A is a very simple scenario. Accordingly, 
the results obtained for PSO and MPSO were same, 
since both were able to reach the same quality of 
solutions. It is observed from Table 1 that with 26 
turbines, the best results were obtained while both 
acceleration coefficients were having a high and same 
value, i.e. 4.  On the other hand, the situation changed in 
Table 2 when the turbines were increased to 30, in 
which case the best results were obtained when the 
acceleration coefficient associated with the swarm 
behavior was stronger than the acceleration coefficient 
of individual behavior. 

Table 3 shows the results for different acceleration 
coefficients for PSO and MPSO while considering 
scenario B with 19 turbines. It is observed from the 
table that basic PSO obtained best results when both 
acceleration coefficients are having equal and high 
values. For MPSO, the best results were obtained when 
the coefficient for individual behavior is stronger than 
the coefficient associated with swarm behavior. 
However, results are quite different when the number of 
turbines is changed to 39 for the same test scenario, as 
depicted in Table 4. In this table, it is observed that as 
far as PSO is concerned, the best results were obtained 
when the swarm behavior was dominant over individual 
behavior, as displayed by the values of cj = 2and cg = 4. 
On the other hand, when MPSO was evaluated for the 
same test scenario and number of turbines, the best 
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results were obtained when the two acceleration 
coefficients were the same, and high, as shown with the 
values of cj =  cg = 4. 
Table 1. Results for different acceleration coefficients for 
basic PSO/MPSO with 26 Turbines and scenario A. Best 
results are shown in boldface. 

cj cg 
Fitness 
value 

Total 
kw/year 

Efficiency 
(%) 

4 2 0.001704 11743.87 87.131 
2 4 0.001704 11743.1 87.125 
2 2 0.001713 11680.11 86.658 
4 4 0.001685 11872.87 88.088 

Table 2. Results for different acceleration coefficients for 
basic PSO/MPSO with 30 Turbines and scenario A. Best 
results are shown in boldface. 

cj cg 
Fitness 
value 

Total 
kw/year 

Efficiency 
(%) 

4 2 0.001689 13078.63 84.096 
2 4 0.001655 13346.14 85.816 
2 2 0.001672 13209.67 84.939 
4 4 0.001679 13153.35 84.577 

 
As far as scenario C is concerned, Tables 5 and 6 

shows the results for basic PSO and MPSO while 
considering 15 and 30 turbines, respectively. As shown 
in Table 5, PSO was able to find the best solutions when 
cj = 2and cg = 4, whereas for MPSO, best results were 
obtained when cj = 4and cg = 2. As for 39 turbines, 
Table 6 shows that the situation was the same as far as 
PSO is concerned, since PSO was able to find the best 
results again with values of cj = 2and cg = 4. However, 
the situation for MPSO changed with regard to the 
values of acceleration coefficients. MPSO obtained best 
results when cj = cg = 4.   
Table 3. Results for different acceleration coefficients for 
basic PSO and MPSO with 19 Turbines and scenario B. 
Best results are shown in boldface. AC = Acceleration 
Coefficients. Eff = Efficiency. 

A C   PSO     MPSO   
Fitness  Eff. 

cj cg Value 

Total  
kw/ 
year (%) 

Fitness 
Value 

Total  
kw/ 
year 

Eff. 
(%)  

4 2 0.001725 9303.94 94.46 0.00172 9334.1 94.766
2 4 0.001725 9301.68 94.437 0.00172 9315.82 94.581
2 2 0.00172 9329.93 94.724 0.00172 9313.36 94.556
4 4 0.001718 9338.03 94.806 0.00173 9299.37 94.414

Table 4. Results for different acceleration coefficients for 
basic PSO and MPSO with 39 Turbines and scenario B. 
Best results are shown in boldface. AC = Acceleration 
Coefficients, Eff = Efficiency.  

AC   PSO     MPSO   
Fitness  Eff.  

cj cg Value 

Total  
kw/ 
year (%) 

Fitness 
Value 

Total  
kw/ 
year 

Eff. 
(%)  

4 2 0.001526 17641.1 87.256 0.00152 17697.8 87.536 
2 4 0.001522 17688.2 87.489 0.00152 17708.8 87.591 
2 2 0.001529 17612.3 87.114 0.00152 17731.5 87.703 
4 4 0.001535 17543 86.771 0.00152 17737 87.73 

 
From the results in Tables 1 to 6, certain interesting 

observations can be made about basic PSO and MPSO. 
As far as basic PSO is concerned, results in Tables 1 to 
6 indicated that basic PSO was able to find the best 
results when the acceleration coefficient was always 

equal to its maximum value, that is, when cg = 4. 
Another pattern for basic PSO was that a value of cj= 
2was associated with the majority of cases, with two 
exceptions. These exceptions were scenario A with 26 
turbines, and scenario B with 19 turbines, where cj= 4 
was also associated with best results. These obser-
vations, when put together, indicate that the better per-
formance of basic PSO was more influenced by the 
positions of the best particle in the whole swarm, rather 
than the individual positions of a particle. 
Table 5. Results for different acceleration coefficients for 
basic PSO and MPSO with 15 Turbines and scenario C. 
Best results are shown in boldface. AC = Acceleration 
Coefficients, Eff = Efficiency.  

AC   PSO     MPSO   
Fitness  Eff.  cj cg Value 

Total  
kw/ year (%) 

Fitness 
Value 

Total  
kw/ year

Eff. 
(%)  

4 2 0.000916 14605.2 96.53 0.00091 14700.1 97.155
2 4 0.000906 14774 97.644 0.00091 14673.2 96.978
2 2 0.000916 14611.3 96.569 0.00092 14629.9 96.691
4 4 0.000914 14636.3 96.734 0.00091 14648.4 96.814

Table 6. Results for different acceleration coefficients for 
basic PSO and MPSO with 39 Turbines and scenario C. 
Best results are shown in boldface. AC = Acceleration 
Coefficients, Eff = Efficiency.  

AC   PSO     MPSO   
Fitness Eff.  cj cg Value 

Total  
kw/ year (%) 

Fitness 
Value 

Total  
kw/ year

Eff. 
(%)  

4 2 0.000783 34378.11 87.389 0.000776 34714.76 88.244
2 4 0.000779 34578.70 87.899 0.000777 34664.56 88.117
2 2 0.000788 34151.90 86.814 0.000783 34403.72 87.454
4 4 0.000784 34337.90 87.285 0.000773 34826.53 88.529

 
On the other hand, the results for MPSO indicate 

quite different patterns as compared to basic PSO. For 
majority of cases, MPSO was able to find the best 
results when cj = 4, with the exception of one case 
(scenario A, 30 turbines) where cj = 2was associated 
with the best results. Moreover, with most of the cases, 
values of cg = 4 were also associated with the best 
results, with the exception of two cases (scenario B with 
19 turbines and scenario C with 15 turbines) where cg = 
2 was associated with the best results. Therefore, it can 
be fairly claimed that the results of MPSO were 
influenced by both the individual positions of particles 
as well as the positions of the best particle in the whole 
swarm, although the results are more inclined towards 
the individual behavior.     

 
4.2 Comparison of basic PSO and modified PSO 
 
A preliminary comparison of basic and modified PSO 
was also performed. The focus was on search pattern of 
the two algorithms with respect to the different 
scenarios. As mentioned in the previous section, both 
PSO and MPSO produced the same results for scenario 
A. Therefore, search pattern of this scenario was not 
analyzed. Figure 3 shows the typical search patterns for 
scenarios B and C with different number of turbines. 
For scenarios B, both PSO and MPSO were run for the 
same amount of time (30 minutes) and search patterns 
were recorded. In Figures 3(a) and 3(b), the search 
patterns of PSO and MPSO are shown for 19 and 30 
turbines respectively, while considering scenario B. 
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Figure 3(a) indicates that both PSO and MPSO were 
able to achieve the same fitness value, while in Figure 
3(b), MPSO showed a much lower fitness value (note 
that the objective is to minimize the fitness value).   

As far as scenario C is concerned, Figures 3(c) and 
3(d) depict the search patterns for 15 and 39 turbines, 
respectively, for both PSO and MPSO. Figure 3(c) 
indicates that PSO was able to achieve better (lower) 
fitness values than MPSO. However, for 39 turbines, the 
graphs in Figure 3(d) suggest that MPSO performed a 
more efficient search, resulting in lower fitness values.  

From the above discussion, the overall trend appears to 
be in favor of MPSO. In two out of four cases, MPSO was 
better than PSO, and equal to PSO in one case. There was 
one case in which PSO was able to achieve better perfor-
mance. Thus, it can be fairly claimed that MPSO showed a 
relatively better performance than PSO. However, as 
mentioned earlier in this section, the results are preliminary 
and further investigation is required in this regard. 

 
5. CONCLUSIONS 

 
Wind farm layout design has been classified as a 
complex optimization problem. The problem involves 
designing an optimal layout for a given wind farm 
considering design objectives and technical constraints. 
Due to the complexity of the problem, algorithms of 
linear or polynomial complexity cannot guarantee opti-
mal or even feasible solutions. This motivates the use of 
nature-inspired iterative heuristics since these algo-
rithms have proven to very effective in solving complex 
optimization problems. To solve the wind farm layout 
optimization problem, this paper presented the appli-
cation of basic and modified particle swarm optimiza-
tion algorithms, with specific emphasis on the effect of 
an important algorithmic parameter, namely, accele-
ration coefficients. It was observed that, in general, the 
values of acceleration coefficients have an impact on the 
quality of solutions produced by both basic PSO and 
modified PSO. Furthermore, preliminary comparison 
between basic PSO and modified PSO suggests that 
MPSO produced slightly better results. 

Our future research will be focused on an in-depth 
study of acceleration coefficients, in addition to the 
study of other PSO parameters. We also intend to 
propose more variants of the PSO algorithm, and to 
compare with other algorithms, in the context of wind 
farm layout design problem.  

 
Figure 3(a). Progression of fitness versus runtime (in 
minutes) for PSO and MPSO with Scenario B, 19 turbines 

 
Figure 3(b). Progression of fitness versus runtime (in 
minutes) for PSO and MPSO with Scenario B, 30 turbines 

 
Figure 3(c). Progression of fitness versus runtime (in 
minutes) for PSO and MPSO with Scenario C, 15 turbines 

 
Figure 3(d). Progression of fitness versus runtime (in 
minutes) for PSO and MPSO with Scenario C, 39 turbines 
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NOMENCLATURE  

a  Axial induction factor 
z0  Surface roughness 
u0  Mean wind speed 
Z  Hub height 
Ct  Thrust coefficient 
xij  Distance downstream from turbine j to turbi-

ne i (i.e., distance between the current turbi-
ne and the turbine creating wake effect on it) 

ui  Wind speed downstream under multiple 
wakes 

N  Total number of turbines 
mi  Set of all turbines creating wake effect on 

turbine i 
rd0  Wake radius immediately downstream of 

the wind turbine 
rdl 

 
D 
Pactual 
Pideal 
vj(t+1) 
vj(t) 
cj 
 

 Wake radius at distance  x  downstream of 
the wind turbine 
Rotor diameter 
Total power generated by turbines 
Ideal power generated by turbines 
Updated velocity of jth particle 
Updated velocity of jth particle 
Acceleration coefficient for jthparticle best 
position 

cg 
 
randj 
randg 
Sj(t) 
pj 
pg 

Acceleration coefficient for best position of 
any particle in swarm 
Random number 
Random number 
Current position of particle j at time t 
Previous best position of jth particle 
Previous best position of the swarm 

Greek symbols  

α Entrainment factor 

Abbreviations and Acronyms 

NIA  Nature-inspired algorithm 
GA  Genetic algorithm 
PSO  Particle swarm optimization 
MPSO  Modified particle swarm optimization 
 

 
ЕФЕКАТ КОЕФИЦИЈЕНАТА УБРЗАЊА КОД 

АЛГОРИТМА ОПТИМИЗАЦИЈЕ РОЈА 
ЧЕСТИЦА КОРИШЋЕНОГ У ПРОЈЕКТО-
ВАЊУ РАСПОРЕДА ВЕТРОГЕНЕРАТОРА 

 
Ш. Рехман, А.А. Кан, Л.М. Алхемс 

 
Енергија ветра је постала атернатива класичним 
изворима енергије. Ефикасност ветропарка се базира 
на доношењу једне важне одлуке, а то је израда 
оптималног распореда ветрогенератора. Распоред 
одређује локацију турбине у ветропарку. Сложеност 
процеса намеће проблем пројектовања распореда 
ветротурбина, што представља сложен проблем опти-
мизације. ПСО алгоритам је коришћен у бројним 
студијама за решавање проблема распореда ветроге-
нератора. Међутим, није посвећена адекватна пажња 
групи ПСО параметара, тј. коефицијентима убрзања. 
С озиром на значај ових коефицијената у раду је 
извршена прелиминарна анализа коефицијената 
убрзања коришћењем конвенционалне и модифи-
коване варијанте ПСО алгоритма у примени код 
пројектовања распореда ветрогенератора. Емпириј-
ски резултати показују да коефицијенти убрзања 
имају утицаја на квалитет финалног распореда, чиме 
се постиже већа укупна излазна енергија.  

 


