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Power utilities, developers, and investors are pushing towards larger
penetrations of wind and solar energy-based power generation in their
existing energy mix. This study, specifically, looks towards wind power
deployment in Saudi Arabia. For profitable deplopement of wind power,
accurate knowledge of wind speed both in spatial and time domains is
critical. The wind speed is the most fluctuating and intermittent parameter
in nature compared to all the meteorological variables. This uncertain
nature of wind speed makes wind power more difficult to predict ahead of
time. Wind speed is dependent on meteorological factors such as pressure,
temperature, and relative humidity and can be predicted using these
meteorological parameters. The forecasting of wind speed is critical for
grid management, cost of energy, and quality power supply. This study
proposes a short-term, multi-dimensional prediction of wind speed based
on Long-Short Term Memory Networks (LSTM). Five models are
developed by training the networks with measured hourly mean wind speed
values from1980 to 2019 including exogenous inputs (temperature and
pressure). The study found that LSTM is a powerful tool for a short-term
prediction of wind speed. However, the accuracy of LSTM may be
compromised with the inclusion of exogenous features in the training sets
and the duration of prediction ahead.
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1. INTRODUCTION

Wind amongst other renewable sources, is becoming
more popular for both grids connected large appli-
cations and isolated grids for small loads. The grid
connectivity issues and power grid managements
control are getting advanced with time. Saudi Arabia,
for example, is targeting a new wind power capacity of
2.0GW by 2030 [1] and is planning to achieve 20% of
wind power penetration in its total capacity by the end
of 2030 [2]. However, the challenge associated with
wind power is its uncertain nature [3, 4]. Wind power is
mainly affected by wind speed and weather factors such
as wind direction, temperature, atmospheric pressure,
and relative humidity [5]. The geographical and topo-
graphical conditions at the wind farm sites have an
influence on the output of the wind energy [6, 7]. An
accurate information of the wind speed availability, that
drive the wind turbines, is crucial for microgrid-siting
and later for profitable and proper operation and main-
tenance of the system [8, 9]. The integration of wind
power in microgrids where the effects of wind power
fluctuations significantly affect the microgrid operation
and other distributed generation were studied in [7—10].
In micro-grids, the integration of large-scale wind
power may result in the fluctuations of the output power
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and can cause disturbances to the power system and
may lead to grid failures [11, 12]. Consequently, power
quality, voltage, and frequency may be seriously affec—
ted [5, 11].

There are physical parameters of the wind turbines
such as pitch, rotor diameter, blade length, and wind—
farm layout design that greatly affect the power output
from the turbine. A study of wind farm layout design is
presented in [13], where particle swarm optimization
(PSO) algorithm is used to solve wind farm opti—
mization problem. Besides, the authors in [14] studied
the optimal location of wind turbines and their per—for—
mance in Iraq considering the costs and maximum
possible capacities from the wind turbines in different
sites. Furthermore, the steady-state deformation and
stress that occur in wind turbine blades were inves—
tigated in [15]. A review of studies involving the design,
optimization and techniques of different wind turbine
blades were reported in [16].

The ability to accurately forecast wind speed can
reduce the adverse effects of wind power fluctuations on
the power system. Reliable prediction of wind speed
ahead of time can allow the power management system
enough time to manage the fluctuations in power
through other controls. It is reported that wind speed
and ultimately wind power forecasting methods are
divided into statistical learning methods, physical
models, modern machine learning techniques, and
hybrid methods. The statistical approaches are simple
and use historical data to predict wind speed in future
time domain [2]. These are based on statistical time
series or machine learning algorithms [17] which may
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include the artificial neural network (ANN) and support
vector machine continuous association rule mining
algorithm (CARMA) methods [18-20].

The physical approaches use the physical description
(solving differential equation of mass, energy, and
velocity) of the wind to model the onsite conditions and
it is good for long term prediction [10]. However, the
physical methods are complex and make use of many
inputs resulting in a high computational cost [5]. The
hybrid or combination methods on the other hand, com-
bines the predictive ability of various methods to imp-
rove the accuracy of the model. Owing to its memory
retaining capability and its performance on sequence
models, especially in natural language processing
(NLP), recurrent neural networks (RNN) and its variants
have become the de-facto models in renewable energy
forecasting. The Long-Short Term Memory (LSTM)
networks particularly have shown tremendous perfor-
mance in their use for wind speed energy prediction and
there is no shortage of work that has been done in this
area. However, the vast majority of these applications
have been based on certain environments. The major
reason for this is the fact that environments play a vital
role in how renewable energy systems behave. This in
turn have effect on their prediction. As such, each
environment is unique and thus often require unique
strategy for their predictions. Hence, the need for our
research.

In the presence of extensive dataset, a hybrid of
Ensemble Empirical Model Decomposition (EEMD),
Genetic Algorithm (GA), and LSTM was proposed in
[21] as a way to achieve short-term wind speed
prediction. The EEMD was utilized to decompose the
sequence wind speed data for feature extraction and the
GA-LSTM algorithm was applied to the extracted
features to predict future wind speed. The feature extra-
ction step culminates in a 38.48% increase in prediction
accuracy as opposed to the non EEMD model. The data
utilized was extracted from the wind speed data of
various sites across the United States. A combination of
variational mode decomposition (VMD), singular spec-
trum analysis (SSA), LSTM, and extreme learning
machines (ELM) was adopted in [22] for wind speed
forecasting. The SSA step was utilized as a form of fea-
ture extraction step to boost the prediction accuracy.
Several experiments were performed in which their
multi-step algorithm was compared with several other
algorithms and achieved better accuracy. The data uti-
lized here is from the samples obtained from one
observation site of a wind farm in China between May
to December, 2015. Again, the ELM and LSTM was
combined with differential evolution algorithm for wind
speed forecasting in [23]. In their work, data was
gathered from a wind farm in Inner Mongolia, China.
Two forecasting models were developed in which one
was for short-term prediction of 10 minutes and the
other for slightly longer prediction of one-hour ahead.
Autoencoders with LSTM [24], two-stage LSTM [25]
are some other methods that have been employed in
wind speed forecasting. A comprehensive review of the
various LSTM and support vector machines (SVM)
models utilized for wind speed forecasting is equally
presented in [26].
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In this study, a short-term prediction of wind speed
based on LSTM is proposed. The study presents five
different Cases to investigate the predictive ability of
LSTM in the short-term prediction of wind speed.
Besides, four Scenarios of time step ahead predictions
are further proposed to investigate the performance of
LSTM network in the presence of exogenous inputs.
The strategy adopted in this paper unveils unique
characteristics of LSTM in short term prediction of
wind speed when the training features are selected in
different combination.

2. DATA PREPARATION

Predication of wind speed requires the use of weather
parameters temperature, atmospheric pressure, and
relative humidity. Although, highly correlated para-
meter has the strongest impact on the wind data, it
usually not a good practice to include such data in ANN
forecast in the presence of other parameters [27]. How-
ever, in this study, wind direction data is not considered
because of its even extremely high fluctuating nature.
Furthermore, it does not add to the wind speed intensity
as well. The hourly mean data is obtained from a
meteorological station located in Dhahran, Eastern
Province, Saudi Arabia and covers a period of 40 years
from 1980 to 2019 resulting in 342,624 data points out
of which 100,000 have been used for training.
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Figure 1. Wind speed measured at 50m height, Dhahran
2018.
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Figure 2. Atmospheric pressure measured near the ground;
Dhahran 2018.
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The erratic nature of the whether parameters, hourly
variation with time (during January and June months for
2018), is shown in Figs. 1, 2 and 3. Higher magnitudes
of wind speed values are observed in June compared to
January (Fig. 1). This indicates the wind speed seasonal
variability which must be addressed by the models.
Higher values of atmospheric pressure measured are
observed during winter (January) compared to summer-
time (June) as shown in Fig. 2. The effect of height (2m
and 10m) and the season on ambient temperature values
is clearly visible in Figs. 3 (a & b). Two temperature
measurements are considered at heights of 10m and 2m
because vertical temperature difference causes the
movement of the air masses [28, 29].

2.1 Data Processing

The original data include the wind speed, temperature at
two heights, wind direction and pressure on hourly
averaged basis. All the column data is scaled to a range
of [0, 1] to obtain the best network performance. Since
the inputs to the network is the past time data series, so
to obtain better prediction accuracy, previous 60 hours
measured values are considered. Based on the input data
and the models, the future predictions are made under
four Scenarios which are 1, 2, 5, and 7 hours ahead for
all the cases presented here.

As an instance, Case 2 utilizes wind speed data
measured at 50m, and temperatures at 10m, and at 2m to
predict the future wind speed. To demonstrate the accuracy
and predictability of the models, several batches, each of
60 input data points, are selected randomly from the total
of 100,000 data points and next hour data as output.
Although other values of input data points such as 30, 45
and 75 were also tried but 60 gives the best trade-off
between accuracy, and training time. This gives an input
shape of (99940, 60, 3). The output is the corresponding
future wind speed of shape (99940, 1). From this data,
5000 randomly selected data points are used as the testing
data and the remaining as training sets, respectively.

2.2 Network Training

The network was trained based on backpropagation thro—
ugh time (BPTT) using the Adam optimizer. The mean
squared error (MSE) metric is used for the loss function.
The goal of the optimizer is to minimize the MSE
between the predicted future and the measured values.
Furthermore, we desired that the network be retrained
several times if the value of mean absolute error (MAE)
exceeds a predefined some threshold value (0.5 m/s). If
this is not achieved after several trials, then the best of the
trained results will be retained. During training, a batch
of 128 data points are utilized and the network is trained
for 40 epochs. For all the cases, training took on for an
average of 28 minutes on an intel Core i7, 8th Generation
CPU with 16 GB of RAM running on a windows 10 OS.

3. METHODOLOGY
Each parameter (wind speed, temperature, and pressure)

of the training sample is modeled as time series used as
input to the models. The time series samples are made of
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n observations [x;,x,,...,X,] which are used to predict the
wind speed in future time domain. Five models are
developed; each model is trained for one-hour ahead
prediction and thereafter-tested 1 hour, 2 hours, 5 hours
and 7 hours ahead. This implies that the input time series
is a function of the past historical hourly mean values.

The training input data for each sample is modeled as
a function F(.), as represented in Equation (1):

© (0) = F (¥ ()40, 6" (1-1) )

where i is the number of input parameters being consi—
dered, and t is the number of sample observations.

3.1 Network Training

ANN has network architecture consisting of neurons,
connecting strength, nodes properties, and updating rules
[30, 31]. The neurons have natural ability to store and
figure out experimental knowledge which can be used to
validate future occurrences [32]. Some of the unique
attributes of the ANN are its capabilities to pro—cesses
information with very high speed, mapping, tolerance for
faults, robustness and generalization. Thus, an ANN is
excellent in performance when it comes to system
identification, system modeling, optimization, and
prediction [33]. The ANN has been used to solve
complex nonlinear engineering problems in real-world
[32-35]. The ANN model is made of parametric compo-
nents like weights (w;), connecting synapses or links, bias
(b)), and activation function f{*). These parameters relate
the input x; to the output y; as shown in Fig. 4 and
expressed in the following equations. Each input, x; is
multiplied by the weight, w; to give the summation
output s;, Equation (2a). The output of the summation
applied to the activation function to give the final output
signal y;, equation (2b) which is the desired limit or range
of the amplitude. Example of activation functions listed
in [33] are linear, sigmoid, Gaussian, and Gaussian
complements which chosen based on specific problem.
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Figure 3. Temperature measured at height (a) 10m and (b)
2m, Dhahran 2018.
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where j and k are the numbers neurons and synapses
respectively.

i
Sj= 2 Wik )
k=1

Y =f[ijk+ij )
k=1

As suitable for this problem, a type of neural
network proposed in this study is a recurrent neural
network called long-short term memory (LSTM)
networks. A typical structure of a LSTM is shown in
Fig. 5.

3.2 Long-short Term Memory Networks

The LSTM NN was initially proposed in [36] and it is a
special type of recurrent network. The LSTM is based
on the principle that the status of a current cell can be
affected by the status of the previous cells. This is in
fact, a recurrent neural network.

It

Ces

JEE

Xe

he

Figure 5. A typical structure of an LSTM Network.

This description is depicted in Fig. 5. An LSTM cell
has an output gate, input gate, and a forget gate layer
also called the sigmoid layer. The function of the input
gate is to control the amount of data that goes into a
cell. The forget gate regulates the amount of the values
left in a cell while the output gate together with values
in the cell defines the output of an LSTM.

The LSTM can extract relevant information from
streams of data, remember them, and use them to
predict future values [37]. The tanh network ensures
that values stay between -1 and 1, thus regulate the NN
output. The cell state acts as hardware. It can carry
relative information through the sequence chain. It is
essentially the memory of the network. Information
from the earlier time steps carried to the previous time
steps, this helps to reduce the short-term memory [38].

The gates are types of NN that determine the
information that are allowed in the cell state, they learn
information that would be kept or forgetting during
training. The activation function in the gates is sigmoid
like the tanh function. The sigmoid squeezed infor-
mation between 0 and 1. This helps to decide what data
to remember or to forget. When a value is multiplied by
zero, it is forgotten and when it is multiplied by 1, it is
remembered. So, the gates help to regulate information
flow within a cell.

The forget gate (Fig. 6(a)) decides which information
is kept or discarded. Information from the previously

646 = VOL. 49, No 3, 2021

hidden state, A,; is combined with the one in the current
state and then fed into the forget gate. The output of the
forget gate f; is passed into the sigmoid (3) and the
information in the hidden state is passed on for further
processing. Information is further processed in the next
stage which is made of a sigmoid layer, known as the
input gate and a tanh layer. The input gate and a tanh
layer, shown in Figure 6(b) determines what infor—
mation is stored in the cell state. While the tanh layer
creates a vector of new candidate to be added to the
state, the sigmoid layer decides the value to be updated.
The output from the sigmoid output decides which
information to be kept from the tanh activation output.
Next, the cell state is calculated using the information
from the gates and the hidden state using Equation (1).
Because the hidden state has information about the
previous inputs and it helps in prediction. The tanh
output is multiplied with the sigmoid output (Fig. 7) to
determine the information in the hidden state (%} which
is now the output. The new cell and the hidden states
then carried over to the next time step.
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Figure 6. A section of the of an LSTM showing (a) forget
gate, (b) hidden gate [37].
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Figure 7. A section of the of an LSTM showing how the
combination of the sigmoid and tanh output [37].

The steps involved in calculating the inputs, forget,
and the output of the gates are described as follows:

Step 1: We calculate the inputs of the three gates and
the candidate cell using Equations (3) to (6).
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net ¢ =Wf-[ht1,1,xt]+bf 3)
net; =W, -[hﬂ,l,xt] +b; 4)
net, =W, -[htl_l,x, ] +b, &)
netz =Wg -[htl_l,xt]+bé (6)

where netz, net f-het;,net, are the candidate cell, forget

gate, input gate, and output gate respectively.
Step 2: We compute the three gate units using
equation (7-10).

fi :U(netf) @)
iy = o (net;) )
O, = o (net,) ©®)
C, = tanh netg ) (10
C = fyxCry +i x G, 11

where C; is the new cell state, f; is forget gate, i; is the
input gate, O, is the output gate and C, is candidate all
at time t. The activation function () and tahn( []) are
defined in equation (12)

1

O'(x)z (12)
I+

tan(x) = £ =< (13)
e +e

Step 3: Finally, we calculate the output, k, of the
LSTM using equation (14).

h; = O; x tanh(C;) 14)
4. PROBLEM FORMULATION

The training samples consist of training inputs and tar—
gets. The inputs are the hourly wind speed (HWYS),
hourly temperatures (at 10m and 2m) and hourly pres—
sure during 1980 to 2019. The training and the testing
features are further described in the next subsections.

4.1 Training Parameters

The description of the training parameters and their
combinations to achieve the different Cases is depicted in
Fig. 8. Furthermore, the results of each cases compared
and the effect of each exogenous parameter in the
prediction of wind speed are investigated. The models are
realized in each case and are tested to predict wind speed
output in four Scenarios, which include predictions 1
hour, 2 hours, 5 hours and 7 hours ahead of time.

i. Case1
In this case, the training for the LSTM model is made of
only one feature set of historical HWS data measured at
height 50m for training and target.

ii. Case2
This is the first case with exogenous inputs. The input
includes HWS in addition to temperatures measured at
10m and 2m. The target v; is the HWS used in Case 1.
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ili. Case3
This case utilizes the wind speed and the atmospheric
pressure as input. The target sample corresponds to the
hourly measured wind speed data.

iv. Case4
In this case, the LSTM model utilizes wind speed,
temperatures at 10m and 2m, and atmospheric pressure
as input. It includes all features being considered in this
study and the target is HWS.

v. Case5
The input in this case include the temperature at two le—
vels and pressure only. The target is the measured
HWS.

Wind speed at 50m

ture at 10m.

temperatureatam. === [ 5]
T ——

Figure 8. Description of the training parameters and input
features

4.2 Forecast Error Matrix

The forecast error for wind speed defined as the
difference between the measured and the predicted wind
speed values. The metrics for the evaluation of the
forecast error include mean absolute error (MAE), root-
mean-squared error (RMSE), mean squared error
(MSE), and symmetric mean absolute error. In this
paper, only MAE and MSE are used as the error metrics
and defined in equations (15,16).

>
t

MAE = =1=1 (15)
N

MAE =

>
e
=1!
N

(16)

where ¢, is the absolute difference between the fore—
casted and the measured values of the wind speed for
the testing period. The MSE computed to measure the
level of deviation between the forecasted and the
measured wind speed recorded. The forecast errors are
desired to be less than 0.5m/s, otherwise the training is
repeated until a better model is achieved and then the
final testing is done. Throughout the rest of this article,
measured wind speed is used interchangeably with real
speed or actual wind speed and predicted value is
interchangeably used as forecasted value.

5. RESULTS

The results of all the cases arepresented in this section.
The training MSE and prediction scatter plots for all
cases are shown in Fig. 9 to Fig. 11. The MSE values
decrease as the Epochs number increases and becomes
constant (~0.0005) after 40 Epochs. Fig. 9 shows the

VOL. 49, No 3, 2021 = 647



training MSE plot recorded in Case 1 while Fig. 10
depicts the scatter plots between the actual and the
predicted wind speed values. The scatter plots show that
both values are closely matched confirming the
effectiveness of the model. Also, Fig. 11 shows the
training MSE of Cases 2 to 4. It is evident that the MSE
values for Cases 2, 3 and 4 are approximately equal but
are far different from that for Case 5. Moreover, the
MSE becomes constant at the 15th epoch for the first
four Cases. However, the MSE in Case 5 attained the
40™ epoch before approaching a constant value and are
larger than the values in the previous Cases (Cases 1-4).

Also, Fig. 12 (a-d) show the correlation scatter
diagrams of each model in all Cases. The scatter plots
tell at a glance the performance of each model.
Accuracy of the forecast could be interpreted from the
correlation and regression of each plot. Furthermore,
correlation coefficients of all Cases and Scenarios are
given in Tables 1 to 5. Also, Table 6 summarizes all
training  parameters, network  algorithms and
assumptions for all Cases and Scenarios discussed in
this article. Each Case is further analyzed separately in
Sections 5.1 to 5.6.
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Figure 9. Training MSE, Case 1
i. Case1

In Case 1, the model is trained with hourly mean wind
speed only, made of 100, 000 data points for one hour
ahead predictions. The training performance of this case
is shown in Figs. 9 and 10. The predictions are obtained
for four different scenarios including 1, 2, 5 and 7 hours
ahead of time. The error metrics obtained from the
testing of this model is presented Table 1, where MSE
has higher magnitudes compared to MAE values.
However, these values tend to decrease as the prediction
duration increases from 1 hour to 7 hours ahead.

12

R%2=0.9571

104

Predicted Speed (m/s)
o

True Speed (m/s)

Figure 10. Correlation plots between measured and
predicted wind speeds, Case 1
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Table 1. Errors and correlation coefficients in case 1 for all
scenarios.

Hours MSE MAE Correlation
ahead Coefficient
1 0.2140 0.2992 0.9571
2 0.2013 0.2967 0.9704
5 0.1689 0.2850 0.9752
7 0.2042 0.2972 0.9650

Fig. 13(a) compares the measured and the predicted
wind speed values for one hour ahead. The predicted
values are in close agreement with the measured values
with few exceptions. Overall, the predicted values
follow the trend of the measured wind speed values
which is a strong justification of the accuracy of the
model. The same model used to predict wind speed
values 2, 5, and 7 hours’ head (Figs. 13(b), 13(c), and
13(d)). It is observed from these Figures that the model
is capable of predicting the wind speed values
accurately up to 7 hours ahead of time. In all of these
cases, except few exceptions, the predicted values
followed the trends of measured wind speed values.
This demonstrates robustness of the LSTM model in
short term predictions. Furthermore, the results
demonstrate that model realized by training input data
sample for an hour ahead using LSTM method could be
used to predict wind speed values up to 7 hours ahead
without compromising the accuracy as long as the input
is correctly fed into the model.

ii. Case2

In this case, the model is trained with a combination
of wind speed and exogenous (temperatures at 10m and
2m) inputs. The resulting MSE and MAE values are
summarized in Table 2. Comparing to Case 1, MSE and
MAE values are lower in this Case 2. This can be
attributed to the effect of temperature on wind speed
variations because the uneven heating of the earth
surface with time causes the wind flow. Again, like in
Case 1, MSE values are lower compared to MAE
magnitudes and are seen to be decreasing with
increasing prediction duration from 1 hour to 7 hours.
The MSE value decreases from 0.1961 to 0.1824 (~7%)
corresponding to prediction duration of 1 and 7 hours.

Table 2. Errors and correlation coefficients in Case 2 for all
scenarios

Hours MSE MAE Correlation
ahead Coefficient
1 0.1961 0.2798 0.9650
2 0.1849 0.2755 0.9480
5 0.1614 0.2738 0.9717
7 0.1824 0.2751 0.9471

One hour ahead prediction of wind speed compared
with the measured values in Fig. 14(a). The predicted
values have an excellent match with the measured ones
and more importantly follow the trend of measured
values with time. Furthermore, these results seem to be
a bit better than those in Case 1 (Fig. 13(a)). Also, Figs.
14(c-d) which are obtained using the same model to
predict the wind speeds at 2, 5 and 7 hours ahead show
that the model performed a little better than that in Case
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1. Moreover, the error metrics, summarized in Table 2,
also indicated that forecast with exogenous parameters,
temperatures at 10m and 2m in this, as inputs can
perform better in LSTM networks. Additionally, the
observation shows that the model realized for an hour
ahead prediction can be used predict wind speed for of
up to 7 hours ahead accurately.

iii. Case3

In this Case, the model is trained with wind speed and
pressure measured 50m and near ground surface as the
inputs. Table 3 summarizes the magnitudes of MSE and
MAE obtained in this Case. The values recorded are
also below 0.5m/s and thus indicative of high per—for—
mance. Fig. 11(c) shows that the MSE plot assume
similar pattern with those obtained for Case 1 and Case
2. The comparison between the predicted and measured
wind speed values (Fig, 15(a)) show very close agre—
ement with each other. Furthermore, a close look at
Figs. 13(a) and 14(a) and comparison with Fig. 15(a)
confirms better performance in Case 3 compared to
Case | and Case 2. The predicted values, for other
Scenarios for 2, 5, and 7 hours ahead predictions, are
also in close agreement with the measured wind speed
values (Figs, 15(b), 15(c), and 15(d)). It is observed
across all of these plots that this model performed
comparatively good like Cases 1 and 2.

Table 3. Errors and correlation coefficients in Case 3 for all
scenarios.

Hours MSE MAE Correlation
ahead Coefficient
1 0.2065 0.2938 0.9938
2 0.2003 0.2940 0.9662
5 0.1649 0.2804 0.9859
7 0.1791 0.2797 0.9749

—Case 2

Case 3

—Case 4.

15 Case 5

0 5 10 15 20 25 30 35 40 45
Epochs

Figure 11. Training MSE plots for Cases 2, 3,4 and 5.
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Figure 12. Correlation plots between measured and
predicted wind speeds for 1 hour ahead prediction for
Cases 2-5. (a) Case 2 (b) Case 3, (c) Case 4, (d) Case 5
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iv. Case4

Under this case, the model is trained with combination
of all features in Cases 1, 2, and 3 (wind speed,
temperatures at 2m and 10m, and atmospheric pressure)
and is tested for all Scenarios, as in previous cases.
Table 4 provides the model performance in terms of
MSE and MAE values. It is evident from the data in
Table 4 that for Scenario 1, (one hour ahead predictions)
and Scenario 2, (two hours ahead predictions), this
model (Case 4) performed better than the Cases 1 and 3.
For 5 hours ahead predictions (Scenario 3), the model in
Case 4 performed equally well compared to models for
Cases 1 to 3. However, MAE values remained almost in
the same range as in Cases 1, 2, and 3 for all Scenarios.

Table 4. Errors and correlation coefficients in Case 4 for all
scenarios.

Hours MSE MAE Correlation
ahead Coefficient
1 0.2005 0.2975 0.9334
2 0.1921 0.2946 0.9211
5 0.1659 0.2869 0.9415
7 0.1900 0.2919 0.9214

To further strengthen the predictability of this
model, the predicted values under all scenarios are
compared with measured hourly mean wind speed
values in Figs. 16(a-d). The patterns recorded in all
Scenarios showed that the predicted values have an
outstanding match with measured values. It is further
noted that the predicted values follow the changing
trends of measured wind speed values with time for all
Scenarios. As a visual observation, trend following
nature in the present Case 4 seems to be even better than
those in Case 1 (Fig. 13), Case 2 (Fig. 14), and Case 3
(Fig. 15). Hence it can be said that addition of
temperature and pressure as input parameters along with
the wind speed enhance the model predictability and can
be used if measurements are available.

Wind Speed ~ (m/s)

Wind Speed

20 e 30 a0 50 ° 10 20 .
(a) (b)

Wind Speec  (m/s)

(c) (d)

Figure 13. Wind speed prediction in Case 1. (a) 1 hour
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours
ahead.

v. Case5
This a special case, for the sake of completion, where
exogenous features, excluding the wind speed, are used
as input to train the model while the target remains the
wind speed. The error metrics, summarized in Table 5
for this Case 5, show outrageously high values of MSE
and MAE compared to all the previous Cases discussed
earlier. Also, the plots of the measured wind speed
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versus predicted show a poor match but still follows the
trend of the measured values (Figs. 17(a-d)). It is
observed that, this model’s predictive accuracy is poor
relative to other models presented in sub-sections 5.1 to
5.4. Therefore, for a short-term wind speed prediction
using an LSTM, the model should not be trained based
on exogenous parameters only as input.

Table 5. Errors and correlation coefficients in Case 5 for all
scenarios.

Hours MSE MAE Correlation
ahead Coefficient
1 3.5318 1.4736 0.5540
2 3.5540 1.4737 0.5436
5 3.6738 1.4900 0.4088
7 3.3094 1.4451 0.4499
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Figure 14. Wind speed prediction in Case 2, (a) 1 hour
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours
ahead.

Wind Speed

Wind Speed ()
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g " a@
Figure 15. Wind speed prediction in Case 3, (a) 1 hour
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours
ahead.

Table 6. Training parameters for all cases.
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Figure 16. Wind speed prediction in Case 4, (a) 1 hour
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours
ahead.

Vind Speed ()
a o 5 N
Wind Speed

2

Wind Speed  (m/s)
Wind Speed

5 o oo 5 &

() (d)

Figure 17. Wind speed prediction in Case 5, (a) 1 hour
ahead (b) 2 hours ahead, (c) 5 hours ahead, (d) 7 hours
ahead.

In this study, the LSTM method is used for short
term (1 hour, 2, 5, and 7 hours ahead) prediction of
wind speed. Five models are developed depending on
the training input parameters (Case 1: wind speed only;
Case 2: wind speed and ambient temperatures at 10m
and 2m; Case 3: wind speed and atmospheric pressure;
Case 4: wind speed, temperatures and pressure; and
lastly Case 5: temperatures and pressure values only).
The model performance is evaluated for four scenarios
(Scenario 1: 1 hour ahead of time, Scenario 2: 2 hours
ahead of time, Scenario 3: 5 hours ahead of time, and
Scenario 4: 7 hours ahead of time) using MSE and MAE
values. Furthermore, the predicted values are compared
with measured wind speed values with time to confirm
the trend predictability of proposed models.

P Case 1 Case 2 Case 3 Case 4 Case 5

Hidden layer 1 v v v v

Nodes 100 v v v v

Time step (hour) 60 v v v v

Inputs Wind speed Wind speed and Wind speed and | Wind Speed, Temperatures at
temperatures at pressure temperatures at 10m and 2m and
10m and 2m 10m and 2m, and | pressure

pressure

Output Wind speed v v v v

Training Adam v v v v

Optimizer

Training metrics MSE v v v v

Training epochs 40 v v v v

Batch size 128 v v v v
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6. CONCLUDING REMARKS

The study found that LSTM is a powerful tool (based on
MSE and MAE values and trend produce-ability) for
short term wind speed prediction. Furthermore, it is
observed that the accuracy of LSTM improves as the
number of training exogenous features increases. How—
ever, the algorithm requires that wind speed should be
part of the input training parameters in order to enhance
its accuracy. Moreover, the accuracy of prediction by
LSTM network may be compromised if the prediction
time ahead differs from the actual time step used for
training the network. The accuracy of prediction
deteriorates when only exogenous parameters are used
as inputs for training the model.

Finally, the study recommends that LSTM may be
used for short term prediction of wind speed with trai—
ning input parameters as used in Cases 1 to 4. In further
studies, an algorithm like the transformer can be chosen
to replace the LSTM. Also, ensembling of sequence
models may be considered to improve overall learning
performance of the model.
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KPATKOPOYHO INPEJIBUBAILE BP3UHE
BETPA BASBUPAHO HA MPEKAMA 3A
AYTOTPAJHE-KPATKOPOYHE MEMOPHJE

(LSTM)
Y.T. Canman, I11. Pexman, b. AnaBoje,
JL.LM. Anxemc.
EnextporpuBpesiHe  KOMIaHWje,  Mporpamepud |

WMHBECTHTOPH C€ 3ajlaKy 3a Behu mpolop Hpou3BoIme
eHepruje BeTpa W cojapHe eHepruje y mnocrojehu
eHepreTcku Mukc. Paj je moceOHO okpeHyT Kopuiihemwy
enepruje Berpa y Cayamjckoj Apadbuju. ITpoduradbunan
pa3Boj kKopumhema eHepruje BeTpa I0pa3yMeBa
NPEIU3HO  II03HABake Op3WHE BETpa Kako Yy
BPEMEHCKOM TaKO M y HPOCTOPHOM JoMeHy. bp3uHa
BeTpa je TMapaMeTap ca HajBUINEe TpeKuaa U
¢aykryanuja y mopehemy ca CBHM METEOPOJIOMIKIM
npoMeHbuBUM. HensBecHa mnpuponma Op3uHe BeTpa
OTeXaBa BpeMEeHCKO npensubhame cHare Berpa. bp3uHa
BETpa 3aBUCH O]l METEOPOJIOMKHX (haKTOpa Kao LITO Cy
NPUTHCAK, TeMIlepaTypa M peJaTUBHA BJIAXKHOCT.
[pensulame Op3uHE BeTpa je 01 3HAUAja 32 YIIPABIbALE
MpEXOM, IIEHOM €Hepruje, KBaJUTETOM CHaljeBamba
eHeprujoM. Y paay ce laje Ipemior 3a KpaTKOpO4HO,
BHIIIEAMMEH3MOHAIHO  TipenBuhame Op3uHe BeTpa
kopumhemem LSTM. Aytopu cy pa3Bwid IeT Mojena
O0yKOM Mpexa Ha OCHOBY H3MEPEHHX BPEIHOCTH
Op3uHe Berpa Ha 4ac y mepuomy 1980-2019.
yKJbydyjyhu ersoreHe uWHIyTe (TeMmmepaTrypy H
nputucak). YrBpheno je na je LSTM mohan anar 3a
KpaTKOpo4yHO Tpeasuhame Op3uHe BeTpa. Mehytuwm,
LSTM moxe OUTH M HEJOBOJLHO MpElH3aH METOJI Kaja
ce y 0OyKy Mpexa YK/byde erzoreHu (axTopu u
npeaBulama ayKUHE Tpajama yHaIpe.
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