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Health Assessment of a Multi-Bolted 
Connection due to Removing Selected 
Bolts 
 
In the paper, experimental studies of an asymmetric preloaded seven-
bolted connection are presented. The tightening process of the connection 
was carried out with a wrench, monitoring the values of the bolt forces 
with a calibrated strain gauge measuring system. Two methods of bolt 
tightening were tested: in one and several passes. After all bolts were 
tightened, the selected bolts were removed, simulating bolt failure under 
the loading conditions of the connection. The influence of the method and 
sequence of bolt tightening on the distribution of bolt forces values after 
the introduction of failure states of some bolts was investigated. The 
results were statistically processed and presented in the form of graphs 
showing the distributions of normalised bolt forces values for all the 
considered failure cases. 
 
Keywords: bolt tightening sequence, multi-bolted connection assembly, 
preload monitoring, resistance strain gauges. 

 
 

1. INTRODUCTION 
 

Bolted and multi-bolted connections are among the 
most commonly used temporary fastenings in both 
mechanical and structural engineering [1-3]. Various 
experimental studies on these connections are still 
undertaken by many authors. 

Recently, a lot of attention has been paid to research 
in the field of structural health monitoring of bolts and 
bolted connections under the influence of the loss of 
load capacity of the supporting element of the structure. 
Kozłowski and Kukla [4], and Kukla and Kozlowski [5] 
described experimental tests of unstiffened two-sided 
connections with a flush and extended end plate, which 
consisted in checking the behaviour of the structure due 
to the loss of one of the columns. Similar tests were 
performed by Xu et al. [6], and Gao et al. [7]. Expe–
rimental investigation of steel moment frames subjected 
to column loss were carried out by Marginean et al. [8]. 
In contrast, the progressive collapse mechanism of 
bolted structures were analysed, among others, by Tang 
et al. [9], Wang et al. [10], and Chen et al. [11]. 

On the other hand, less attention has been paid to 
experimental research in the field of structural health 
monitoring of bolts and bolted connections due to loss 
of load capacity of selected fasteners in the connection. 
Li and Hao [12] monitored the state of bolted 
connections in a truss bridge model due removing 
selected bolts. Yan et al. [13] described an experimental 
validation of a damage detection method on a full-scale 
highway sign support truss. As one of the simulated 
failures, they considered the loss of all bolts in one of 
the flange connection in this truss. Pham and Hancock 
[14], and Pham et al. [15] investigated deformations of 

connections of beams with cold-formed C-sections for 
different number of bolt rows. There are also only a few 
papers on modelling the phenomena occurring in bolted 
connections under the influence of fasteners failure [16-
19]. Therefore, this subject has been taken up in the 
presented paper. 

An indispensable part of assessing the structural 
condition of bolted connections is monitoring of bolt 
forces and detection of joint loosening. They are 
implemented in many ways. The change in magnetic 
flux density as a diagnostic parameter of the bolt 
tightening torque was used by Mori et al. [20]. The 
papers by Yasui et al. [21], Kim and Hong [22], 
Blachowski et al. [23], and Pan et al. [24] were written 
on the subject of ultrasonic measurement of axial stress 
in bolts. Monitoring of bolt forces can also be carried 
out using embedded fiber Bragg gratings (FBG) sensors 
[25]-[28]. Martinez et al. [29], Zhang et al. [30], and 
Wang et al. [31] applied acoustic methods to monitor 
bolt loosening, while for the same purpose Wang et al. 
[32], Wang et al. [33], Huynh et al. [34], and Na [35] 
used impedance methods. Nazarko and Ziemianski [36] 
applied the phenomenon of elastic wave propagation, 
introduced and measured by piezoelectric transducers, 
to identify the forces in the bolts in a flange connection. 
The relationships between the measured signal changes 
and the variations of the forces in the bolts were 
assessed in this case using artificial neural networks. 
Sun et al. [37] proposed a bolt-loosening detection 
method based on the binocular vision. In addition, 
vision-based methods for the bolts looseness detection 
were also presented by Wang et al. [38], and Huynh 
[39]. Sidorov et al. [40] designed and implemented 
sensor nodes (named TenSense M20) for continuous 
remote structural health monitoring of bolted 
connections. 

However, the most common method of measuring 
bolt forces is the method based on the use of resistance 
strain gauges. The measurements are made by means of 
strain gauges glued to the outside of the bolt shank [41]-
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[46], inserted into the hole inside the bolt shank [47-51] 
or on the bolt head [52]. In addition to ultrasonic 
sensing, it is the method with the highest accuracy [36]. 
Therefore, this method has been also implemented in 
the presented paper. 

Experimental tests of the process of tightening 
multi-bolted connections are carried out mainly for 
connections showing geometric symmetry or load 
symmetry. These studies include tightening in one pass 
[53-55] and in several passes [56-58]. In this study, 
these two types of tightening were also used. However, 
in order to make the research universal, it was 
performed for the case of asymmetric multi-bolted 
connection. The research is an extension of the paper 
[45] and will be used to validate the modelling method 
of the tightening process of arbitrary multi-bolted 
connections presented in [59,60]. 

The paper is structured as follows: Section 2 des–
cribes the research stand and research procedure, 
including details of tightening methods and scenarios of 
simulated failure of the tested multi-bolted connection. 
Section 3 focuses on results of the research as well as 
a discussion about them. Section 4 gives some 
additional conclusions from the conducted research. 

 
2. RESEARCH STAND AND PROCEDURE 

 
The geometry of the tested connection and the 
assumptions made at the design stage are described in 
detail in [45]. Only general information on this subject 
will be presented in this paper. The diagram of the 
multi-bolted connection is shown in Fig. 1a. 
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Figure 1. Diagram of the tested multi-bolted connection (a) 
and view of the contact surface between the joined 
elements (b) (1 – upper plate; 2, 3 – joined elements; 4 – 
M10x1.25 bolt; 5 – high hexagonal nut; 6 – base) 

It consists of two joined elements (2) and (3), 
fastened with seven M10x1.25 bolts (4) and nuts (5). 
The element (2) is welded to the upper plate (1), and the 
element (3) to the base (6). The connection is tilted 
relative to the base (6) by 60 deg. All the joined 
elements are made of 1.0577 steel. The bolts are made 
in the mechanical property class 8.8, and the nuts in the 
mechanical property class 8. 

The contact surface between the joined elements and 
the adopted bolt numbering are shown in Fig. 1b. 

The force changes in each bolt were measured using 
four TENMEX TFxy-4/120 strain gauges with two axes 
of measuring ladders arranged perpendicularly to each 
other. The strain gauges were glued to the bolt shanks in 
a full strain gauge bridge configuration (Fig. 2). The 
view of the bolts prepared for the measurements is 
shown in Fig. 3. 

 
Figure 2. Diagram of the strain gauge system glued to 
a single bolt 

 
Figure 3. View of the bolts 

Before the beginning of the study, each of the bolts 
was calibrated on the Instron 8850 testing machine [46]. 
As a result of this calibration, a set of regression 
equations was obtained for the bolts loading and 
unloading processes in the form: 

 ci i iF a V= ⋅  (1) 

where Fci denotes the calibration axial force of the i-th 
bolt, ai is the slope of the regression curve, and Vi 
denotes the voltage (for i = 1, 2, …, 7). 

 
Figure 4. View of the research stand 

The above equations were used to determine the 
forces in the bolts based on the voltmeter indications 
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and through the program written in the MATLAB 
R2018b Simulink (Fig. 4). 
Table 1. Methods of the multi-bolted connection assembly 

Symbol Description Value 
Tightening in one pass 

Fpi preload of the i-th bolt Fpi = 22 kN 
Tightening in three passes 

Fpi1 
preload of the i-th bolt 

in the first pass 0.2·Fpi = 4.4 kN 

Fpi2 
preload of the i-th bolt 

in the second pass 0.6·Fpi = 13.2 kN 

Fpi3 
preload of the i-th bolt 

in the third pass Fpi = 22 kN 

Table 2. Sequences of tightening the multi-bolted 
connection 

Path type Sequence 
1 1-2-3-4-5-6-7 
2 1-3-5-7-2-4-6 
3 1-4-7-3-6-2-5 
4 1-5-2-6-3-7-4 
5 1-6-4-2-7-5-3 
6 1-7-6-5-4-3-2 

Table 3. States of the connection failure simulation 

State Scheme 

After preload 
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The value of the bolts preload Fp was determined as 
equal to 22 kN based on the PN-EN 1993-1-8 standard 
[61] and the analysis of the permissible surface pressure 
values between the nuts and the lower joined element. 

The bolts were tightened with a wrench and the 
force values in the bolts were controlled by the 
measuring system shown in Fig. 4. The process of 
tightening the multi-bolted connection was carried out 
for two assembly methods: in one pass (the bolts were 
tightened immediately to the full preload value Fp) and 
in three passes (in the first pass, the bolts were 
preloaded to the value of 0.2·Fp, while in the second and 
third pass to the value of 0.6·Fp, and Fp, respectively). 

A summary of information on the assembly methods 
is shown in Table 1. In both assembly methods, the 
bolts were tightened sequentially according to the paths 
shown in Table 2. 

After tightening all the bolts, the connection failure 
was simulated by removing selected bolts. Two states of 
this analysis were introduced, shown in Table 3. 

Each experiment was repeated three times. The 
further part of the paper presents the values of bolt 
forces understood as the arithmetic mean of the data 
obtained in these experiments. 

 
3. RESEARCH RESULTS 

 
The distributions of the mean values of forces Fpi in the 
bolts in relation to the value of the initial force Fp0 in the 
case of failure states of the bolts after tightening the 
multi-bolted connection in one pass are presented in 
Fig. 5. Figure 6 shows similar diagrams for the case of 
tightening the connection in three passes. 

Based on the analysis of the graphs in Figs. 5 and 6, 
the following conclusions can be drawn: 
1. At the connection failure state, the greatest increases 

in force occur in bolts in the immediate vicinity of 
the bolt removed at a given state. 

2. The variability of the bolt force values in the 
connection failure state depends on the sequence of 
bolt tightening. 
The comparative analysis of the waveforms 

presented in Figs. 5 and 6 was carried out on the basis 
of the Z1 index defined as: 

 1 100
ap S

pipi
ap
pi

F F
Z

F

−
= ⋅  (2) 

where ap
piF denotes the force in i-th bolt in the 

considered distribution of forces after the tightening 
process, and S

piF denotes the force in i-th bolt at the 
given connection failure state. 

The maximum values of the Z1 index obtained for 
individual tightening methods and the connection failure 
states are presented in Table 4. Based on its analysis, it 
can be concluded that the maximum force increments in 
the bolts caused by the assumed failure states do not 
depend on the method and sequence of bolt tightening. 
They are generally in the range of 0.51 to 0.76%. 
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Figure 5. Distributions of the bolt forces in the case of tightening the connection in one pass 
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Figure 6. Distributions of the bolt forces in the case of tightening the connection in three passes 
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Figure 7. Distributions of the bolt forces in the State 1 
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Figure 8. Distributions of the bolt forces in the State 2 
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Table 4. Z1 index values (%) 

Path type 
Tightening in one 

pass 
Tightening in three 

passes 
State 1 State 2 State 1 State 2 

1 0.51 0.54 0.62 0.61 
2 0.68 0.57 0.67 0.53 
3 0.62 0.50 0.66 0.56 
4 0.67 0.64 0.62 0.59 
5 0.68 0.54 0.65 0.53 
6 0.63 0.60 0.76 0.62 

 
The distributions of the mean values of forces Fpi in 

the bolts in relation to the value of the initial force Fp0 at 
the end of State 1 of the multi-bolted connection failure, 
depending on the method of performing the tightening 
process are presented in Fig. 7. Figure 8 shows similar 
diagrams for the case of State 2 of the multi-bolted 
connection failure. 

Based on the analysis of the graphs in Figs. 7 and 8, 
the following conclusions can be drawn: 
1. The distributions of the preload in individual bolts in 

the connection failure state are characterised by 
some unevenness. 

2. The variability of the bolt force value in the 
connection failure state is smaller in the case of 
tightening the multi-bolted connection in three 
passes than in the case of tightening in one pass. 
The comparative analysis of the waveforms 

presented in Figs. 7 and 8 was carried out on the basis 
of the Z2 index defined as: 

 2 100
onep threep
pi pi

onep
pi

F F
Z

F

−
= ⋅  (3) 

where onep
piF  denotes the force in i-th bolt in the 

considered distribution of forces after the tightening 
process in one pass, and threep

piF denotes the force in i-th 
bolt in the considered distribution of forces after the 
tightening process in three passes. 

The maximum values of the Z2 index obtained for 
individual tightening methods and the connection failure 
states are presented in Table 5. Based on its analysis, it 
can be concluded that the maximum differences in the 
values of bolt forces achieved for the compared 
tightening methods slightly depend on the sequence of 
bolt tightening. They are generally in the range of 0.43 
to 1.72%. 
Table 5. Z2 index values (%) 

Path type State 1 State 2 
1 0.70 0.44 
2 1.69 1.72 
3 0.76 0.45 
4 0.84 0.79 
5 0.72 0.64 
6 0.43 0.48 

 
4. CONCLUDING REMARKS 

 
The paper presents an original laboratory stand intended 
for testing a selected asymmetric multi-bolted con–
nection under the conditions of initial tightening the 
connection. The influence of the method and sequence 
of bolt tightening on the distribution of force values in 
bolts after the introduction of selected states of bolts 
failure was demonstrated. The stand can be used for 
further studies in the field of assessing the influence of 
removing selected bolts in the connection subjected to 
external loads on a testing machine. 
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ЛАБОРАТОРИЈСКА ПРОЦЕНА ВЕЗЕ СА 
ВИШЕ ВИЈАКА ЗБОГ УКЛАЊАЊА 

ИЗАБРАНИХ ВИЈАКА 
 

Р. Грзејда, А. Парус 
 

Приказано је експериментално истраживање 
асиметрично оптерећене везе са седам вијака. 



642 ▪ VOL. 49, No 3, 2021 FME Transactions
 

Притезање везе је извршено кључем за вијке а 
праћење вредности сила обављено је калибрисаним 
уређајем за мерење напона. Испитиване су две 
методе притезања вијака: метод једног корака и 
метод више корака. После притезања свих вијака 
уклоњени су одабрани вијци, при чему је извршена 
симулација отказа вијака у условима оптерећења 

везе. Истражен је утицај методе и редоследа 
притезања вијака на дистрибуцију вредности 
вијачних сила и увођења стања отказа неких вијака. 
Резултати су статистички обрађени и графички 
приказани за све случајеве отказа са аспекта 
дистрибуције вредности нормализованих сила.  

 


