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INTRODUCTION

Python inspired Artificial Neural
Networks Modeling in Drilling of
Glass-Hemp-Flax Fiber Composites

As composites are materials whose properties can essentially be
customized to suit the necessities of the engineering application on hand,
they are being widely used in many applications for radically different
purposes. In order to ensure quality in production process of composite
products, a solid understanding of the process involved during its
manufacturing is essential to ensure the product is free from both internal
and external defects. To that aim, a study was conducted to model Thrust
force and Torque on drilling of Glass-Hemp-Flax reinforced polymer
composite by fabricating and maching the composite as per Taguchi’s L,;
Orthogonal Array. The process parameters considered for modeling are
drill diameter, spindle speed and feed rate. Using the process control
parameters as inputs and thrust force and torque to be predicted as
outputs, artificial neural networks (ANNs) were created to model the
effects of the inputs and their interactions. The predictions obtained from
the neural networks were compared with the values obtained from
experimentation. Excellent agreement was found between the two sets of
values, establishing grounds for more extensive use of neural networks in
modelling of machining parameters.

Keywords: Drilling of Hybrid Fiber Composites;, Thrust Force; Torque;
Artificial Neural Network; Python

Machining is the core for any manufacturing industry.
With the ever-growing use of composite materials for
various engineering applications due to economic
viability and configurable material properties, the
analysis of the effects of machining on composite
samples has quickly risen to being one among the most
important tasks to be carried out, in order to better
understand these materials and the effects of various
machining parameters on their material properties [1-6].
Excessive thrust forces, heat generated, twisting torque
etc. have been shown to cause cracking and delami-
nation in composites [7, 8].

Some of the popularly used composite materials are
Glass Fiber Reinforced Polymers (GFRP), Carbon Fiber
Reinforced Polymers (CFRP), Aramid Fibers, etc. are
mostly synthetic. To dispose of them, they have to be
either incinerated or put into landfills, which makes
them a hazard to the environment. For this reason, Hyb-
rid Fiber Composites have gained importance and pre-
ference as they consist of natural fibers like flax, jute,
hemp, oil palm, sisal, kenaf, etc. These are cellulosic
fibers, which provide enhanced mechanical properties at
a low cost to HFCs [1]. HFCs are also superior to
conventional composite materials in that they exhibit
heightened damping and thermal properties, especially
with reference to single-fiber type composites.
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Considering the various industries where composites
are used, analysing their behaviour during machining is
essential. Composites are used in industries which
include application of fatigue loads, creeps causing
loads, thermal loads, mechanical loads and so on. The
typical machining operations involved in the fabrication
of composite components deal with tampering with the
composite matrix partially, completely or only up to the
surface. If machining is done without proper conside-
ration of the process parameters, it could lead to failures
like delamination, crack generation, crack propagation,
etc. For this reason, researchers have extensively
studied the machining parameters.

Nagarajan et al. have considered spindle speed and
feed rate as the parameters of the composite drilling
process based on which they modelled a fuzzy inference
system using MATLAB, to predict values and have
found that their sub-routines have provided excellent
correlation [9]. Palanikumar et al. and Davim et al. have
identified that the feed rate of the drill bit into the
specimen considerable influence in the variation of
thrust force [10, 11].

For this research, feed rate, drill bit diameter, and
spindle speed of drilling are considered to train the
model. The models are considered based on the works
done by Nagarajan et al. and Latha et al [3, 9]. An
experimental procedure for drilling the HFC sample is
designed and deployed, and the thrust force and torque
various cases is recorded. After this, a computer-based
predictive model using artificial neural networks
(ANNSs) is created using Python to predict the thrust
force and torque using the machining parameters consi-
dered above as the inputs. The experimental values were
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provided as inputs to these computational Artificial
Neural Networks, which were used to learn the
parameters and assign weightages to each parameter for
modelling the thrust force and torque. Good agreement
is observed between empirical and model-predicted
values, thus establishing grounds for using ANN
modelling in predicting machining process parameters.

2. EXPERIMENTATION AND MODELLING

2.1 Fabrication of composite and conduction of
drilling test

The hybrid fiber composite consisted of:

1. Epoxy Resin (Araldehyde LY 556), IUPAC
Name - Bisphenol-A-di glycidyl ether

2. Hardener (Araldite) - HY 951, IUPAC name -
NNO-bis (2-aminoethyl ethane-1,2 diamine)

3. Fiber layers (Glass fiber {GF} - 2, Flax
fiber{F} - 3, Hemp fiber {HF}- 2)

4. Gel coat - liquidity epoxy resin

5. Releasing agent

—

The composite was fabricated using the Hand-Layup
Process (figure 1) due to economic constraints and low
primary investment.

Figure 1. Hand lay-up process and the resulting composite
sample

The arrangement of reinforcements was F-HF-GF-
F-GF-HF-F. The individual layer thicknesses were 0.2
mm [Glass Fiber], 0.35 mm [Flax Fiber] and 0.6 mm
[Hemp Fiber], taking the total final composite thickness
to 12 mm. The hand roller was used to ensure the
prevention of formation of air bubbles. After the hand
rolling procedure was done, the composite was cured
for 24 hrs at room temperature. The drilling operations
were carried out using a BMV 40 T20 drilling machine,
which has a maximum spindle speed of 6000 rpm.
Figure 2 shows the experimental setup used to carry out
the procedure.

Figure 2. Results of drilling procedure with different
parameters

The control parameters used are shown in table 1.
The thrust force and torque produced by drilling
were measured using a Kistler 3 Quartz 3-Component

Piezo-Electric 9257B. The 3 drill bits used were made
of solid carbide, as shown in figure 3. They were 8-
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facet, 4 faced drill bits with 2 cutting edges each, having
2-point angles of 90° and 180°.

Table 1. Input Parameters and Values Considered

Levels
S.No Parameters
1 1T 111

1. Spindle Speed 500 1000 1500
(rpm)

2. Feed Rate 60 120 180
(mm/min)

3. Drill Diameter 4 6 8
(mm)

Figure 3. Drill bits of different diameters used for
experimentation

Considering all the 3 parameters and all the 3 values
of each parameter taken, it makes the total number of
experiments 3 @ 3 @ 3 = 27. 3 trials were made for each
experiment, making the total number of experiments
that were carried out to 81. A Taguchi L,; orthogonal
array (3 controlling factors) was used for design of
experiments [20]. The thrust force and torque for each
individual trial for a set of parameters were computed
and the average of the 3 values were considered as the
value for each set of parameters.

2.2 Construction of Predictive Artificial Neural
Networks

Modelling of machining parameters with neural
networks has been widely studied and documented for
various materials being operated upon with different
machining processes [12-14, 16]. Neural networks
present a novel method of modelling, by automatically
formulating relationships between input and output
parameters through an algorithm involving error
minimization and self-correction. In most cases, neural
network modelling has produced satisfactory results and
has since established grounds for use in different
machining processes. Considering these factors, neural
networks were chosen for modelling purposes in this
work.

An Artificial Neural Network System consists of an
input layer, at least one hidden layer and an output layer.
Each layer consists of a collection of ‘neurons’, each of
which interacts with all neurons of the previous layer and
those of the next layer through a collection of weightages
assigned to each possible linkage. Data about collections
of inputs with known values of outputs are used to train
the model, which entails assigning and fine-tuning the
weights and biases used in it. This is done through
various methods, the one used in this work being the
back-propagation method. The point of the process is to
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optimize the weights and biases such that the output
prediction made by the model is as close to the true value
of the data as possible. For this purpose, the mode of
operation of this optimization is the minimizing of a “loss
function” (usually the mean squared error), conventio-
nally done by popular techniques to find minima such as
gradient descent, stochastic gradient descent etc. The
back-propagation algorithm is outlined below:
1. Initialize all neurons with random weights and
biases
2. Feed the input parameters to the system using
the input layer neurons
3. Compute the output of each neuron in each
layer up to the last output layer, which gives
the intended output
4. Compute the difference between computed
output and intended output
5. Percolate backwards from the output layers,
adjusting weights and biases to reduce the error
6. Repeat steps till computed error converges, or
lands below an acceptable threshold value
The training data used here will be the 27 sets of
experimental values obtained, with the drill bit diameter,
spindle speed and feed rate being the input parameters
and the thrust force and torque being the output para-
meters to be predicted by the neural networks. These data
sets are used to train the system to think regressively.

|
|
Qutput Layer / Node
I

Figure 4. Representation of a generic neural network

In this case, considering the fact that the influence of
the chosen control parameters affects each output
parameter differently, separate neural network models
were created, initialized and trained to predict each
output parameter. The neural networks were created
using the scikit-learn package in Python. The pandas
library was used for data handling and providing inputs
to the models, and the matplotlib module was used for
data visualization and interpretation of results. The
experimental data was randomly split into two sets; one
set (with 60% of the data points) was used to train the
neural networks, while the other was used as testing
data to determine the performance of the trained ANNS.

The neural networks were designed with input layer
being fixed with 3 neurons (one for each control
parameter), output layer being fixed with 1 neuron (for
one output parameter) and optimizing the number and
configuration of hidden layers. A trial-and-error app-
roach was adopted, where neural networks with 1, 2 and
3 hidden layers were created with different possible
number of neurons in each layer, and a brute-force
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method was followed to find the network configuration
which best fit the observed data. In each category (1, 2
and 3 hidden layers) the neuron configuration which
gave the best R’ score for testing data was selected as
the best candidate (since generalization to unseen data is
a crucial purpose of neural network modelling and
prediction), and the best performing configuration from
these 3 was used as the final modelling network.

The procedure used in this work has been outlined in
the flowchart given below.

Collect experimental
data for training

l

Split data sets into
training and testing sets

l

Supply training set

to neural network
for learning

Fy

l

Calculate mean
squared error

= previous
error?

Finalize & save
the weights and
biases

l

Save the
model

Figure 5. Flowchart overview of the modelling process

3. RESULTS AND DISCUSSION

The results of the above-mentioned modelling and
prediction using the neural networks were tabulated.
The matplotlib package in Python was used to plot and
visualize the data, and the in-built 72 score function in
the scikit-learn package was used to determine the
degree of correlation between the observed and predic-
ted values and test the model accuracy.

The trial-and-error approach showed that for thrust
force modelling, a neural network with 1 hidden layer
consisting of 52 neurons gave the best R’ score for
testing, while for torque modelling, a neural network with
3 hidden layers containing 11, 9 and 20 neurons
respectively turned out to be the winning configuration.
The results of the brute-force analysis and the comparison
of the categorical best performers are shown below.
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The selected neural networks were applied to the
experimental data for final modelling, and the predicted
results were graphed. The plots obtained are given in the
figures below, showing the output variation for each
experimental procedure.

Python was used for programming, to take advantage
of well-documented modules and packages such as numpy,
scikit-learn, pandas, matplotlib etc. which are popularly
used for neural network modelling and machine learning
applications, while being user-friendly and easy to
implement. Considering the trial-and-error approach
involving brute-force checking of all possible neuron
configurations and the relative unpredictability of the
torque data due to its evidently high degree of non-linearity
and apparent lack of a definite pattern, the program
executed in remarkably good time (8 minutes) and was
able to complete the checking of configurations with no
overflow. The identified best-performing neural networks
also gave very good results with demonstrable accuracy.

The wverification that the models had indeed
converged to the demonstrated level of accuracy was
done by plotting the loss functions of the neural
networks, which calculates the mean square error
between the predicted values and experimental values
for each learning iteration of the models. These loss
curves are shown below. The curves are found to
converge to values close to zero, indicating optimum
modelling and reduction of error over each iteration.

Loss function for predicting thrust force
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heat generated due to rubbing between the drill bit and
the specimen, resulting in thermal softening of the matrix
material and reduction in reaction force and torque. It is
also speculated that the torque and thrust force show an
increase with increase in drill bit diameter and feed rate
due to the larger area of material removal between the
drill bit and the specimen, and increase in resistance due
to higher speed of motion of the drill bit with reduced
time given for the material to yield.
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Figure 12. Scatter plot comparison of torque values

To test the accuracy of the created ANN models in
terms of predicting the output parameter for a given set
of input parameters, the R’ coefficient of correlation was
calculated for each output parameter. In each case, the
R’ values for both the testing data set as well as the
overall data set were calculated. The obtained values are
found to be close to unity, indicating that the created
ANN models were able to accurately predict the output
parameters using the given control parameter data while
robustly accounting for possible random variation in the
data. The calculated R’ values are shown below.

Table 2. R? values for testing and total data

\ Output Testing R’ Total R
1000 Thrust Force 0.9962 0.9931
0 - Torque 0.8781 0.939

0 100 200 300 400 500 600
Iteration No.

Figure 11. Converging loss values evaluated at each
iteration of learning by the ANNs

For each output parameter, a scatter plot with a trend
line was made between the empirical and predicted valu-
es. These plots further clarify the quality of fit of the
models to the data. The scatter plots are given below.

On visualization, it is observed that thrust force
increases with decrease in spindle speed and increase in
feed rate and drill bit diameter, which matches with the
observations by several previous works [8-10, 16-19].
Torque appears to show similar trends in variation with
the control parameters. A possible explanation for the
downward trend in both thrust force and torque with
increase in spindle speed could be the increased frictional
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4. CONCLUSION

To conclude, the experiment was carried out using solid
carbide drill bits on glass-hemp-flax composite. In total,
27 experiments were designed using Taguchi’s L,;
orthogonal array method and the resulting thrust force
and thrust values were tabulated. An Artificial Neural
Network (ANN) modelling system was constructed,
consisting of 2 individual networks for predicting torque
and thrust force independently. A trial-and-error app-
roach was employed using the brute-force method, to
identify the optimum configuration of the neural net-
works in each case for best possible results. A neural
network with 1 hidden layer made of 52 neurons was
selected for modelling thrust force, and a neural
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network with 3 hidden layers respectively having 11, 9
and 20 neurons was employed for predicting torque
values. Both neural networks had 3 neurons in the input
layer and 1 neuron in the output layer.

The results of the experimentation indicated that the
thrust force and torque increase with increase in drill bit
diameter and feed rate, and decrease with increase in
spindle speed; these observations were found to align
with results from other research work.

The technique of neural network modelling has pro-
ved to be very efficient in predicting the output values
for a given set of input values. This is evidenced by the
fact that the testing accuracy of the models have R’
values of 0.9962 and 0.8781 for thrust force and torque
modelling respectively, and the model-to-data correla-
tion shows R’ correlation coefficients of 0.9931 for th-
rust force prediction and 0.939 for torque prediction.
The high value of R’ obtained in these predictions de-
monstrate the ability of the model to robustly account
for almost all variability and randomness found in the
data, for both thrust force and torque. It also establishes
strong precedent for the use of neural network model-
ling in optimization of machining process parameters.

To improve the efficiency of the system, more trai-
ning data may be gathered by introducing new levels of
parameter variation (3 levels for each control parameter
were used in this work). Also, additional parameters like
drill bit materials, individual layer thickness, total
composite thickness, use of lubrication etc. may also be
considered for the purpose of modelling.
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MOJEJIUPAIBE BEHITAYKUX HEYPOHCKHUX
MPEXA ITIOACTAKHYTO ITAJTOHOM
KOJ BYHIEIbA KOMITIO3UTA OJAYAHUX
BJIAKHUMA CTAKJIA, KOHOIIJBE, JIAHA

P.B.C. Cunr, A. Pamauanapan, A. Ceasam, K.
Cyopamanuan

[MomTo cy KOMITO3UTH MaTepHjalld YHja C€ CBOjCTBA
MOTy mpuiaroh)aBaTé TEXHHYKHM IIOTpebaMa IprMe-
BY]y ce y paziuuute cBpxe. KBamureraH npoiec npou-
3BO/IEbE KOMITIO3UTA TMOJPa3yMeBa TEMEJbHO IT03HABAE
MmoCTynaka y mporecy, Ito o0e3dehyje moOujame
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nmpou3Bosia 0e3 YHYTpalllbUX W CHOJBALIBUX HEIo-
crataka. Pajg mnpukasyje pasBHjalbe MoJena CHIe
MOTHUCKA M CHJIC MOMEHTa NIpu OyIlICHhYy KOMIIO3UTa
0jayaHor BJIAKHHMA CTakja, KOHOIUbE W JIaHa, W3pa-
henor u obpahenor momohy Taryum mozerna oproro-
HaHUX HU30Ba L,;. [lapamerpu mporieca Koju cy y3eTH
y 003HUp NPHIMKOM MOJENUpama Cy MPEYHHK OylIu-
nune, Op3uHa BpeTeHa W Op3uHa MoMohHOT KpeTama.
KopumnihemeM napamerapa ynpasibarbha HPOLECOM Kao
WHITyTa U TOTUCHE CHJIIC M CUIIE MOMEHTa Kao ayTmyTa
pa3BHjeHe Cy HEYPOHCKE BEILITA4Ke MPEKe y LUIbY
MOJIeNTpama yTUlaja UHITyTa U BUXOBUX MHTEpPaKIHja.
[penBuljama nobOHjeHa HA OCHOBY HEYPOHCKHX Mpeka
ynopehjeHa cy ca J00MjeHHMM EKCICPUMEHTAITHUM
BpenHoctuma. HaljeHo je wm3y3eTHO moOpo crarame
u3Meljy IBe rpyre BpeIHOCTH, YMME je YCIOCTaBJbeHa
OCHOBa 3a MIMPY ymoTpeOy HEYPOHCKUX MpexKa KO
MoOJeNnupama napaMerapa obpane.
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