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Some Applications of a Novel 
Desirability Function in 
Simultaneous Optimization of 
Multiple Responses  
 
In the framework of multi-response optimization techniques, the 
optimization methodology based on the desirability function is one of the 
most popular and most frequently used methodologies by researchers and 
practitioners in engineering, chemistry, technology and many other fields 
of science and technique. Numerous desirability functions have been 
introduced to improve the performance of this optimization methodology. 
Recently, a novel desirability function for multi-response optimization is 
proposed, which is smooth, nonlinear, and differentiable, and thus more 
suitable for applying some of the more efficient gradient-based 
optimization methods. This paper evaluates the performance of the 
proposed method through six real examples. After a comparative analysis 
of the results, it is shown that the proposed method in a certain measure 
outperforms the other competitive optimization methods. 
 
Keywords: desirability function, multi-response optimization, design of 
experiments      

 
1. INTRODUCTION  

 
In general, there are two categories of optimization 
techniques. The first deals with single optimization 
problems, while the second solves multi-response 
optimization (MRO) problems.  

However, in practice, each product/process/system 
consists of many quality characteristics (responses) that 
need to be optimized. In such circumstances, it is not 
reasonable to optimize each response separately, since 
an improvement in one response, as a rule, degrades at 
least one or several of the remaining responses. 

Therefore, in real world problems, MRO involve the 
simultaneous optimization of many different and often 
conflicting responses. In such problems, there is no 
unique optimal solution, but rather a set of alternative 
solutions.  

There are many different MRO optimization techni–
ques, but most of them are very complex and sophisti–
cated [1-5]. Therefore, researchers and practitioners 
have a lot of difficulty in selecting the appropriate 
technique for a specific problem at hand. 

Desirability function methodology is an easy-to-use 
and well-established approach and, as such, quite 
acceptable to many researchers and practitioners. 

The desirability function-based optimization appro–
ach combines desirability function (DF) and design of 
experiments (DOE). The application of this metho–
dology is not limited to specific optimization problems; 
on the contrary, it is one of the most widely used 
methodologies in many fields of science, research and 
development [5-8].  

It is commonly known that there is no efficient 
general-purpose universal optimization method. Among 
the many optimization techniques presented for 
desirability functions that can be employed to solve 
MRO problems, the direct search (DS) method and its 
modifications are still the “first resort methods” [9], and 
sometimes the only options for solving a large class of 
optimization problems. 

 In many cases the DS algorithms can provide 
acceptable approximation solutions, but it has the 
propensity to fall into the trap of a local optimum (i.e. it 
is prone to converge to a non-stationary point), so it is 
necessary that the algorithm is starting in multiple initial 
points into the feasible space in an attempt to find the 
best (global) optimum. However, in the desirability 
function methodology such a danger is not large, since 
the subregion of interest for optimization is relatively 
narrow, certainly less than the experimental region 
considered. Some of the DS methods (e.g. Nelder-Mead 
simplex method) are very popular nowadays within the 
research and scientific community because they are 
simple, flexible, easy to understand and relatively easy 
to implement. 

Commercially available software products usually 
do optimization of desirability functions by derivate free 
search methods, or gradient-based methods.     

It is necessary to note that some alternatives to 
desirability function-based approach have been develo–
ped, such as gray rational analysis, physical progra–m–
ming, vectorial optimization, quality loss function app–
roach, principal component analysis, process capa–bility 
index-based aproach, and their hybrid variants [9-13]. 

 In recent years, considerable attention has been 
paid by researchers and practitioners towards employing 
some successful metaheuristic search techniques for 
global optimization, such as genetic algorithm (GA), 
simulated annealing (SA) algorithm, particle swarm 
optimization (PSO) algorithm , ant colony optimization 
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(ACO) algorithm, tabu search (TS) algorithm, artificial 
bee colony (ABC) algorithm, differential evolution 
(DE), including the later developed cuckoo search (CS) 
algorithm, imperialist competitive algorithm (ICA) 
teaching-learning-based optimization (TLBO) method, 
gray wolf optimizer (GWO), and many others, which 
can provide the best feasible solution of an optimization 
problem [14-20]. At the present time, among these 
algorithms, the classical genetic algorithm and its hybrid 
variants are still the most popular techniques for various 
optimization problems [15], [21], especially in material 
processing technologies [16], [22], [23]. Many of the 
above mentioned algorithms are used for single and/or 
multi-response optimization. 

 In some multi-response optimization problems, the 
graphical approach can be very useful when two design 
factors (input variables) are considered and the number 
of responses (output variables) is not too large. In such 
cases, the contour plot methodology allows to find 
visually the optimal conditions that simultaneously 
satisfy all the involved responses. For three design 
factors, utilizing a large number of successful iterations, 
the near-optimal solution can be found. When the 
number of design factors is greater than three, the 
graphical approach becomes impractical. 

 The remainder of this paper is organized as follows. 
In the second Section is presented a novel desirability 
function in detail. In the third section, the optimization 
procedure is formulated. To verify the proposed 
approach, six examples are considered in the fourth 
Section. In the fifth Section different optimization 
results are compared and discussed. Finally, brief 
concluding remarks are given in the sixth Section.  

 
2. DESIRABILITY FUNCTION 

 
Obviously, any type of free-form transformation 
(exponential, power, logarithmic, logistic) may be 
employed as a desirability function [5, 24-29].  

Hitherto, many desirability functions have been 
introduced to improve the performance of the 
desirability-based optimization method.  

Recently, a novel desirability function for multi-
response optimization was recommended [29], which is 
a smooth, nonlinear, and differentiable function at target 
points. This desirability function was defined as:  

2(1 ) , 1 1( )
0,
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j j

j j
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otherwise

ψ ψψ
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where ))(ˆ( xjj yf=ψ  is the dimensionless converting 
function, which linearly converts the predicted (fitted) 
responses into coded variables ).....,,2,1( mj = , )(ˆ xjy  
is the j th estimated response function, x  is the vector 

of the coded input variables )( nRx∈ , jr  is the shape  

parameter )0( >jr . 
The individual desirability functions are defined 

according to the nature of the responses to be optimized, 
which are usually classified in three main categories: 

1. The nominal-the-best (NTB); 

2. The larger-the-better (LTB); 
3. The smaller-the-better (STB).  

Note: For the one-sided desirability function 
s
jj rr =  (LTB) or t

jj rr =  (STB), and for the two-sided 

symmetrical desirability function (NTB) t
j

s
jj rrr ==  . 

A graphical representation of these functions is 
given in Figure 1.   

 
a) 

 
b) 

 
c) 

Figure 1. Graphical representation of desirability function: 
a) NTB, b) LTB, c) STB 

Depending on whether a particular response has to 
be minimized, maximized or assigned to a certain target 
value, the desirability function from equation (1) can be 
expressed as follows:  
• for the NTB type response,    
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• for the LTB type response,     
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• for the STB type response, 
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where min
jy and max

jy  are the lower and the upper 
bound (specification limits) on the j th response, res–

pectively, s
jr and t

jr are the j th adjustable shape para–

meters, and jT is the target value of the j th response 
which is a NTB- type one.  

 For some reason, the decision maker (DM) may 
decide that a response has to be "in range". In such a 
case, the individual desirability function is the simplest, 
namely 1≡jd for max

jj
min
j y≤)(ŷ≤y x  (otherwise, 

0≡jd ). 

The upper bound max
jy  denotes a large enough 

value for the LTB type response, whereas the lower 
bound min

jy  denotes a small enough value for the STB 
type response. In other words, these bounds are target 
values for LTB- and STB-type responses. If s

jr or t
jr  

increases, the desirability function becomes more 
convex with more emphasis to the target; on the 

contrary, if s
jr or t

jr decreases, the desirability function 
becomes more concave with less emphasis to the target. 

In general, in both the one-sided desirability 
functions (STB or LTB) and the two-sided desirability 
function (NTB) is t

j
s
j rr ≠ .  

 
2.1 Determination of bounds 

 
The bounds of design factors ix are defined when 
selecting the experimental matrix, so they are known 
during the optimization process. 

The bounds (and targets) of each response yj(x) 
should be determined in advance to define individual 
desirability functions. These bounds may be chosen 
arbitrarily in a different way, for instance, on the basis 
of product/process operating limits, the decision 
maker’s subjective choice, consensus of experts, etc.  

 Instead of using the preference information about 
responses a priori (or in absence of such information), 
the physical range of individual response can be used to 
determine bounds as follows: 

,....,3,2,1=,))(ˆmin(≈min mjyy jj x   (5) 

)ˆ(max≈max (x)jj yy         (6) 

The bounds determined by equations (5) and (6) can 
represent the extreme values of the estimated (or 
experimental) responses within the entire investigated 
spaceΩ . 

In that case, after the calculation phase, the DM will 
decide whether the current solution with the adopted 
bounds is satisfactory or not [30]. 

 
2.2 Determination of shape parameters 
 

The shape parameters in desirability functions s
jr  

and/or t
jr can be chosen arbitrarily as described in pre–

vious chapter for the bounds. However, these para–
meters can be determined in a less arbitrary manner. 

 Namely, the individual desirability function is 
completely defined by just one point on the desirability 
curve (see Figure1). That point, say },{ 0,0,0 jj dψa  
represents the critical value of a response and its 
corresponding degree of desirability (satisfaction).  
 The unknown shape parameter is computed easily 
from the equation: 

)1ln(

ln
2

0,

0,

j

j
j

ψ

d
r

−
=    (7) 

A researcher or a group of experts may choose any 
desirable value for each involved response, assign to it 
an adequate desirability, and then apply equation (7).  

Table 1 shows a simplified desirability scale with 
qualitative (linguistic) interpretation of desirability 
values, according to Harrington and other researchers 
[7, 27, 31].  

The rule is simple; a high value of the response 
(close to the target value) corresponds to a high value of 
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desirability, and vice versa. In this way, it is most likely 
that a different shape parameter for each individual 
desirability function will be obtained. 
Table 1. Desirability scale    

d Qualitative interpretation 
1.0-0.8 very high fully acceptable (excellent) 
0.8-0.6 high acceptable 
0.6-0.4 middle satisfactory 
0.4-0.2 low acceptable/unacceptable 
0.2-0.0 very low completely unacceptable 

 
Certainly, the shape parameter must be chosen 

carefully, since its different values produce different 
forms of desirability curve as can be seen from Figure 1. 

For instance, large shape parameters )5.2( >jr  
indicate that only response values near its target value 
provide a specified high desirability, while small shape 
parameters )5.2( <jr provide high desirability in a wide 
range of response values around the target value.  

In that sense, a shape parameter 5.2=jr can be 
accepted as the “default’’ shape parameter. 

 
2.3 Overall desirability  
 
Harrington [27] defined an average desirability, called 
composite or overall desirability, as the geometric mean 
of the individual desirability functions:  

mm
j jj ydD

1

1 )()( ⎥⎦
⎤

⎢⎣
⎡= ∏ =y         (8) 

where m is the number of responses. 
Using this aggregated function, the multiple quality 

characteristics are converted into an equivalent single-
quality characteristic, which is to be optimized. On the 
other hand, it should be taken into account that the 
overall desirability is a complex, nonlinear, and some–
times, multimodal function (because of curvature in the 
response surfaces and their combination into the desi–
rability function).  

Obviously, the overall desirability also ranges 
between zero and one. If any individual desirability 

jd of the corresponding response jŷ becomes zero, 
then the overall desirability D also becomes zero, inde–
pendently of the values of the remaining individual 
desirability functions.  

For the product or process development it means 
that if only one of several quality characteristics is 
outside of the specified limits, the considered process or 
product is unacceptable to users (“all or nothing”).   

Principally, the higher value of D , the better 
compromise exists among the multiple responses. 

In real circumstances, it is quite likely that there is a 
difference in the importance levels (priorities) of dif–
ferent responses, i.e. that one response has a greater 
impact on the product or process in comparison with the 
others.  

For that reason, Derringer and Suich [28] proposed 
an extended overall desirability as the weighted geo–
metric mean of the individual desirability functions: 

1

1( ) ( )w wm j j
j jjD d y=

∑⎡ ⎤= ⎢ ⎥⎣ ⎦∏y            (9) 

where wj is the user-specified weight of the j-th 
predicted response. 

If all the weights are the same, equation (9) is 
reduced to equation (8). This suggests that both 
functions have similar characteristics. Usually, the 
exponents of the individual desirability functions in the 
equation (9) are given in the normalized form, which 
satisfies the conditions ∑ = 1jw and )1,0(∈jw .    

Equation (9) should be used when at least one 
response is of greater importance than the others. The 
weights can be specified by the DM next to the shape 
parameters in the desirability functions. In doing so, the 
DM must take into account the relative importance of 
the responses with respect to each other. 

 
3. MULTI-RESPONSE OPTIMIZATION PROCEDURE  
 
As noted above, using this methodology, the comp–
licated multiple optimization problem is transformed 
into a simplified single optimization problem. In such a 
case, the aim of optimization procedure is to find the 
optimal vector of design factors *x which maximize the 
overall desirability D . 

There are many numerical techniques that can be 
used to solve this nonlinear constrained optimization 
problem. Sometimes these techniques are referred to as 
nonlinear programming methods. 

In this case, the standard nonlinear constrained 
optimization procedure can be formally expressed as 
follows:  

Maximize, )}({ xyD  

subject to: )....,,2,1()( mjyyy U
jj

L
j =≤≤ x     (10) 

       )....,,2,1=(≤≤ nixxx U
ii

L
i  

where the superscripts L and U denote the lower and 
upper bounds of the functions yj(x)

 
and variables ix , 

respectively. 
The constraints yj(x) in equation (10) can be linear or 

nonlinear functions, and, as a rule, they are given in 
explicit form. In the general case, these constraints can 
be one-sided or two-sided constraints. 

According to the priority-based approach, instead of 
overall desirability, the most important response 
(primary response) is used as the objective function and 
the rest of )1( −m responses (secondary responses) are 
considered as inequality constraints. 

This is an essential different concept from the desi–
rability function methodology. Certainly, this approach 
offers less chance of achieving a good compromise 
among the predicted responses.  

 
4. ILLUSTRATIVE EXAMPLES 

 
The applicability, efficiency and accuracy of the 
proposed method will be demonstrated on  six examples 
that have been widely studied in the literature [28,30, 
32-43].    
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4.1 Example 1   
 
Firstly, the famous 'tire tread compound problem', 
originally discussed by Derringer and Suich [28], will 
be presented. In this example the tire tread performance 
were characterized via four responses (output variables).  

These responses are PICO abrasion index (y1), 200% 
modulus (y2), elongation at break (y3), and hardness (y4). 
As process factors (input variables) three chemical 
ingredients were selected, namely, hydrated silica (x1), 
silane coupling agent (x2), and sulfur (x3). 

The central composite design (with six center points 
and six star points) was employed for experimentation. 
The cubical experimental region Ω  was given as 

)3,2,1(633.1633.1 =≤≤− ixi . All the data are shown 
in Table 2.  
Table 2. Design matrix and experimental results 

Coded design factors Responses 
x1 x2 x 3 y1 y2 y3 y4 
-1 -1 1 102 900 470 67.5 
1 -1 -1 120 860 410 65.0 
-1 1 -1 117 800 570 77.5 
1 1 1 198 2294 240 74.5 
-1 -1 -1 103 490 640 62.5 
1 -1 1 132 1289 270 67.0 
-1 1 1 132 1270 410 78.0 
1 1 -1 139 1090 380 70.0 

-1.633 0 0 102 770 590 76.0 
1.633 0 0 154 1690 260 70.0 

0 -1.633 0 96 700 520 63.0 
0 1.633 0 163 1540 380 75.0 
0 0 -1.633 116 2184 520 65.0 
0 0 1.633 153 1784 290 71.0 
0 0 0 133 1300 380 70.0 
0 0 0 133 1300 380 68.5 
0 0 0 140 1145 430 68.0 
0 0 0 142 1090 430 68.0 
0 0 0 145 1260 390 69.0 
0 0 0 142 1344 390 70.0 
 
For each response the same experimental region was 

employed to fit the full second-order regression model 
as follows:  
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Whenever there is no significant difference between 
a full and incomplete mathematical model, the full 
model should be selected. In any case, a polynomial of 
higher degree (such as a second-order model) is a 
reasonable approximation of the true response surface 

over the relatively small (feasible) region of the design 
factors (which is a typical case in the optimization 
methodology applying the desirability function). In any 
case, polynomial models are often preferable, because 
these models are much easier to fit and work with than 
complicated nonlinear models. 

Based on the decision maker’s preference infor–
mation, the following limitations for each response are 
given, as follows: 

,120>1y  
,1000>2y                                                                 (11) 

,600<<400 3y  
.75<<60 4y  

In the investigated experimental space Ω , this ine–
qualities define nonempty feasible region 'Ω  '( )Ω ⊂ Ω .  

Instead the preference requirements, the bounds of 
the four responses ),( maxmin

jj yy were adopted based on 
the physical ranges (according the aforementioned 
concept), this is, (90, 190)  for 1y , (1000, 1500) for 2y , 
(350, 650)  for 3y , and (60, 75) for 4y .   

Note: If no explicit specifications from the DM are 
available in advance, then this (no-preference) approach 
remains the only starting option.  

The same shape parameters were selected for each 
of the individual desirability functions 5.2== t

j
s
j rr . 

Following the conditions and limitations adopted 
previously, the optimization procedure was carried out. 
After optimization procedure, the initial solution at the 
optimal point { }241.1-,406.0,126.0=},,{= *

3
*
2

*
1

* xxxx , 

with the corresponding estimated response values *ˆ =y  
* * * *
1 2 3 4{ ( ), ( ), ( ), ( )}y y y y =x x x x {127.1, 1443.0, 469.3, 

68.0}, and the overall desirability D* = 0.702was found.  
All the estimated response values satisfy inequalities 

(11).   
Sometimes the solution obtained by applying the 

procedure described above does not meet the desired 
specifications. On the other hand, regardless of the 
satisfactory solution, the DM may require a better and 
more reliable solution. In such a case, the problem can 
be resolved using the shape-based and/or bound-based 
interactive desirability function method proposed by 
Jeong and Kim [26, 30].  

By using this method the researchers attempt to find 
the most favorable compromise solution (the best one) 
in a small number of iterations. However, if the number 
and magnitude of preference parameters and their 
combinations that must be specified are large, then the 
number of iterations may be very large. Because it is 
actually a trial-and-error procedure, it is not easy for 
DM to find the most appropriate solution. In practice, 
the DM usually relies only on a free assessment, own 
intuition and some known solutions from the literature.  

The simplest way to change the shape of individual 
desirability functions is to vary the shape parameters. In 
this paper, a systematic method for determining the 
shape parameter values in the individual desirability 
functions will be presented. 
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This procedure is based on a simulated experiment 
and response surface methodology (RSM) [44], and in 
this paper will be demonstrated on the Example 1.  

For further analysis (to maintain consistency in the 
comparison of competitive methods), the original 
bounds and targets of each response were accepted. 

Table 3 shows the design matrix and computing 
results for the simulated experiment (see Appendix). In 
this experiment the design factors are the shape 
parameters 1r , 2r , 3r , and 4r )105.0( ≤≤ kr , and the 
response is the overall desirability rD .           

The data collected in Table 3 were employed for 
fitting the pure quadratic regression model (with 
original design factors) of the form:   

2
4

2
3

2
2

2
14

321

0005.0-

0018.0+0002.0-0087.0+0049.0

+0334.0-01.0+1616.0-9602.0=

r

rrrr

rrry

    (12) 

 The optimization task is to find the point, in which 
the response (overall desirability) attains the maximum.  

The optimal solution was found at the point 
}9.4,5.0,0.10,5.0{},,,{ *

4
*
3

*
2

*
1

* == rrrrr ,with response 

957.0=≡ **
rDy . 

Table 3. Taguchi L9 (34) orthogonal array with response       

Coded (Original) factors Response 
  A(r1)   B(r2) C(r3)  D(r4)    y=Dr
1(0.5) 1(0.5) 1(0.5) 1(0.5) 0.87258 
1(0.5)  2(5.25)  2(5.25)  2(5.25) 0.81508 
1(0.5)   3(10)   3(10)   3(10) 0.80757 

 2(5.25) 1(0.5)  2(5.25)   3(10) 0.22572 
 2(5.25)  2(5.25)   3(10) 1(0.5) 0.24913 
 2(5.25)   3(10) 1(0.5)  2(5.25) 0.42725 
  3(10) 1(0.5)   3(10)  2(5.25) 0.07515 
  3(10)  2(5.25) 1(0.5)   3(10) 0.23734 
  3(10)   3(10) 2(5.25) 1(0.5) 0.17013 
 
For the new shape parameters, after repeated 

computing procedure, the new optimal setting x* = 
{0.020, 0.116, -0.806}, with the  corresponding esti–
mated responses { }*ˆ 130.8,1299.2,454.6,67.9=y , and 
the overall desirability D* = 0.860 were obtained. 

 
Figure 2. Overlaid contour plot for three design factors and 
four response constraints with x3: sulfur at optimal level  

It can be said that the new solution gives a better 
balanced relationship between the responses. 

For this improved solution, Figure 2 shows the 
contour plot for four responses with a (shaded) feasible 
region and contour lines of constant overall desirability 
around the optimum point.  

This graphic representation may be helpful for better 
understanding of the situation. 

 
4.2 Example 2 
 
This example, which was originally discussed by Del 
Castillo et al. [32], refers to a wire-bonding process in 
the semiconductor industry. 

The manufacturer must put together a module in a 
pre-molded package by bonding wires between the 
leads (position A) and the silicon chips (position B). 

The design (control) factors that influence the tem–
perature at the wire bond are the N2 flow rate (x1), the N2 
temperature (x2), and the heater block temperature (x3).  

First three responses are maximum temperature (y1), 
beginning bond temperature (y2), and finish bond 
temperature (y3) - at position A. Three other responses 
are maximum temperature (y4), beginning bond 
temperature (y5), and finish bond temperature (y6) - at 
position B.  

For more details, readers are referring to the original 
paper [32]. 

The design factors and their chosen levels used in 
the experiment are listed in Table 4. The bounds of 
design factors define the region of exploration. 
Table 4. Factors and their levels 

 
Design factors 

 
Units 

Factor levels 
Lower 

(-1) 
Middle 

(0) 
Upper 
(+1) 

x1 Flow rate  SCFM 40 80.0 120 
x2 Flow 

temper. 
o C 200 325 450 

x3 Block 
temper. 

o C 150 250 350 

 
The design used to collect the experimental data was 

a non-composite Box-Behnken design (BBD) with three 
replicated runs at the center point, for all six responses. 
The data are summarized in Table 5.   
Table 5. Design matrix (BBD) and experimental results 

Coded factors Responses 
x1 x2 x 3 y1 y2 y3 y4 y5 y6 
-1 -1 0 139 103 110 110 113 126 
1 -1 0 140 125 126 117 114 131 
-1 1 0 184 151 133 147 140 147 
1 1 0 210 176 169 199 169 171 
-1 0 -1 182 130 122 134 118 115 
1 0 -1 170 130 122 134 118 115 
-1 0 1 175 151 153 143 146 164 
1 0 1 180 152 154 152 150 171 
0 -1 -1 132 108 103 111 101 101 
0 1 -1 206 143 138 176 141 135 
0 -1 1 183 141 157 131 139 160 
0 1 1 181 180 184 192 175 190 
0 0 0 172 135 133 155 138 145 
0 0 0 190 149 145 161 141 149 
0 0 0 180 141 139 158 140 148 
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Table 6 depicts the minimum, maximum, and cor–
responding target values for the observed responses. 

It is interesting to observe that in this case all six 
responses belong to the NTB-type response. Also, for 
the given target values for the responses 2y , 3y , 5y , 
and 6y , the two-sided desirability functions 2d , 3d , 

5d , and 6d , are the asymmetrical curves. It is observed 
from Table 6 that the specification limits of all the 
response variables are tight as compared to 
experimental response space (given in Table 5). 
Table 6. Type of response and their specifications  

Responses Type min
jy  jT  max

jy  

y1 NTB 185 190 195 
y2 NTB 170 185 195 
y3 NTB 170 185 195 
y4 NTB 185 190 195 
Y5 NTB 170 185 195 
y6 NTB 170 185 195 

 
Also, the second-order polynomial model was fitted 

to each of the six responses as follows: 
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The ’’default’’ shape parameters were set in this 
example, for all the individual desirability functions in 
equations (2). Also, Harrington equation (8) for overall 
desirability was used.  

The objective of multi-response optimization in this 
example is to make the responses as close as possible to 
their predefined target values (by maximizing the 
overall desirability).    

After optimization procedure, the optimal solution  
at  the  point { }000.1,794.0,591.0* =x , with the corre–

sponding estimated response values  *ˆ =y  {190.1, 
178.4, 180.7, 191.5, 174.7, 189.6}, and the overall 
desirability D* = 0.589 was found.  

All the estimated response values satisfy the 
requirements defining in Table 6.    

Figure 3 shows the contour plot for six responses 
and contour lines of constant overall desirability around 
the optimum point inside the feasible region. 

As in Example 1, the same improvement procedure 
could be repeated for Example 2. Obviously, it is not 
necessary in this case.  

 
Figure 3. Overlaid contour plot for three design factors and 
six response constraints with x3: the heater block tempe–
rature at optimal level (F.R. is the abbreviation for the 
feasible region) 

4.2 Example 3 
 
Mangili et al. [37] presented a paper in which they 
studied and optimized the ultrasonic devulcanization of 
a ground tire in a co-rotating twin-screw extruder. 

In this work a twenty-eight, fully randomized, 
central composite face-centered design was used to 
investigate the chosen experimental space. 

Table 7 shows the levels for each chosen design 
factor, including the ultrasonic amplitude (x1), screw 
speed (x2), slow rate (x3), and temperature (x4). 

The complex viscosity (y1), cross-link density (y2), 
gel fraction (y3), modulus at 100% of elongation (y4), 
tensile strength (y5), and elongation at break (y6) were 
chosen as responses. 

Table 8 depicts the response types as well as bound 
values for all the observed responses. 
Table 7. Factors and their levels 

 
Design  factors 

 
Units 

Factor levels 
Lower 

(-1) 
Middle 

(0) 
Upper 

(+1) 
x1 Amplitude μm 5 8.5 12 
x2 Screw speed rpm 150 200 250 
x3 Flow rate g/min 4 6 8 
x4 Temperature 0C 130 170 210 

Table 8. Type of response and their specifications  

Response Type min
jy  max

jy  jr a 
jt b 

y1 STB 0.80 4.16 1 -1 
y2 STB 0.018 0.044 1 -1 
y3 STB 73.8 85.3 1 -1 
y4 LTB 2.52 3.67 3 -3 
y5 LTB 3.69 6.46 3 -3 
y6 LTB 102 194 1 -1 

a Shape factors for Derringer-Suich desirability approach 
b Exponents for Kim-Lin desirability approach 

 
Also, in this table are given the corresponding  va–

lues of the shape factors ( jr ) and exponents ( jt ) used 
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for the two different desirability approaches. The DM 
has (arbitrarily) assigned larger values of these 
parameters to the responses 4y  and 5y . 

The results of this extensive experiment were 
given in the original paper [37].  

A second-order polynomial model was fitted to 
each of the six responses and then reduced to the best 
subset model as follows: 
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In the present paper, the same data set and 
conditions were used as in the original work [37]. For 
the same reason, it was deceded to assign different 
values to the shape factors ( 5.2==== 6321

sttt rrrr ; 

5.3== 54
ss rr ). 

After optimization procedure, the optimal solution  at  
the  point { }210,44.5,250,0.12=*X , with the corres–

ponding estimated response values *ˆ =y {1.04, 0.019,   
75.3, 2.96, 6.141, 184}, and the overall desirability D* = 
0.75 was found. 

All the estimated response values satisfy the limita–
tions given in Table 8. In this case, the improvement 
procedure was not necessary. 
4.4  Example 4 
 
Manohar et al. [38] investigated and optimized the 
turning of difficult-to-cut annealed superalloy Inconel 
718 by using coated carbide tool inserts. 

 For experimentation, the Taguchi’s orthogonal 
array L27(313) was employed, which is in this case a 
three-level full factorial design (Table 9).  

The design factors (process parameters) of interest 
as cutting speed (X1), feed (X2), and depth of cut (X3) 
were taken (Table 10).  

The responses as feed (‘axial’) cutting force (y1), 
thrust (‘radial’) cutting force (y2), main (‘tangential’) 
cutting force (y3), surface roughness (y4), and material 

removal rate (y5) were selected. These responses were 
varied in different ranges (Table 11). 
Table 9. Design matrix and experimental results 

 
N 

Design factors Responses  
X1 X2 X3 y1 y2 y3 y4   y5 

1 40 0.20 1.0 168 41 66 3.12 1568 
2 40 0.20 1.5 178 45 70 3.15 2352 
3 40 0.20 2.0 192 52 75 3.22 3136 
4 40 0.25 1.0 179 47 69 3.24 1960 
5 40 0.25 1.5 190 53 74 3.37 2940 
6 40 0.25 2.0 201 58 80 3.42 3920 
7 40 0.30 1.0 213 65 85 3.60 2352 
8 40 0.30 1.5 222 71 89 3.71 3528 
9 40 0.30 2.0 231 78 95 3.76 4704 
10 50 0.20 1.0 160 36 59 2.98 2450 
11 50 0.20 1.5 171 42 64 3.09 3675 
12 50 0.20 2.0 180 48 68 3.13 4900 
13 50 0.25 1.0 174 44 62 3.20 3063 
14 50 0.25 1.5 182 48 69 3.25 4594 
15 50 0.25 2.0 191 54 73 3.32 6125 
16 50 0.30 1.0 204 60 79 3.56 3675 
17 50 0.30 1.5 211 68 86 3.69 5513 
18 50 0.30 2.0 220 75 91 3.75 7350 
19 60 0.20 1.0 152 33 55 3.08 3528 
20 60 0.20 1.5 160 39 60 3.01 5292 
21 60 0.20 2.0 169 46 64 3.07 7056 
22 60 0.25 1.0 170 40 58 3.15 4410 
23 60 0.25 1.5 177 44 63 3.20 6615 
24 60 0.25 2.0 185 49 67 3.28 8820 
25 60 0.30 1.0 191 52 65 3.49 5292 
26 60 0.30 1.5 199 57 71 3.60 7938 
27 60 0.30 2.0 209 63 78 3.71 10584 

Table 10. Factors and their levels  

Design factors 
 Units 

Factor levels 
Lower 

(-1) 
Midlle 

(0) 
Upper 
(+1) 

X1 Cutting speed m/min 40 50 60 
X2 Feed mm/rev 0.20 0.25 0.30 
X3 Depth of cut mm 1.0 1.5 2.0 

Table 11. Type of response and their specifications  

Response Type  min
jy  max

jy  s
jr or t

jr  

y1 STB 152 231 1 
y2 STB 33 78 1 
y3 STB 55  95 1 
y4 STB 2.98 3.88 1 
y5 LTB 1.568 10.584 1 

 
As can be seen from Table 9 and Table 11 the 

extreme values of the responses within the entire 
investigated experimental region were considered as the 
basic constraints for the optimization procedure (see 
Eqs. (5) and (6)).  

The full second-order mathematical model was 
utilized to find appropriate approximion for the 
functional relationship between design factors and the 
response as follows: 
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In the mentioned work, the individual desirability 
functions were calculated for the considered responses and 
subsequently the overall desirability value was obtained. 
The optimal set of process parameters, under given 
conditions, corresponding to the maximal value of the 
overall desirability was identified (run number 20-Table 9). 

Numerous investigations have confirmed that 
responses in machining processes do not deviate much 
from linear functions [8,16,22,23,45]. For instance, in 
the turning process the material removal rate (MRR) is a 
linear function of process parameters.  

For this reason, by employing the novel desirability 
function the following shape parameters 1 2 3

t t tr r r= = =  

4 1.5tr= =  (LTB) and 5.0=5
sr (STB) were selected.  

 
4.5  Example 5 
 
Gunaraj and Murugan [39,40] reported results of an 
analysis and optimization into the submerged arc 
welding (SAW), which is one of the major processing 
technology in metal industry. 

The chosen design matrix was a five-level, four-
factor central composite rotatable design, consisting of 
31 combinations of design factor levels.  

Details of the experimental design, procedures, and 
design matrix are given in the original paper [39]. 

The process factor levels with their units and 
notations are given in Table 12. 
Table 12. Factors and their levels 

Design 
factors Unit  Factor levels 

-2 -1 0 +1 +2 

x1 
Welding 
voltage V 24 6 28 30 32 

x2 
Wire 

feed rate min
m

 0.7 0.93 1.16 1.39 1.62 

x3 
Welding 

speed min
m

 0.43 0.51 0.59 0.67 0.75 

x4 
Nozzle-
to-plate 
distance 

mm 30.0 32.5 35.0 37.5 40.0 

 
The responses as penetration (y1), reinforcement (y2), 

width of the bead (y3), area of penetration (y4), area of 
reinforcement (y5), dilution of the bead (y6), and total 
weld bead volume (y7) were selected.  

The responses representing the weld bead quality 
parameters were expressed in the form of full second-
order polynomial.  

The design factors are given in their coded form. 
The coded design factors for intermediate values were 
calculated from the following relationship: 
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where iX is any value of the process factor (natural 

factor), min
iX is the lower level of the process factor, 

and max
iX  is the upper level of the process factor. 

Gunaraj and Murugan [40] employed the quasi-
Newton method to optimize this multi-response problem 
(which belongs to one of the most popular methods 
from a class of nonlinear constrained optimization 
techniques).  

After calculating the unknown coefficients in the 
mathematical model for predicting the weld bead 
geometry, the following regression equations were 
obtained: 
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The total weld bead volume was adopted as the 
primary response, while the remaining weld bead 
quality parameters were treated as constraint functions 
(priority-based optimization approach) [40]. 
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Datta et al. [41] used the same experimental data and 
regression equations from previous researches [39], 
[40], with the aim of presenting the features of a 
desirability function approach, coupled with RSM, to 
solve multi-response optimization problems in SAW. 

Table 13 depicts the response types as well as bound 
values for all the responses. In this example, all the 
observed responses are of one-sided type and, 
consequently, one of the given bounds merely serves to 
determine the corresponding individual desirability 
function.  

The individual desirability functions, for each of the 
responses, have been selected in such a way that their 
target values are the same as those obtained after 
optimization done by Gunaraj and Murugan [40]. 

In this paper, in order to compare the results of 
previous researches [39], [40], [41], and those obtained 
by using the novel desirability method [29], the original 
experiment and all the same conditions were utilized. 

For the same reason, optimal response values (for 
each of the optimal design factor settings) were 
calculated by the same equations.  
Table 13. Type of response and their specifications 

Response Type  min
jy  max

jy  t
j

s
j rr =  

y1 LTB 3.00 3.07 1 
y2 STB 1.28 1.80 1 
y3 STB 8.33  15.00 1 
y4 STB 18.30 20.00 1 
y5 STB 20.21 22.00 1 
y6 STB 38.00 50.00 1 
y7 STB 41.33 15.00 1 

 

 In this example, the “default’’ shape parameters 
were selected for each of the individual desirability 
functions 5.2== t

j
s
j rr .    

The initial solution  at  the  optimal point 
{ }075.0-,604.0,000.2-,257.0-=*x , with the 

corresponding estimated response values  
{ }462.41,997.37,210.20,144.18,334.8,267.1,182.3=ˆ *y

and the overall desirability 9990= .D*  was found.  
 

4.6 Example 6 
 
Aggarwal et al. [42] studied the CNC turning of AISI P 
20 tool steel by using the TiN coated tungsten carbide 
cutting inserts and liquid nitrogen as a coolant. 

Table 14 shows the levels for each chosen input 
parameter, including cutting speed (X1), feed (X2), depth 
of cut (X3), and nose radius (X4). 
Table 14. Factors and their levels 

Design factors Unit 
Factor levels 

Lower 
(-1) 

Middle 
(0) 

Upper 
(+1) 

X1 Cutting speed m/min 120 160 200 
X2 Feed mm/rev 0.10 0.12 0.14 
X3 Depth of cut mm 0.20 0.35 0.50 
X4 Nose radius mm 0.40 0.80 1.20 
 
As responses surface roughness (y1), tool life (y2), 

cutting force (y3), and power consuption (y4) were 

chosen. All the observed responses were varied in 
different ranges (Table 15). 
Table 15. Type of response and their specifications  

Response Type  min
jy  max

jy  s
jr or t

jr  

y1 STB 0.17 0.99 1 
y2 LTB 34.00 55.50 1 
y3 STB 92.15  249.94 1 
y4 STB 660 1780 1 

 
The turning process was studied according to three-

level full factorial CCD design. Thirty independent 
trials were performed under the previously described 
cutting conditions. Each trial was repeated twice. 

For more details, readers are referring to the original 
paper [42]. 

For each response the entire experimental region 
was employed to fit the second-order regression model 
as follows: 
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 Very high values of coefficients of determination 
( 2 2 2 2

1 2 3 40.983, 0.999R R R R= = = = ) indicate that the 
presented regression equations quite adequately exp–
lained the variability in the turning process. 

In such circumstances, it has been shown that the 
desirability functions may be less convex i.e. more 
concave. Generally, an estimated response with poorer 
prediction should have less impact on optimization [6]. 
Therefore, for the first (initial) solution by employing 
the novel desirability function the shape parameters 

0.2=== 432
tts rrr  and 20.0=1

tr were chosen. 
After optimization procedure, the initial optimal 

solution at the point { }95.0,20.0,10.0,120=*X , with 
the corresponding estimated response values  

{ }90.753,08.93,40.55,46.0=ˆ *y , and the overall 

desirability 990.0=*D  was found.  
In this case, the  improvement procedure was not 

necessary. 
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5. DISCUSSION 
 
Looking at all examples, it is observed that there is no 
run in experimental matrices that provides the optimal 
factor levels combination for simultaneous optimization 
of all considered responses.  

Tables 16-21 compare the results obtained for all 
considered experiments by the proposed method with 
the results reported by other researchers. 

As Table 16 shows, the initial solution of Jeong and 
Kim [26] is not satisfactory. After the third iteration 
(using shape and bound mode) these authors obtained a 
quite satisfactory solution with an optimal point 

{ }604.0,219.1,157.0* −−=x  and the corresponding 

responses { }93.73,51.446,1.1239,82.139ˆ * =y , as well 

as overall desirability 626.0=*D .  
However, once again, this solution is no better than 

the improved solution obtained by the method proposed 
in this paper (see Section 4.1.).   

In this  paper, in Example 5, the focus was on an 
alternative method. Namely, the results of the method 
proposed are summarized and compared with those of 
Gunaraj and Murugan [40] who applied the classical 
nonlinear constrained method. At the same time, it is 
worth noting that the approaches by Gunaraj and 
Murugan [40] and Datta et al. [41] produce almost 
identical results.      
Table 16. Comparison of results for example 1: Methods 
from literature and approach proposed   

Metho
d 

Deringer 
-Suich 

Park S. 
-Park J. 

Jeong 
-Kim 

   Lee 
et al. 

Proposed 
method 

x1 -0.050 -0.158 -0.499 0.18 0.126 
x2 0.145 0.437 1.029 0.51 0.406 
x3 -0.868 -0.879 1.156 -1.06 -1.241 

y1 129.5 130.38 157.79 131.62 127.1 
y2 1300.0 1300.02 1689.5 1408.1 1443.0 
y3 465.7 471.0 346.6* 449.42 469.3 
y4 68.0 69.62 76.43* 68.8 68.0 
D 0.583 - - 0.481 0.702

The values in bold indicate the best solution 

* Response outside of acceptable values 

Table 17. Comparison of results for example 2: Methods 
from literature and approach proposed    

  
Method 

Del Castillo 
 et al. 

Ortiz  
et al. 

Ch’ng   
et al.  

Proposed 
method 

X1 84.16 74.55 78.26 103.64 
X2 450.00 472.90 450.00 424.30 
X3 329.87 332.75 336.54 350.00 
y1 186.0 187.0 185.0 190.1
y2 174.5 176.7 174.6 178.4
y3 172.1 173.8 172.3 180.7
y4 192.6 192.9 190.0 191.5 
y5 173.1 174.2 172.5 174.7
y6 185.0 186.2 185.4 189.6 
D 0.306 0.408 0.108 0.589

  The values in bold indicate the best solution 
 
Example 6 was also discussed by Noorossana et al. 

[43]. In their work, an ANN approach is presented 
which utilizes a process capability index (PCI) to 
combine multiple responses into a single function. In 

Table 21, their optimal (iterative) solutions are 
compared to those obtained from dissimilar approaches.   

As already established, the first (initial) solutions 
obtained by the proposed method simultaneously satisfy 
all specific requirements and gives good balance 
between the responses.  

Obviously, a better and more reliable solution can be 
achieved using the improvement procedure described 
above, based on the optimal setting of shape parameters.  

This approach can also be used to generate an initial 
solution. However, because it is a tedious and time-
consuming work, choosing the 'default' shape para–me–
ters for individual desirability functions remains the first 
option.   

Generally speaking, the pair-wise comparisons 
clearly show that different approaches give similar or 
comparable results. However, looking at all the results 
concurrently, it is evident that the proposed method 
outperforms the others to some extent. Similar 
observations were made in thе paper [29].  

The performance supremacy of the proposed method 
over some  known approaches should be verified by 
testing the larger number of complex optimization 
problems. The truth is, even in such a case where above 
qualitative description is acceptable, it does not mean 
that the proposed method is the best. Namely, according 
to the no free lunch  (NFL) theorem [46], no such 
method exists. In other words, none of the optimization 
methods can be claimed to be superior to others for each 
specific optimization problem. 
Table 18. Comparison of results for example 3: Methods 
from literature and approach proposed    

  Method 
Derringer-

Suich  
approacha  

Kim-Lin 
approacha  

Proposed 
method 

X1 7.20 5.00 12.00 
X2 250 250 250 
X3 5.50 5.60 5.44 
X4 210 202 210 
y1 1.22 2.16 1.04 
y2 0.023 0.027 0.019 
y3 77.4 80.2 75.3 
y4 3.03 3.27 2.96 
y5 6.39 5.87 6.41 
y6 183 155 184 
D 0.71 0.48 0.75 

The values in bold indicate the best solution 
a Calculated by Mangili et al. [37] 

Table 19. Comparison of results for example 4: Methods 
from literature and approach proposed    

Method Manohar et al. Proposed method  
X1 60 60 
X2 0.2 0.215 
X3 1.5 1.970 
y1 160 165.91 
y2 39 38.87 
y3 60 57.36 
y4 3.01 3.05 
y5 5292 6129 
D 0.771 0.955 

The values in bold indicate the best solution 
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Table 20. Comparison of results for example 5: Methods 
from literature and approach proposed    

Method Gunaraj 
-Murugan a 

Datta  
et al.b 

Proposed 
method  

x1 0 0 -0.257 
x2 -2.000 -2.000 -2.000 
x3 0.625 1.325 0.604 
x4 -0.160 0 -0.075 
y1 3.169 3.090 3.182 
y2 1.240 1.243 1.267 
y3 8.537 8.513 8.334 
y4 18.280 18.277 18.144 
y5 20.030 20.073 20.210 
y6 38.253 38.210 37.997 
y7 41.569 41.585 41.462 
D - 0.972 0.999 

The values in bold indicate the best solution  
a Nonlinear constrained optimization method 
b Standard Derringer’s desirability optimization  method 

Table 21. Comparison of results for example 6: Methods 
from literature and approach proposed    

Method 
Noorossana et al.a Aggarwal 

et al.  
Proposed 
method 1st 

iteration 
2nd 

iteration 
X1 - - 120 120 
X2 - - 0.10 0.10 
X3 - - 0.20 0.20 
X4 - - 1.20 0.95 
y1 0.31 0.17 0.38 0.46 
y2 50.64 40.50 55.23 55.40 
y3 156.12 134.34 95.80 93.08 
y4 1012.9 871.15 781.66 753.90 
D - - 0.890 0.990 

The values in bold indicate the best solution 
a ANN-based PCI optimization approach 

6. CONCLUSION    
 
During the last two decades, the desirability function 
has attracted worldwide attention and has been 
recognized as a useful and powerful tool in multi-
response optimization methodologies due to its novelty 
and remarkable performance.  

This paper deals with the application of a newly 
recommended desirability function in multi-response 
optimization of higher-dimensional problems (in terms 
of the number of design factors and the number of 
observed responses). 

The efficiency and accuracy of the proposed method 
has been successfully tested by using six practical 

examples with specific characteristics taken from 
previously published articles.  

The optimal solutions obtained in all examples by 
applying the novel desirability function contain the 
highest overall desirability in comparison with the 
existing desirability functions, implying the best balance 
between the considered  quantitatiive responses.     

In general, the presented results suggest the 
superiority of the proposed method over the other 
approaches known in the literature. Therefore, it is 
concluded that this method represents an excellent 
approach at solving a wide area of multi-response 
optimization problems.   

In addition, an exact method was suggested (deve–
loped under the RSM framework) for determining the 
favorable shape parameters in desirability functions. 
Consequently, due to the proposed procedure, it does 
not require any (arbitrarily) specification of the shape 
parameters before the optimization procedure. This 
method was successfully applied in the first example.  

Finally, like many other desirability function app–
roaches, the method proposed can be easily understood 
and implemented by researchers and practitioners with 
little mathematical or statistical knowledge. 

APPENDIX 

The table below lists some of the factorial design 
(saturated or near-saturated), with three or more factor 
levels, which are suitable for the analysis shown in this 
paper. The recommended designs (denoted by asterisk) 
were selected according to the number of runs and their 
performances. It is known that using a proper 
transformation one can get some of the hybrid 
(''parsimonious'') designs. Among these designs, some 
of them with many factors have good space-filling 
properties, but this can be a limiting feature in their 
application. It is natural to be expected that designs with 
equal sample sizes have different performance. Also, it 
should be expected that larger designs have better 
performance than smaller designs, but it is not always 
the case. The formulation ''incomplete mathematical 
model'' means that the given model takes into account 
only the main effects (without interactions).  

Today, computers can help researchers in building 
a (approximately) optimal experimental design (''best'' 
with respect to some optimality criterion). Computer-
generated design can be an alternatively option, but the 
researcher in the RSM frame should primarily find out 
an appropriate standard design from the available 
collection. 

 

Design factors (k) Alternative designs Factor levels 
 (n) 

Runs  
(N) 

Model parameters 
(p) 

 
 
 
2 

Box-Draper design (BDD)* 3 6  
 
 
6 

Rehtschaffner design* 3 6
Doehlert design* 7 7
Hartley design* 3 7
Taguchi  design (L9) 3 9 
Central composite design (CCD) 3 10 

 
 

Taguchi  design (L9)* 3 9  
 Box-Draper design (BDD)* 4 10
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3 

Rehtschaffner design* 3 10  
 
 
 

10 

Hoke design (D2)* 3 10 
Koshal design* 3 10 
Notz design* 3 10 
Draper-Lin design (DLD)* 3 10 
Roquemore hybrid design (D311B)* 9 11 
Hartley design* 3 11
Small composite design (SCD) 5 11 
Pesocinsky design 3 13
Doehlert design 13 13 

 
 
 
 
4 

Taguchi  design (L9)* 3 9  
 
 
 

15 

Jones-Nachtsheim design* 3 9 
Box-Draper design (BDD)* 4 15
Rehtschaffner design* 3 15
Notz design* 3 15 
Hoke design(D2)* 3 15 
Roquemore hybrid design (D416C)* 8 16 
Taguchi  design (L’16)*  4 16 
Draper-Lin design (DLD)*  3 16 
Hartley design 3 17 

 
 
 
5 

Jones-Nachtsheim design* 3 11 
 
 

21 

Taguchi  design (L’16)*    4 16 
Draper-Lin design (DLD)* 3 21 
Box-Draper design (BDD)* 4 21
Rehtschaffner design* 3 21

 Taguchi  design (L25) 5 25  

6 

Jones-Nachtsheim design* 3 13  
Taguchi design (L25)* 5 25  
Taguchi  design (L27)* 3 27  
Box-Draper design (BDD)* 4 28 28 
Rehtschaffner design* 3 28  
Draper-Lin design (DLD)* 3 28  

Notes: The designs that allow fitting only an incomplete second-order mathematical model are bolded  
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HEKE ПРИМЕНE НОВЕ ФУНКЦИЈE 
ПОЖЕЉНОСТИ У СИМУЛТАНОЈ 

ВИШЕКРИТЕРИЈУМСКОЈ ОПТИМИЗАЦИЈИ 
  

В. Маринковић  
 
У оквиру техника вишекритеријумске оптимизације, 
методологија оптимизације заснована на функцији  
пожељности једна је од најпопуларнијих и најчешће 
коришћених методологија код истраживача и 
практичара из области инжењерства, хемије, 
технологије и многих других области науке и 
технике. Бројне функције пожељности уведене су 
ради побољшања перформанси oве методологије 
оптимизације. Недавно је предложена нова функција 
пожељности за вишекритеријумску оптимизацију, 
која је глатка, континуирана и диференцијабилна и 
тиме погоднија за примену неких ефикаснијих 
метода оптимизације на бази градијента. Овај рад 
процењује перформансе предложене методе на шест 
примера из праксе. После упоредне анализе 
резултата, показало се да предложена метода у 
одређеној мери надмашује остале конкурентне 
методе оптимизације.  

 

 
 

 

 


