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Intelligent Optimization of Wire-EDM 
parameters for Surface Roughness and 
Material Removal Rate while Machining 
WC-Co Composite 
 
This work presents the wire-EDM of WC-Co composite and optimization of 
process parameters using an integrated technique of response surface 
methodology (RSM), Vise Kriterijumska Optimizacija Kompromisno 
Resenje (VIKOR) and artificial bee colony (ABC) algorithm to obtain the 
best set of machinability indicators. Wire feed (WF), servo voltage (SV), 
pulse off-time (Pon) and pulse on-time (Poff) are the variable process 
parameters,whereas root mean square roughness (Rq), average surface 
roughness (Ra) and material removal rate (MRR) are the machinability 
indicators considered in the present work. A total of twenty nine 
experiments have been conducted based on Box Behnken design (BBD) 
technique of response surface methodology. VIKOR has been used for 
normalization of responses and followed by solving empirical models using 
ABC algorithm to obtain optimized process parameters setting. WF- 12 
m/min, SV- 65V, Pon- 116 µs, Poff- 20 µs are the optimum wire-EDM 
parameters obtained by intelligent RSM-VIKOR-ABC technique that 
produced best values of Ra- 4.51 µm, Rq- 5.64 µm, MRR- 0.061 mm3/min 
simultaneously. The validation test confirmed an improvement up to 15% 
in the response characteristics which proved the effectiveness of this novel 
hybrid technique for optimization. The optimum parameter setting is for 
ready industrial reference to attain best surface quality and process 
productivity for WC-Co composite machining by wire-EDM. 
 
Keywords: Composite; optimization; surface roughness; VIKOR; Wire-
EDM. 

 
 

1. INTRODUCTION  
 

Cemented tungsten carbide (WC) is one of the most 
successful composites developed by powder metallurgy 
using Ni or Co as binder at a temperature nearly equal 
to melting temperature [1, 2]. The ductile material like 
cobalt ameliorates the toughness value by which brittle 
fracture can be prevented. Due to unique characteristic 
of corrosion resistance and high hardness, the appli–
cations of material are found in tools, dies and other 
special equipment [3]. The WC-Co composites exhibit 
characteristics such as high melting temperature, high 
hardness and high strength, and therefore categorized as 
difficult to machine (DTM) material. Thus, the capa–
bility of machining processes is of great importance to 
make products by these composites. Conventional mac–
hining processes turn-out to be expensive and envi–
ronmentally unfriendly due to high tool wear, long 
machining time, high consumption of coolant, and 
excessive requirement of post finishing operations [4-7]. 
It has compelled to explore new ways to attempt machi–
ning of such DTM materials. One of such ways is to use 
advanced machining processes. Wire electric discharge 

machining (wire-EDM or WEDM) is a variant of 
electric discharge machining (EDM) machining process 
and works on the material removal principle of thermo–
electric erosion [8, 9]. In WEDM, a travelling wire 
(brass, copper or molybdenum) is used as an electrode. 
It has an ability to produce intricate profiles on hard and 
conductive materials with an excellent accuracy keeping 
a constant distance (i.e. without making mechanical 
contact) in between the workpiece and electrode [8].  

A review of past work has been conducted on EDM 
or WEDM of WC composites [10-14]. Optimization of 
machining process parameters is also an essential and 
challenging task to obtain the best possible 
machinability, specially when machine DTM materials 
using advanced machining processes [15-17]. As 
regards to that review of some past literature on 
optimization of EDM and wire-EDM parameters for 
DTM materials, using hybrid intelligent techniques, has 
been done [18-22]. 

Lee and Li [10] machined WC by EDM and 
investigated that the main parameters affecting the 
surface quality are pulse duration and peak current. Poor 
surface quality is obtained at high value of peak current 
and pulse duration the surface integrity along with the 
surface features of the machined. Naveed et al. [11] 
successfully fabricated various typical curved profiles 
on WC-Co composite using WEDM. They found pulse-
on time, servo voltage, and wire tension as the most 
significant factors affecting the radii of the profiles. The 
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work of Mahdavinejad [12] was based on the reason 
analysis for the instability during the machining of WC 
composite by EDM.  After the analysis, it was observed 
that the arcing pulses, short circuit and open circuit play 
a crucial role in the instability of machining. It was 
found that the pulse duration is directly proportional to 
machine tool instability. Increase in the pulse duration, 
enhance the instability due to more material removal 
from the surface of material, makes machined surface 
rough. The electrical conductivity of the material by the 
addition of cobalt severely affects the performance 
characteristics in machine tool. High amount cobalt 
percentage in material worsen the surface finish due to 
significant deposition on material. The high electrical 
conductivity of dielectric acts as a catalyst and 
deteriorates the surface quality [13]. The research 
completed by Lauwers et al. [14] emphasized on the 
analysis of the effect of grain size and cobalt percentage 
on the responses during WEDM. It was predicted that 
the change in binder percentage and its grain size varies 
the thermal conductivity of the material, which becomes 
the main reason for low cutting speed during the 
WEDM process.  

Several attempts have been made by researchers to 
find out the optimal condition by employing a wide 
range of statistical and/or soft computing type hybrid 
optimization techniques during machining of a wide 
range of DTM materials by EDM and WEDM. An 
important work reported by Majumder and Maity [18] 
highlighted the effectiveness of MOORA-Fuzzy hybrid 
technique for WEDM parameter optimization to obtain 
better surface roughness (average roughness Ra, root 
mean square roughness Rq, and maximum roughness 
Rz) and work microhardness during machining of 
nitinol shape memory alloy. A significant improvement 
upto 66% was achieved in reducing roughness on the 
nitinol part. A hybrid method including a back-propa–
gation neural network (BPNN), a genetic algorithm 
(GA), and response surface methodology (RSM) was 
found effective for optimization of WEDM parameters 
when cut tungsten material [19]. The optimal parameter 
setting yielded 0.2704 g/min MRR and 1.3561µm Ra. 
Mukherjee et al. [20] used six different optimization 
algorithms for WEDM parameter optimization to obtain 
higher material removal rate, lower wire wear, and 
better surface finish. They found biogeography-based 
optimization technique as the most superior for single as 
well as multiperformance optimization. A hybrid analy–
tical hierarchy and TOPSIS approach was successfully 
used to solve the multi–criteria decision making 
problem in electric discharge machining of tungsten 
carbide (WC-Co) using graphite electrode [21]. The 
optimum values of responses were 4.0125 mm3/min 
MRR, 0.00012 gm/min tool wear rate, and 2.28 µm 
surface roughness. El-Bahloul [22] conducted research 
work on optimization of wire-EDM parameters using 
statistical method integrated with Fuzzy and success–
fully improved WEDM productivity and surface quality 
of 304 stainless steel. 

Literature review summarizes that hybrid optimi–
zation techniques have been effectively used for succes–
sful optimization of EDM and WEDM processes; 
however, there exists a dearth of research on the optimi–

zation of WEDM parameters using hybrid intelligent 
approaches to secure the best machinability of WC-Co 
type material. The present research attempts to fulfil this 
gap where WC-5.4%Co composite is machined by 
WEDM and further process parameters are optimized 
using an intelligent approach based on hybridization of 
response surface methodology (RSM), Vise Krite–
rijumska Optimizacija Kompromisno Resenje (VIKOR) 
and artificial bee colony (ABC) algorithm. 
 
2. EXPERIMENTAL DETAILS 

 
WC-Co composite was used in the present research with 
a 5.4% of cobalt.  The energy dispersive x-ray analysis 
(EDXA) of this material is shown in Fig. 1. The dimen–
sions of work-material are 200mm×8mm×8mm and the 
specimen size is 15mm×5mm×8mm. EDXA was done 
to confirm the chemical composition of material. WC-
Co has widespread applications as a die and tool mate–
rial. The density and hardness of material are 14.95 
g/cm3 and 77 HRC respectively. 

 
Figure 1. EDXA showing composition of WC-Co composite 

Five-axis Ecocut (ELPLUS-15) CNC WEDM is used 
for the experimentation purpose. In this work, four 
WEDM process parameters such as wire feed (3-12m 
/min), servo voltage (35-65V), pulse off-time (20-40 μs) 
and pulse on-time (108-116 μs) have been varied at 
three levels each. The working range as described above 
is evaluated after performing preliminary experiments. 
The zinc coated brass wire (diameter 0.25mm) was used 
for the machining of WC-Co composite to sustain high 
discharge energy. Fig. 2 depicts the sequence of tasks 
performed in the present work. The experiments were 
planned according to Box Behnken design (BBD) de–
sign of experiments technique of response surface 
methodology [23]. The experimental design matrix is 
depicted in Table 1. A total of 29 experiments were 
conducted. Material removal rate (MRR), average 
surface roughness (Ra) and root mean square deviation 
(Rq) are the response characteristics investigated as 
machinability indicators in the present research.  

In this work, the MRR (higher the better type), and 
Ra and Rq (smaller the better type) characteristics make 
it a multi-objective problem. The metal removal rate is 
evaluated using formula (1): 

 MRR= CR*Kerf width*height (1) 

The cutting rate (CR) during machining was 
recorded from the WEDM machine tool display. The 
surface roughness was measured across the wire travel 
using Mitutoyo make surface roughness tester SJ-301P.  
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Figure 2. Sequence of tasks performed in the present work 

3. RESULTS AND DISCUSSION 
 

The experimental results at every parameter com–bi–
nation for all 29 runs are shown in Table 1. The 
methodology adopted for optimization in the present 
work is shown in Fig. 3. 

 
Figure 3. Methodology adopted in the present work 

3.1 Normalization by VIKOR 
 
The term VIKOR is evolved from Serbian word Vise 
Kriterijumska Optimizacija Kompromisno Resenje [24]. 
This is used to suggest a feasible solution where the 
process is measured by two or more than two response 
characteristics. It was developed in 1980 by Serafim 
Opricoveic to solve different problems associated with 
multiples responses. The problems are normally linked 
with conflicting in nature (combination of higher-the-
better and smaller-the-better). 

In current work, the responses are a combination of 
attributes, which are varying in values also. Therefore, 
initially the values are normalized according to the 
standard method adopted [25]. After the identification 
of objectives, the decision matrix is developed as per 
equation (1). 
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where, i=1,2,……,m shows the input variables and  
j=1,2,3,….,n signifies the response variables. 

Table 1. Experimental matrix and results 

Run
No 

WF 
(m/min) 

SV 
(V) 

Poff 
(µs) 

Pon 
(µs) 

MRR 
(mm3/min) 

Ra 
(µm) 

Rq 
(µm)

1 9 50 40 108 0.007 2.44 3.26
2 6 50 20 112 0.038 3.85 4.67
3 9 50 30 112 0.021 3.28 3.87
4 9 65 40 112 0.036 3.73 4.54
5 12 50 40 112 0.027 3.37 4.19
6 12 50 30 108 0.009 2.37 3.24
7 9 50 30 112 0.026 3.19 3.83
8 12 50 30 116 0.044 4.41 5.28
9 9 35 30 108 0.018 2.79 3.62
10 9 65 30 116 0.044 4.48 5.33
11 9 50 30 112 0.022 3.13 3.94
12 6 50 30 116 0.041 4.23 5.12
13 9 50 40 116 0.04 4.14 5.01
14 9 35 30 116 0.045 4.51 5.32
15 6 50 30 108 0.008 2.45 3.3 
16 9 50 30 112 0.023 3.22 3.85
17 9 65 20 112 0.037 3.89 4.71
18 6 35 30 112 0.03 3.57 4.49
19 9 50 20 108 0.01 2.54 3.35
20 9 35 40 112 0.037 3.79 4.58
21 12 35 30 112 0.033 3.64 4.55
22 12 65 30 112 0.029 3.49 4.39
23 9 50 30 112 0.024 3.23 3.97
24 9 35 20 112 0.039 3.92 4.74
25 12 50 20 112 0.039 3.89 4.71
26 6 65 30 112 0.029 3.43 4.32
27 9 50 20 116 0.048 4.98 5.99
28 9 65 30 108 0.01 2.57 3.41
29 6 50 40 112 0.025 3.18 3.98

 
After the development of decision matrix, the data 

normalization takes place according to the Equation 2. 
All the data is converted into dimensionless number 
using ranking system and is depicted in Table 2. The 
performance index (PI) evaluated for all response 
characteristics is shown in Table 2. 
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3.2  ABC Algorithm 
 
The ABC algorithm was suggested by karaboga in 
2005, which simulates the nature of bee colony [26]. it 
is used for the optimization in different problems of 
services and manufacturing. Three types of bees are 
used in the bee colony; onlooker bee, employee bee and 
scout bee. Onlooker bees watch the employee bee to 
check that the food source is worth anymore. Employee 
bees work to collect the food and store it at particular 
food source. The third type of bees (i.e. scout bees) 
looks after the new food source location.    

The food source location is assumed as the solution 
of optimization problem in the search space. Initially, 
the number of bees available in the hive will be con–
sidered as the number of food source. The objective 
function on that position defines the quality of food 
source (fitness value). The smart nature of the bees is 
explained in the following steps:  

• Bees start to explore the locations for good food 
source food in search space (fitness value).   

• Once the food source is located, the bee become 
employee bee and starts to excerpt the food from the 
searched source. 
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•  The nectar extracted by the employee bee is 
uploaded in the hive by the employee bee after 
returning. After uploading the nectar, either she go back 
to the food source or share information about the food 
source location by performing dance. 

• Once the food source became empty, the employee 
bee converted into scout bee for searching new food 
source location. 

• The onlooker bees stay back in the hive to wait the 
employee bee. They check the quality of food source 
and select the best source providing maximum profit.  

• The selection of the source is made according to its 
quality (fitness value). Primarily, three types of bees are 
described, however in actual there are two types of bees 
i.e. onlooker and employee types. The third type i.e. 
scout type is the exploratory nature of the employee 
bees and onlooker bees.   
Table 2. data normalization and evaluation of pi 

Sr. 
No. 

Normalized 
MRR 

Normalized 
Ra 

Normalized 
Rq PI 

1 0.0415 0.1269 0.1380 0.3064 

2 0.2253 0.2002 0.1977 0.6232 

3 0.1245 0.1706 0.1638 0.4589 

4 0.2134 0.1940 0.1922 0.5996 

5 0.1601 0.1753 0.1774 0.5127 

6 0.0534 0.1232 0.1372 0.3138 

7 0.1541 0.1659 0.1621 0.4822 

8 0.2609 0.2293 0.2235 0.7137 

9 0.1067 0.1451 0.1533 0.4051 

10 0.2609 0.2330 0.2257 0.7195 

11 0.1304 0.1628 0.1668 0.4600 

12 0.2431 0.2200 0.2168 0.6798 

13 0.2371 0.2153 0.2121 0.6645 

14 0.2668 0.2345 0.2252 0.7265 

15 0.0474 0.1274 0.1397 0.3145 

16 0.1364 0.1675 0.1630 0.4668 

17 0.2194 0.2023 0.1994 0.6211 

18 0.1779 0.1857 0.1901 0.5536 

19 0.0593 0.1321 0.1418 0.3332 

20 0.2194 0.1971 0.1939 0.6103 

21 0.1956 0.1893 0.1926 0.5776 

22 0.1719 0.1815 0.1859 0.5393 

23 0.1423 0.1680 0.1681 0.4783 

24 0.2312 0.2039 0.2007 0.6357 

25 0.2312 0.2023 0.1994 0.6329 

26 0.1719 0.1784 0.1829 0.5332 

27 0.2846 0.2590 0.2536 0.7971 

28 0.0593 0.1336 0.1444 0.3373 

29 0.1482 0.1654 0.1685 0.4821 
 

The present research problem of optimization is the 
constrained type optimization problem. Thus, handling 

method proposed by Deb [27] is used for the 
optimization. The main reason for this selection is the 
three simple and basic heuristic rules. In Deb’s method, 
the two solution are always compared at a time and 
having tournament selection operators. The three 
heuristic rules are as: (i) the feasible solution is always 
given more importance rather than infeasible solution, 
(ii) if two feasible solutions appeared, then importance 
is given to that solution which have better objective 
function value, (iii) The one having minimum constraint 
violation is selected from two infeasible solutions. 

The analysis of data by ABC is fast due to non-
requirement of feasible solution. It can be operated on 
any population and directs towards the feasible region. 
The initialization by the feasible solutions is time-
consuming. ABC algorithm eliminates this and saves a 
lot of time. Scout production algorithm suggests a 
mechanism which allows the infeasible solutions in the 
population. The food location can be investigated by 
ABC algorithm using the following Equation (3). 

 

( ) ,
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            (3) 

 

where k  { 1,2,3…., SN} is an alternately select index. 
K should be different from ‘i’ and determined ran–
domly. The range of Rj is [0,1] and is a real number. 
However, j  {1, 2, …, D}. M-modification rate. The 
scouts are produced according to predetermined period. 
This period is terms as a control variable for scout 
production period (SPP) of the algorithm.  The pseudo-
code for the ABC algorithm is provided in appendix. 
The mathematical model developed after the analysis of 
performance index evaluated in Table 3 is given in 
equation (4). 
 

Performance Index = -0.58065+0.033373 * 
WF+2.56829E-003  * SV-6.73529E-003  * Poff (4) 

+7.95666E-003* Pon                     
 

The range selected for the optimization of PI is 
given in Equations 5-8. This range is termed as the 
search space of food location. Equation 4 is the fitness 
function which is to be optimized. 

 

                           6≤WF ≤ 12                  (5) 

                            35≤SV≤65                  (6) 

                            20≤Poff≤40                  (7) 

                          108 ≤Pon ≤116                  (8) 

 
It is presented in Fig. 4 that with the increase in 

number of iterations the PI value increases from 0.65 to 
0.775 at 17th iteration. After that its value remains 
constant at 0.775 till the number of iterations remains 
constant. The time taken by ABC algorithm is very 
small (~4s) to get the optimized value of PI. The 
position of food source i.e. the setting of process 
variable at which best value of PI is obtained as WF: 
12m/min; SV: 65V; Poff: 20 µs; Pon: 116 µs.  
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Figure 4. Evaluation of performance index with the number 
of iterations 

3.3 Influence of Process Parameters 
 

It is evident from Fig. 5 that increasing WF and Pon 
increase MRR, however it is found to be decreased with 
SV and Poff. The maximum MRR is obtained at high 
WF (12m/min), low SV (35V), low Poff (20µs) and 
high Pon (116 µs). Pooled ANOVA for MRR is given in 
Table 3.  

The model is found significant and lack of fit is non-
significant, which proves the statistical accuracy of the 
result data. The WF and SV are forcefully incorporated 
in the model to make it hierarchical. The P-value for 
WF and SV are greater than 0.05, still these terms are 
considered in the model. This happens due to the 
quadratic terms of the WF and SV. The P-value of the 
quadratic terms of WF and SV are less than 0.05, which 
makes these terms an integral part of model. Figure 5. Variation of MRR with variable process 

parameters 

Fig. 6 shows that the minimum Ra is obtained at low 
WF (6m/min), medium SV (50 v), medium Poff (30µs) 
and low Pon (108 µs). Ra depends upon the crater size 
eroded from the work surface. The crater size varies as 
per the amount of energy (discharge) in the spark gap. 
At high discharge energy parameters (high WF, low SV, 
low Poff and high Pon), the crater size is large which 
increases the Ra value. The pooled ANOVA for Ra is 
given in Table 4, which represent signs of good 
ANOVA by the values of model and lack of fit. The 
model became hierarchical after the insertion of SV. 
Pon has maximum contribution to the Ra value due to 
maximum SS value and F-value. From the statistical 
analysis, it has been found that the interaction term of 
Poff and Pon, quadratic terms of SV and Poff play a 
crucial role in the modeling of Ra. The trends of 
variation of Rq were also found almost similar to Ra. It 
is worth mentioning that the medium WF (9m/min), 
medium SV (50v), medium Poff (30µs) and low Pon 
(108 µs) produce the minimum Rq value. The pooled 
ANOVA for Rq is given in Table 5 and presents a 
significant model and nonsignificant lack-of-fit. The 
statistical summary shows that the Poff, Pon, interaction 
term of Poff and Pon, quadratic term of WF, SV, Poff 
and Pon play very influential role in the analysis of Rq. 
The term WF and SV have greater P-values, still these 
terms are considered in the model. This is due to the 
quadratic terms of these factors. Thus, to make 
hierarchy, these factors are considered in the model. 
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Figure 6. Variation of Ra with variable process parameters 

Table 3. Pooled anova for MRR 

Source SS df MS F-Value P-value  
Model 4.01E-03 7 5.73E-04 70.5 < 0.0001 significant
WF 8.33E-06 1 8.33E-06 1.03 0.3226  
SV 2.41E-05 1 2.41E-05 2.97 0.0997  
Poff 1.27E-04 1 1.27E-04 15.61 0.0007  
Pon 3.33E-03 1 3.33E-03 410.48 < 0.0001  
WF2 4.23E-05 1 4.23E-05 5.21 0.0331  
SV2 3.19E-04 1 3.19E-04 39.23 < 0.0001  
Poff2 2.74E-04 1 2.74E-04 33.74 < 0.0001  
Residual 1.71E-04 21 8.12E-06    

Lack of Fit 1.56E-04 17 9.16E-06 2.48 0.1968 not 
significant

Pure 
Error 1.48E-05 4 3.70E-06    
Cor Total 4.18E-03 28     

Table 4. Pooled anova for Ra 

Source SS df MS F-Value P-value   
Model 12.78 6 2.13 170.63 < 0.0001 significant
SV 0.033 1 0.033 2.65 0.1178   
Poff 0.49 1 0.49 39.09 < 0.0001   
Pon 11.19 1 11.19 896.67 < 0.0001   
Poff*Pon 0.14 1 0.14 10.97 0.0032   
SV2 0.55 1 0.55 44.01 < 0.0001   
Poff2 0.51 1 0.51 40.57 < 0.0001   
Residual 0.27 22 0.012       

Lack of 
Fit 0.26 18 0.015 4.78 0.07 not 

significant
Pure Error 0.012 4 3.05E-03       
Cor Total 13.06 28         

 Table 5. Pooled anova for Rq 
Source SS df MS F-Value P-value   
Model 14.05 9 1.56 117.76 < 0.0001 significant 
WF 0.019 1 0.019 1.45 0.2436   
SV 0.03 1 0.03 2.26 0.1489   
Poff 0.57 1 0.57 42.82 < 0.0001   
Pon 11.74 1 11.74 885.69 < 0.0001   
Poff 
*Pon 0.2 1 0.2 14.94 0.001   

WF2 0.17 1 0.17 13.03 0.0019   
SV2 0.95 1 0.95 71.84 < 0.0001   
Poff2 0.79 1 0.79 59.74 < 0.0001   
Pon2 0.17 1 0.17 12.83 0.002   
Residual 0.25 19 0.013       
Lack of 
Fit 0.24 15 0.016 4.37 0.082 not 

significant 
Pure 
Error 0.014 4 3.62 

E-03       

Cor 
Total 14.3 28         

 
4. VALIDATION 
 
After obtaining the optimal parameter combination 
using hybrid RSM-VIKOR-ABC approach, the confir–
mation experiments were conducted (at WF: 12m/min; 
SV: 65V; Poff: 20 µs; Pon: 116 µs) to check the 
efficacy of proposed approach. The improvement in the 
experimental results and the closest pi values results 
(MRR setting is selected due to maximum PI out of 
MRR, Ra and Rq) are also shown in Table 6. It is also 
analyzed that the predicted values have a close 
agreement with the experimental values. an ameli–ora–
tion of 11.51%, 1.67%, 15.96% and 14.54% was obtai–
ned in PI, MRR, Ra and Rq respectively using the 
proposed approach of the optimization. Thus, the 
proposed approach of optimization can be effectively 
used to optimize the process variable for the WEDM of 
WC-Co composite. 
Table 6. Confirmation experiments at the optimal setting 
suggested by RSM-VIKOR-ABC 
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Predicted 
Results 

Confir
mation 
results 

PI 0.695 0.608 0.508 0.775 - 11.51% 
MR
R 

0.06 0.007 0.006 0.057 0.061 1.67% 

Ra 5.23 2.31 2.31 4.47 4.51 15.96% 
Rq 6.46 3.19 3.06 5.59 5.64 14.54% 
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5. CONCLUSIONS 
 

In the present work, WC-Co composite type DTM 
material has been successfully cut by WEDM at 
optimum process parameters obtained by hybrid RSM-
VIKOR-ABC technique. The following conclusions can 
be drawn from this research: 

1. The WC-Co composite can be successfully mac–
hined by WEDM and the proposed approach predict re–
sults with ±5%.  

2. The optimal setting of WEDM for machining of 
WC-Co, as obtained by RSM-VIKOR-ABC is WF: 12 
m/min; SV: 65V; Poff: 20 µs and Pon: 116µs.  

3. This novel hybrid intelligent optimization techni–
que successfully enhanced wire-EDM produc–tivity and 
surface quality of WC-Co composites. The results for 
multiperformance optimization are: Ra- 4.51 µm, Rq- 
5.64 µm, MRR- 0.061 mm3/min. 

4.  ANOVA of the MRR, Ra and Rq indicated that 
the pulse off-time and pulse on-time are the most con–
tributing factors in the WEDM of WC-Co composite.  

5.  An improvement in the response characteristics is 
obtained while conducting the validation experiments at 
the optimum process parameter setting. An improve–
ment of 11.51%, 1.67%, 15.96% and 14.54% is 
obtained in PI, MRR, Ra and Rq respectively.  

6. Whether to obtain best surface quality or process 
productivity, or both simultaneously, optimum settings of 
wire-EDM parameters obtained in the present work can 
be readily used for machining of WC-Co compo–sites. 

The hybrid intelligent approach can also be used for 
the prediction and optimization of other WEDM res–
ponse characteristics or machinability indicators, na–
mely, corner deviation, residual stresses, recast layer 
thickness, dimensional accuracy etc. It can also be tried 
for machinability enhancement of other DTM materials 
in case of various other advanced machining processes. 

APPENDIX 

Pseudo-code for ABC algorithm used in present 
research is provided below:  
1. Initialize the solutions (xi,j) for the populations, 
where, i = 1…..SN, j=1,……,D 
2. Investigate the population  
3. Cycle=1 
4. Repeat 
5. Find out the new solutions (vi,j) for the employed 
bees 
6. Selection process be applied according to Deb’s method 
7. Evaluate Pi,j (i.e. probability value) for xi,j. 
8. Find out the new solutions (vi,j) for the onlooker 
bees using solution (xi,j) and probability Pi,j. 
9. Repeat step 6 
10. Investigate the unrestricted solutions for scout (if 
available) and replace them with new random solution 
11. Remember the best solution attained till now 
12. Cycle= cycle+1 
13. until cycle = MCN 
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ИНТЕЛИГЕНТНА ОПТИМИЗАЦИЈА EDM 
ПАРАМЕТАРА ПОВРШИНСКЕ ХРАПАВОСТИ 
И БРЗИНЕ УКЛАЊАЊА МАТЕРИЈАЛА ПРИ 
МАШИНСКОЈ ОБРАДИ WC-Co КОМПОЗИТА 

 
К. Гупта 

 
Приказана је обрада WC-Co композита електричним 
пражњењем (ЕDM) и оптимизација параметара 
процеса применом интегрисаних техника RSM, 
VIKOR и АВС алгоритма да би се добио најбољи 
скуп индикатора обрадљивости. Размотрени су про–
менљиви параметри процеса WF, SV, Pon и Poff, као 
и индикатори обрадљивости Rq, Ra и MRR. Из–ве–
дено је укупно 29 експеримената базираних на ВВD 
техници методологије одзива површине. VIKOR је 
коришћен за нормализовање одзива док је решавање 
емпиријских модела обављено помоћу АВС алго–
ритма у циљу добијања скупа оптими–зо–ваних па–
раметара процеса. Оптимални ЕDM пара–метри су 
WF-12m/min, SV-65V, Pon-116μs, Poff-20μs добијени 
интелигентном RSM-VIKOR-ABC техни–ком која је 
дала истовремено најбоље резултате Ra-451μm, Rq-
5,64μm, MRR-0,061mm3/min. Тест вали–дације је 
потврдио побољшање од 15% карак–те–ристика 
одзива чиме је доказана ефикасност нове хибридне 
технике оптимизације. Оптимални пара–метри се 
могу одмах користити у индустрији за добијање 
најбољег квалитета површине и продук–тивности 
код обраде WC-Co композита ЕDM методом. 

 


