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In this paper, the trajectory tracking problem of a nonlinear robotic system 

with 3DOFs under the control signal obtained through nonlinearly 

constrained state spaceIterative Learning Control (ILC) methods is 

considered.The focus of this paper is the analysis of different control 

system parameters on the convergence rate of two constrained state space 

ILCalgorithms:Bounded Error Algorithm (BEAILC) and Constrained 

Output algorithm (COILC), as well as the comparison between these two 

algorithmsthrough simulations. The obtained results have shown that 

COILC algorithm converges faster than BEAILC algorithm when 

compared with the same learning and feedback parameters, due to lower 

trajectory restrictions. Also, it has been shown that an increase in feedback 

gains can decrease the number of iteration terminations during the 

learning process, thus allowing for more of the trajectory error 

information to be learned from during the single iteration. Moreover, 

simulations have shown that the decrease in learning parameter values 

will increase the number of iterations required to obtain the desired 

tracking accuracy. 

 

Keywords: robot control, ILC, bounded error, state space, constrained 

output 

 

 
1. INTRODUCTION 

 

In recent years, there has been increased interest in the 

use of various advanced control techniques for engi-

neering and scientific applications. Recently, iterative 

learning control (ILC) has attracted researchers and 

scientists’ attention as one of the promising fields in intel-

ligent control, [1,2]. In 1984, Arimoto et al. [3] proposed 

ILC as one of theadvanced learning control strategies for 

the control of robot manipulators. Namely, some 

mechatronic systems, such as production machines or 

industrial robots, often perform the same task repeatedly. 

Iterative learning control is an intelligent control 

method which, through repetition in every iteration, 

using the information from previous trials, improves the 

control signal for the next trial in order to decrease 

(eliminate) the tracking error of a repetitivetask.  

This method can be compared to a human skill 

practice. Rehearsing the movement and observing the 

error over time the error decreases as the number of 

repetitions increases. 
In industrial applications robotic manipulators are 

programmed to execute a certain task that is repeated 

numerous times during its life cycle, making the ILC 

viable control method to consider, [4-6]. 
The key purpose of using ILC is to achieve high 

performance after a few iterations. One advantage of 

ILC is that there is no requirement for the dynamic 

model of the controlled system. A typical ILC in the 

time domain presents a simple off-line feedforward 

learning control. In terms of how to use the tracking 

error signal of the previous iteration to form the control 

signal of the current iteration, the structures of ILC 

appeared as D-type, P-type, PD-type, and PID-type, [2]. 

However, there are several critical requirements that 

limit the applications of ILC, especially to complex 

nonlinear (robotic) systems. Despite the widespread use 

of ILC in robot motion control, few attempts have been 

made to create an integrated design, [7,8]. 

In reality industrial robots have space boundaries, 

velocity limits and other saturations which make them 

constrained state space systems. Thus, all operations 

performed by these manipulators are contained within 

the constrained state space, setting particular trajectory 

planning and tracking requirements near the state space 

boundaries[8]. 

Another problem of the standard ILC procedure is 

the transient error growth. It is possible that in the first 

several iterations the tracking error grows significantly 

before it starts to converge to zero [9].  

In this paper, constrained state space Iterative Lear-

ning Control methods for a nonlinear robotic manipulator 

with 3 DOFs are suggested. Especially, two constrained 

state space ILC algorithms are applied: Bounded Error 

Algorithm (BEAILC) and Constrained Output algorithm 

(COILC), as well as the comparison between these two 

algorithms through simulations are done. 

 
2. CONSTRAINED STATE SPACE ILC  

The robotic system can be represented with the follo-

wing equation (obtained from Lagrange's Equations of 

Motion of second kind)[10]]: 
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where A = [a(q)] is inertia matrix consisted of 

elements a(q) that represent the metric tensor 

coordinates, nq ∈R , nq ∈ɺ R  are generalized coordi-

nates and velocities respectively, ,g nQ R∈  

,c n nQ R Q Rβ∈ ∈  and nq ∈R are generalized gravity, 

elastic, viscous friction and actuator torques (control 

signals in our case). 

The [ ( , )] n nb q q ×∈ɺ R  represents the matrix with 

thefollowing elements 
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where the ,αβ γΓ  are the Christoffel symbols of the first 

kind. 

Observing the robot's differential equation, some 

ofthe saturations (constraints) are: 
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As a consequence, violation of constraints can cause 

the failure of the ILC trial (as it will be interrupted 

prematurely) and could potentially cause damage to the 

robot or its surroundings. Such violation can occur if the 

robot is following the desired trajectory that is near to 

the state space limits (Figure 1a). 

 

Figure 1a. Violation of generalized coordinates constraints [8] 

Research has shown that despite the proven con-

vergence of the standard nonlinear ILC method, during 

the first few iterations the error grows (sometimes 

significantly) before it starts to converge to zero 

potentially violating the operative space boundaries. If 

the output trajectory is constrained in such a way that 

generalized coordinates boundaries aren't violated, then 

it's possible to apply the ILC method to the manipulator. 

As solutions to this transient error growth problem, two 

of the following algorithms are proposed: 

• Bounded Error Algorithm (BEA) 

• Constrained Output Algorithm (CO) 

The idea behind both algorithms is that the tracking 

process is terminated if the generalized coordinates pre-

set boundaries are violated. Both algorithms break the 

equal trial time duration postulate during the premature 

termination of the tracking process, but their conve-

rgence is proven [9]. 

 

Figure 1b. Block diagram of BEAILC and COILC algorithms 

The sufficient condition for both algorithms' conver-

gence, taking into account the corresponding feedback 

and feedforward update laws (Figure 1b), is: 

1| | 1.I LA ρ−− ≤ <   (4) 

For a high convergence rate, the learning operator 

should be as close as possible to the inertia matrix. As 

the real inertia matrix is unknown, it's preferable that the 

learning operator is chosen as estimated inertia matrix 

( ) ˆ( )L q A q≡ , as it is proven in the previous resea-

rch[12]. 

2.1 Bounded Error Algorithm 

 

Bounded Error Algorithm solves the previously men-

tioned problem by tracking the error norm during the 

iteration. Iteration is terminated momentarily as the 

error norm reaches a predetermined limit.A control 

signal is corrected before the next iteration only with 

information collected before the interruption of the pre-

vious iteration. 

In combination with the feedforward control signal 

generated with BEA ILC algorithm, the following feed-

back term will be used: 

( ) ( ) ( ) ( )( )
( ) ( )( )

ˆ
fb d v d k

p d k

u A q t K q t q t

K q t q t

q= + − +

+ − 

ɺɺ ɺ ɺ

 (5) 

where ( )Â q  is the estimated inertia matrix, and Kv and 

Kp are feedback gains. 

Planned desired trajectory inside the generalize 

coordinates constrains satisfies the inequality: 

[ ]
( )( ) [ ]

( )( )
0, 0,

min ,  minmax d d min
i i i i

t T t T
min Q q t q t Q µ

∈ ∈

 
− − > 

 
 (6) 

where is the accuracy of the ILC method. 

Accordingly, δ can be selected as: 
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and ε = μ + δ for which is guaranteed d
iq ∈  

, min max
i iQ Qε ε + −

 
. If the control signal in an initial 

iteration is ( )0 0, [0, ]u t t T≡ ∈ , then the restriction can 

be applied to the output trajectory at every iteration by 

applying BEA algorithm, represented through the 

following steps[13]: 

1. Set the initial iteration number k = 0 and begin 

theiterative procedure  

2. Starting from the initial position (0) kq =  

( )0dq  the system is tracking the desired 

trajectory under the control ( , )  u q t =  

( )   ( )k fbu t u t+  while | ( ) ( ) |  k dq t q t ε− <  

and t < T. When t = T or for the first 

( ) ( ): 0 ,k k k dT T T q t q t< < − , then the 

tracking process is stopped and Tk is set to 

the stop time of iteration . 

3. At the end of the current iteration the learning 

controller updates the input control signals 

for the next iteration uk+1 according to the 

following learning update law: 
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where Lp and Lv are learning gains.  

4. If the overall output error is less than or equal 

to an acceptable tracking accuracy and Tk 

equals T, thenthe learning procedure 

terminates successfully andthe optimal 

feedforward control signal is uk. Otherwise, 

set k = k + 1 and go to step 2. 

As a result of applying the BEA algorithm, the 

output trajectory in each iteration lays inside the hyper-

cylinder with a radius of epsilon around the desired 

trajectory, thus always staying inside of state space 

constrains (Figure 2). 

 

Figure 2. Hypercylinder around the trajectory [9]  

This algorithm can speed up the rate of convergence 

when compared to the standard ILC, where the error 

accumulation increases the number of iterations requ-

ired to eliminate said accumulation.  

The downside of BEA algorithm is its over rest-

riction in the areas where the trajectory is well far from 

its generalized coordinates boundaries, leading to higher 

number of iterations due to more frequent iteration 

interruptions. 

 
2.2 Constrained Output Algorithm 

 

CO algorithm directly limits the output trajectory 

maximum value. In the contrary of BEA which forces 

entire trajectory to stay inside of the hypercylinder with 

a radius of an epsilon, which is defined as the closest 

safe distance from the generalized coordinates bounda-

ries, CO limits only the maximum output value allowing 

deviations from the desired trajectory in areas where it's 

safe to do so. 

CO algorithm can be described through the following 

steps [9], taking into account the feedback term (5): 

1. Set the initial iteration number k = 0 and begin 

theiterative procedure  

2. Starting from the initial position qk(0) = qd(0) the 

system is tracking the desired trajectory under 

the control u(q,t) = uk(t) + ufb(t) while 

,  1 , 2, . , .min k max
i i iQ q Q i n< < =  and t < T. When t 

= T or for the first : 0 , k m
k k i iT T T q Q in< < = ,  

or k min
i iq Q=  then the tracking process is stop-

ped and Tk is set to the stop time of iteration k. 

3. At the end of the current iteration the learning 

controller updates the input control signals for 

the next iteration uk+1 according to the following 

learning update law: 
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4. If the overall output error is less than or equal to an 

acceptable tracking accuracy and Tk equals T, 

then the learning procedure 

terminatessuccessfully and the optimal 

feedforward control signal is uk. Otherwise, set k 

= k + 1 and go to step 2. 

This algorithm should speed up the process of fin-

ding the desired control signal, due to its reduced 

number of iteration terminations caused by lower rest-

rictions compared to BEA algorithm. 

 
3. SIMULATION RESULTS 

 

Trajectory tracking simulations of the 3DOF robotic 

system (Figure.3) using BEAILC and COILC 

algorithms are conducted in MATLAB and Simulink 

environments. Simulink modelled robot differential 

equations are solved using the Runge-Kutta method 

(ODE4), where the simulation step was 0.00001.  
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Mass for each segment is chosen as: 0.15 kg, 0.5 kg, 

0.35 kg; and the length of each segment is chosen 

correspondingly: 0.15 m, 0.5 m, 0.35 m. 

The desired trajectories defined in the space of 

generalized coordinates for joints are: 

 

Figure 3. The adopted robotic system with 3 DOFs 

( ) ( )
( ) ( )
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[ ]
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=
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=
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  (10) 

Initial conditions for generalized coordinates and 

their derivatives are: 

( ) ( ) ( ) ( )0 0 ,   0 0i i i i
d dq q q q= =ɺ ɺ  (11) 

The learning operator is chosen as the estimated 

inertia matrix for both algorithms, which is obtained by 

varying segments' mass and length so that the sufficient 

condition for convergence is met: 

( ) ( ) [ ]1max 0.9282,  , 2ˆ 2i

iq

I A q A q q π π−− = ∈ −   (12) 

The rest of the control system parameters were 

manually set and chosen through trial and error. 

Generalized coordinates boundaries and control 

system parameters for both algorithms were set so that 

the simulation results are comparable. 

Hypercylinder radius for BEAILC algorithm is set 

as: 

 0.3ε =    (13) 

Generalized coordinates limits for COILC algorithm 

are set as: 

1 2 2
max max max

1 2 3

4.3 2.3 1.1
 .

4.3 2.3 1.1
min min min

q q q

q q q

   
  =  − − −    

  (14) 

The desired tracking accuracy that has to be 

obtained by both algorithms i
maxe µ<  is: 

 0.005 µ =    (15) 

Simulation results will be shown through the indi-

vidual joint trajectory tracking with the parameters ob-

tained after the learning process, then the maximum 

tracking error through iterations will be shown, iteration 

duration time, as well as the trajectories during the 

learning process for each joint. 

 
3.1 The first set of parameters – BEA and CO 

 

As suggested in [[13] and [14], parameters are chosen as 

following diagonal matrices: 

1 20*  ,    60*

1 00*  ,    20*

p v

p v

K I K I

L I L I

= =

= =
  (16) 

 

Figure 4.Final trajectory tracking – q
3
 - BEA 

 

Figure 5.Final trajectory tracking -  q
3
 - CO 

 

Figure 6. Maximum error norm 
1
maxe  through iterations 

 

Figure 7. Maximum error norm 
2
maxe  through iterations 
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Figure 8. Maximum error norm 
3
maxe  through iterations 

 

Figure 9. Iteration duration time 

 

Figure 10.Trajectory tracking q
3
 through iterations - BEA 

 

Figure 11.Trajectory tracking q
3
 through iterations - CO 

Applying the BEA algorithm with (16) parameters, 

the desired accuracy was obtained after 21 iterations, 

with maximum tracking errors: 

1

2

3

 4.130688144865502 ( 07)

  0.004140314720489

 0.003325527637983

max

max

max

e e

e

e

= −

=

=

  

From Figures 6, 7 and 8 it can be seen that the itera-

tions were interrupted by the violation of generalized 

coordinatesconstraints, while on Figure9 duration of 

iterations can be seen individually. As the iteration 

duration time increases, the control system successfully 

decreases the tracking error and incrementally obtains 

more learning information as the iteration interruptions 

occur later in the tracking process. Due to high restric-

tions enforced by hypercylinder, interruptions occur 

regularly, thus decelerating the learning process and 

increasing the number of iterations. In Figure 4 final 

trajectory tracking for the third joint can be seen. 

In Figures 7 and 8 it can be seen that maximum 

tracking errors are limited to the value of ε = 0.3, which 

means that the algorithm is working properly. Besides 

that, it can be seen which of the joints caused the ite-

ration interruption as well as that monotonic maximum 

error convergence can be interrupted as the iteration is 

interrupted, depending on the position of the joint in the 

moment of interruption. The trajectory tracking through 

iterations for the third joint is shown in Figure 10. 

Applying the CO algorithm with (16) parameters, 

the desired accuracy was obtained after 13 iterations, 

with maximum tracking errors: 

1

2

3

  5.669905331906477 ( 07)

 3.983853512188329 ( 04)

  0.003912110721542

max

max

max

e e

e e

e

= −

= −

=

  

In comparison with BEAILC with same controller 

parameters and previously mentioned comparable 

boundaries, it can be seen that CO algorithm requires 

less iterations to achieve desired tracking accuracy. Due 

to less restricting constrains, interruptions were less 

frequent, which resulted in faster convergence. On 

Figure 5 it can be seen that the final trajectory for the 

joint 3 almost overlaps the desired trajectory. 

In Figure 11 enlarged constrain violation is shown 

for the third joint  where q3 = 1.1. Despite that the 

absolute value of maximum error was higher in other 

areas of trajectory, it didn't interrupt the iteration, pro-

ving that the algorithm is implemented correctly. 

 
3.2 The second and third set of parameters - 

BEAILC 

 

Control system parameters can be chosen in a way that 

the individual joints can be targeted with different gain 

values.  

Second parameter set: 

90 0 0 20 0 0

0 100 0 , 0 40 0

0 0 120 0 0 60

65 0 0 15 0 0

0 70 0 , 0 20 0

0 0 80 0 0 45

p v

p v

K K

L L

   
   = =   
      

   
   = =   
      

  (17) 

Third parameter set: 

1 50*  ,    80*

 70*  ,   1 5*

p v

p v

K I K I

L I L I

= =

= =
  (18) 
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Figure 12. Maximum error norm 
2
maxe  through iterations 

 

Figure 13. Maximum error norm 
3
maxe  through iterations 

 

Figure 14. Trajectory tracking q
3
 through iterations – set 2 

 

Figure 15. Iteration duration time 

Applying the BEA algorithm with (17) parameters, 

the desired accuracy was obtained after 25 iterations, 

with maximum tracking errors: 

1

2

3

  2.204710552455858 ( 07)

0.004570354342683

  0.004075814633505

max

max

max

e e

e

e

= −

=

=

  

In comparison with previous parameter set where the 

third joint  caused most of the iteration terminations 

(Figure 8), with this parameter set it can be seen that 

now the second joint  caused most of the trial termi-

nations (Figures 12, 13 and 14). 

Applying the BEA algorithm with (18) parameters, 

the desired accuracy was obtained after 22 iterations, 

with maximum tracking errors: 

1

2

3

  3.769541385700848 ( 07)

0.002220904697019

  0.004660588997101

max

max

max

e e

e

e

= −

=

=

  

Comparing the iteration duration time of the first set 

and this current set 3 of parameters (Figure.15), number 

of iteration increased due to lower learning gains. On the 

other hand, due to higher feedback gains the number of 

interruptions has decreased. The interruptions with this 

set of parameters were caused primarly by the third joint. 

 
3.3 The second and third set of parameters - COILC 

 

With (17) and (18) sets of parameters the COILC simu-

lation results are following: 

 

Figure 16. Maximum error norm 
2
maxe  through iterations 

 

Figure 17. Maximum error norm 
3
maxe  through iterations 

 

Figure 18. Iteration duration time 
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Figure 19. Trajectory tracking q
3
 through iterations – set 3 

Applying the CO algorithm with (17) parameters, 

the desired accuracy was obtained after 11 iterations, 

with maximum tracking errors: 

1

2

3

  9.318638003463775 ( 07)

0.002733375280047

  0.003863099758940

max

max

max

e e

e

e

= −

=

=

  

As in previous comparison, it can be seen that CO 

algorithm takes less iterations to obtain the desired trac-

king accuracy when compared to the BEA algorithm.  

Applying the CO algorithm with (18) parameters, 

the desired accuracy was obtained after 17 iterations, 

with maximum tracking errors: 

1

2

3

 8.846494474745725 ( 07)

0.001859841362631

 0.004862432948212

max

max

max

e e

e

e

= −

=

=

  

Like in the case of BEAILC, convergence is slower 

due to lower learning gains compared to the first para-

meter set, but thanks to the lower restrictions and higher 

feedback gains with the third parameter set iterations 

weren’t terminated (Figure18), which means that the 

output trajectory was inside the CO boundaries, Figure 

19. Maximum error norms for joint 3 for both sets can 

be seen on Figures 16 and 17. More simulation results 

can be found in [15]. 
 
3.4 BEAILC convergence rate influence of radius  

 

For convergence rate influence of radius  demonstration 

the following parameter will be used: 

100 0 0 40 0 0

0 105 0 , 0 60 0

0 0 130 0 0 80

80 0 0 20 0 0

0 90 0 , 0 30 0

0 0 100 0 0 50

p v

p v

K K

L L

   
   = =   
      

   
   = =   
      

  (19) 

Values for ε are: 

1 2 3 40.2, 0.3, 0.4,  0.5ε ε ε ε= = = =   (20)  

From Figures 20a, 20b and 20c shown below, it can 

be seen that with radius  value increase, BEA algo-

rithm requires less iterations to obtain the desired 

tracking accuracy (convergence is faster). This effect is 

more noticeable for BEA than CO, due to higher 

trajectory restriction. 

 

Figure 20a. Trajectory tracking q
1
 through iterations 

 

Figure 20b.Trajectory tracking  q
2
 through iterations 

 

Figure 20. Trajectory tracking q
3
 through iterations 

 
4. CONCLUSION 

 

From previously shown simulation results, it can be 

observed that both algorithms successfully managed to 

decrease the tracking error under the desired accuracy, 

with the learning matrix chosen as the estimated inertia 

matrix so that the convergence condition is met. 

It is confirmed that BEAILC algorithm takes more 

iterations to obtain desired tracking accuracy compared 

to COILC algorithm with the same parameter set, due to 

more limiting constrains. The hypercylinder around the 

desired trajectory enforced by BEA over-constrains the 

trajectory in the areas where it's physically safe for error 

to increase slightly in favour of obtaining more learning 

information from the current trial. On the other hand, 

COILC algorithm with its maximum and minimum 

limiting values, allows higher error values as long as the 

trajectory is inside its constrains, thus obtaining more 

information from the current iteration resulting in faster 

convergence. Loosening the hypercylinder radius ε dec-
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reases the number of iterations required to obtain the 

desired tracking accuracy (speeds up the convergence). 
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ИТЕРАТИВНО УПРАВЉАЊЕ УЧЕЊЕМ У 

ОГРАНИЧЕНОМ ПРОСТОРУ СТАЊА 

РОБОТСКОГ МАНИПУЛАТОРА СА 3 

СТЕПЕНА СЛОБОДЕ 

 

А. Дубоњац, М. Лазаревић 

 

У овом раду је разматрано праћење трајекторије 
нелинеарног роботског система са 3 степена слободе 
под дејством управљања добијеног применом 

нелинеарних метода итеративног управљања 
учењем (ILC) у ограниченом простору стања. Фокус 
рада је анализа утицаја различитих параметара 
управљачког система на брзину конвергенције два 
ILC алгоритма у ограниченом простору стања: 
Алгоритма ограничене грешке и алгоритма 
ограниченог излаза, и међусобно поређење ових 
алгоритама кроз симулације.Добијени резултати су 
показали да COILC алгоритам конвергира брже од 

BEAILC алгоритма, када се упореде са истим 

вредностима параметара учења и повратне гране, 
услед слабијих ограничења трајекторије. Такође, 
показано је да повећање вредности параметара у 
повратној грани смањује број прекида итерација 
током процеса учења, тиме омогућавајући више 
информација за учење из грешке праћења 
трајекторије у итерацији. Даље, симулације су 
показале да смањење вредности параметара учења 
повећава број итерација потребних да се достигне 
жељена тачност праћења. 

 
 

 


