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1. INTRODUCTION

Finite Element Model of Circularly
Curved Timoshenko Beam for In-plane
Vibration Analysis

Curved beams are used so much in the arches and railway bridges and
equipments for amusement parks. There are few reports about the curved
beam with the effects of both the shear deformation and rotary inertias. In
this paper, a new finite element model investigates to analyze In-Plane
vibration of a curved Timoshenko beam. The Stiffness and mass matrices of
the curved beam element was obtained from the force-displacement
relations and the kinetic energy equations, respectively. Assembly of the
elemental property matrices is simple and without need to transformation
matrix because of using the local polar coordinate system. The natural
frequencies of curved Euler-Bernoulli beam with large thickness are not
sufficiently accurate. In this case, using the curved Timoshenko beam
element is necessary. Moreover, the influence of vibration absorber is
discussed on the natural frequencies of the curved beam.

Keywords: Curved Timoshenko Beam, In-plane response, Finite Element
Method, Vibration Absorber.

beam undergoing large deflection. Eisenberger and

Static or dynamic analysis of curved structures such as
arches, rings, shells of rotating machinery, and railway
bridges is one of the common engineering issues. One
of the essential structural components are beams, which
are widely used in both macro-scale like composite
laminates [1-4] and micro/nano systems as sensors [5—
8] and actuators [9]. One way for modelling these
structures is by using a finite element numerical met—
hod. However, equations of governing relations on the
finite element model of curved beams element have not
been used a lot; maybe the complexity of formulas that
are available for the curved beam element is one of the
reasons for this subject [10]. Therefore, one of the aims
of this research is to offer a simpler formulation for
analysing the in-plane vibration of the curved beam.
Some researchers have studied the curved beam that
some of the important works will be mentioned.

Lin and Lee [11] analysed the dynamic response of
circular Timoshenko beams with general elastic boun—
dary conditions based on closed-form solutions. The
free in-plane vibration analysis of a circular curved
beam by a systematic approach was investigated by
Kang et al. [12]. The in-plane vibration of curved beam
structures was investigated by Chen [13] based on the
differential transform method. To predict the in-plane
free vibration of a large deflected pre-stressed cantilever
curved beam (the Euler-Bernoulli beam) fixed at both
ends, Ozturk [14] introduced the reversion and finite
element methods with a straight-beam element
approach. In this research, the reversion method is used
to obtain the non-linear deflection curve of the flexible
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Efraim [15] presented an exact dynamic stiffness matrix
for a circular beam with a uniform cross-section and
two different boundary conditions. The matrix derived
from the differential equations of motion for the beam
and was free of membrane and shear locking as the
shape functions. Huang et al. [16] derived the in-plane
and the out-of-plane transient response with two diffe—
rent boundary conditions. In this research, the dynamic
stiffness matrix method and the numerical Laplace tran—
sform were used for the non-circular Timoshenko
curved beam. Leung and Zhu [17] investigated the in-
plane vibration of thin and thick curved beams with
classical boundary conditions based on the finite ele—
ment method. Several Fourier p-elements for in-plane
vibration of thin and thick curved beams having a
uniform and non-uniform cross-section presented. In
this research, the elements with enriching shape func—
tions avoided membrane and shear locking. In-plane
free vibration of circular curved Timoshenko beam
based on Chebyshev polynomials was investigated by
Lee [18]. In this research, the pseudospectral method
and basis function for the boundary conditions was
used. To determine the natural frequencies, Kim et al.
[19] developed a thin circular beam based on the finite
element by considering the effects of shear deformation
and rotary inertia. The stiffness and mass matrices are
derived from the strain energy and kinetic energy, res—
pectively. The local polar coordinate system was used
for developing the matrices and transformed into a
global Cartesian coordinate system for assembling.
Yang et al. [20] studied the free in-plane vibration of
uniform and non-uniform curved beam by considering
the effects of axis extensibility, rotary inertia, and shear
deformation. In this research, the differential equations
are derived by using the extended-Hamilton principle
and solved numerically using the Galerkin finite
element method.
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Wu et al. [21] derived the un-coupled equation of
motion for the circumferential displacement of an arch
structure to analyse the free in-plane vibration. In this
research, they obtained a frequency equation by using
the compatible equations for the displacements and the
equilibrium equations for the forces and moments at
each intermediate node and two ends of the entire
curved beam. Wu and Chen [22] presented a technique
to replace all complex coefficients of the eigenvalue
equation by the real ones for the natural frequencies and
mode shapes of out-of-plane free vibrations of a
uniform curved Euler-Bernoulli beam in various
boundary conditions. Moreover, they compared the
results with the approximate ones obtained from the
finite-element method. Calio et al. [23] investigated the
natural frequencies and vibration modes of structures
obtained by an assemblage of circular Timoshenko
beams. In this research considered both the in-plane
and out-of-plane motions. Moreover, a parametric
analysis of the in-plane and out-of-plane dynamic
behaviour of the single arch was performed. Talukdar
and Roy [24] modelled a curved Timoshenko beam and
analysed in-plane free vibration of the cracked curved
beam with both ends fixed conditions. Yang et al. [25]
studied different approaches to solving the developed
equations of motion of a curved beam. This research
considered the effect of the shear deformation, rotary
inertia, and the axial extensity and the differential
equations of motion for the curved beams discussed. Liu
and Zhu [26] developed an efficient formulation of a
circular Timoshenko beam for static, vibration, and
wave propagation problems based on wavelet-based
finite element models of in-plane and out-of-plane mo—
tions of circular beams according to Hamilton's prin—
ciple. Lv et al. [27] presented a solution for the in-plane
vibration of multi-span curved Timoshenko beams with
general elastic boundary conditions by combining with
the improved Fourier series method and Rayleigh-Ritz
technique. Lee and Yan [28] presented a simple method
for finding the analytical solution for natural frequ—
encies of a curved Timoshenko beam in out-of-plane
motion with non-linear boundary conditions based on
the shifting function method. In this research, three
coupled governing differential equations were derived
via Hamilton's principle. Liu et al. [29] addressed In-
plane and out-of-plane free vibration analysis of Timo—
shenko curved beams based on the isogeometric met—
hod, and a practical scheme to avoid numerical locking
in both of the two patterns is proposed in this paper.

Davis et al. [30] obtained the stiffness and mass
matrices of the Timoshenko curved beam for In-plane
vibration with the force-displacement relationships and
kinetic energy equations, respectively. In this paper, all
matrices that are based on the local Cartesian coordinate
system are written for a direct beam. In this case, before
the assembling element, they should convert matrices by
using transformation matrices from the local Cartesian
coordinate to the global coordinate even in the case of
the curved beam curvature is constant. Lebeck and
Knowlton [31] were obtained stiffness matrix of three-
dimensional curved beam element from the force-
displacement relationships by ignoring the effect of
shear deformation. In their research, the in-plane beam
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movement is coupled with the out-of-plane movement
because of the asymmetry of beam cross-section.
Moreover, the stiffness matrix based on the local polar
coordinate system was obtained. Therefore, the
assembling element it is not necessary to convert
coordinates.

Palaninathan et al. [32] obtained the stiffness matrix
of the Timoshenko curved beam in three- dimensional
state by Castigliano theorem. Moreover, they considered
the coupling effects between the vertical and lateral
shear forces. The stiffness matrix was written in this
paper like [30] based on the local Cartesian coordinate
system for a direct beam. Jong-Shyong Wu et al. [33]
investigated the In-plane vibration of a curved Classical
beam (Euler-Bernoulli beam). In this research, the mass
matrix of the curved beam was calculated with con—si—
deration of the rotary inertia effect with moving load on
the curved beam. Petyt et al. [34] extracted the mass and
stiffness matrices of the curved beam element based on
the two-displacement function by ignoring rotary inertia
effects.

In the present research, by using methods described
in [30, 31], stiffness and mass matrices of the curved
beam element will be obtained from the force-displa—
cement relationships and the kinetic energy equations,
respectively. The method has been used in the present
study has the following advantages compared to the
previous articles:

I-Instead of using the local Cartesian coordinate
described in [30], in this paper, the local polar
coordinate system will be used. As a result, for a cir—
cular curved beam with constant curvature, the stiffness
matrix can be obtained by assembling directly without
the coordinate transformation matrices.

2-Although the method presents in this paper for
obtaining the stiffness matrix somewhat similar to the
method presented in [31], this paper considers the shear
deformation effects, and the mass matrix will be
obtained. It would appear that by composing the met—
hods explained in [30, 31], a third formulation will be
presented. It is similar to formulation was derived by
Wau et al. [35] for analysing the out-of-plane vibrations
of curved beams.

2. FORMULATION AND METHODOLOGY

2.1 The displacement functions of the curved Timo-
shenko beam element for the in-plane vibrations

The curved beam element in Figure 1 is in equilibrium
under the loads shown, and a force is applied to it in the
tangential direction. If the tangential forces acting on
the curved beam are large, the vibrational behavior of
the beam changes. In this analysis, the effect of tan—
gential force, known as geometric stiffness, is not con—
sidered. The cutting angle or y, as shown in Figure 1,

is measured relative to the line perpendicular to the
midplane of the beam, and its positive direction is coun—
terclockwise.

The cutting angle is calculated from (1).
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The rotation of the beam cross-section y is obtained

from (2).
_1fdv
Y= o (_de uJ +ty @

A
[ 2(brr)dr

tension is created under the shear bending load with this
radius (how to obtain the relation is given in Appendix
A).

By considering small displacements for the element,
it can be shown that the moment in this element is
obtained from (3) (see Appendix A).

2
M=cl[ﬂ-d_“+c2diJ 3)

where 1y = . It is a radius that there is no

Figure 1. Forces and displacements in the curved beam
element

The stress-strain relationship in the tangential
direction of the beam element is calculated by (4).

F, —&[ﬂwj )

The three static equilibrium relations for this
element are written as (5) to (7).

T ®)
df,
TR (6)
u 1 -0 cos® -sinf
vi=l 0 1 sin® cos
Y -l/ry 6/y O 0
u; 1 -0;  cosO; -sin,
vy 0 1 sinf;  cosb,
1| | -Urn 0/p 0 0
u, 1 -0,  cosb, -sinb,
\Z) 0 1 sinf, cos0,
Y2 |-/ 0371 0 0
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Equations (3) to (7) are written for a thick beam,
which means, in these equations, the effect of shear
deformation is considered. These equations can also be
used for thin beams by changing the coefficients C;

EI

r12

and C, in(3), (C; = C,=0).

In thin beams, the neutral axis coincides with the
central axis of the beam cross-section (That is, (4) to
(7)’ r() = rl )

The complete solution of (3) to (7) is in the form of
(8) to (11) (see Appendix B).

{u} =[HI{G;} ©

(£ =[d1{G;} (10)
E, 0 0 0 0 Cycos® Cysinb || G
F,r={0 0 0 0 -Cysinf Cycos8|y : p (11)
M 0 C 0 0 Cgeosh Cgsind | | Gg

where {G;}" ={G,

constants, which are determined by the boundary
conditions of the curved beam element. In Equation (8),
v which is the rotation of the beam cross-section, it is

G6} are the arbitrary integral

given for the simplicity of work along with solving the
displacements. The definition of all constants of beam
elements C; is given in Appendix C.

2.2 Shape functions for Timoshenko curved beam
element at in-plane vibrations

Equations (9) and (10), which are the solution of equ—
ilibrium and stress-strain equations, they can be used to
obtain the stiffness matrix of the curved beam element.

The boundary conditions for the displacement of the
curved beam element shown in Figure 2 are applied to
(9), and (12) is obtained.

{0} =[BI{G;} 12)
Ocos0 0sinf G
(0sinf + Cycos0)  (C,4sind -Bcosh) tor. )
Cssinf / 1 -Cscos0 /1 Gg
9100591 Glsinel Gl
(04sin8; +Cy4c080;) (Cysinb; -6;cosh)) G,
Cssinel /I'O -C500891 /I'O G3 (13)
62(:0562 stinez G4

CS Sin92 / )

-CSCOSGZ /I‘O G6
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T=0.5p0" (G} [ 32 (Cs[R|R] T+ C5[R,R3 T+ Co([R3RT T+[R{R 1)+ C1o[R3R} ) {Gy} o @n

Ry={0 1 sin® cos® (Bsinb+C,cos0) (C4sin9-ecos6)}T (23)

0
1= [ §2{CsRIRT +CRoRT +Co(R3RT +RRT) +CioR3RT| do (26)

If {G;} is calculated using (12) and substitute in (9),
the shape functions of the element are obtained as (14).

{u} = [H][BT {3} = [N]{3} (14)

Therefore, according to the definition of shape func—
tions, it can be written.

[N] = [H][B]"! (15)

For simplicity, shape functions are implicitly
obtained, and their explicit writing has been avoided.

Figure 2. Definition of in-plane displacements for the
curved beam element

2.3 The stiffness matrix of the Timoshenko curved
beam element

The static equilibrium between the forces shown in
nodes 1 and 2 for the curved beam element in Figure 1
can be written as (16).

{Fy FByp Mi}=-{Fp F, M,}. (16

By using (10) about nodes 1 and 2 of Figure 1 and by
pay attention to (16) can be written as:

{F} =[DIG;} . an

Ey 0 0 0 0 -Cyoosty -Cysindy || G
Ey 0 0 00 -Cysinf Cjeos6 | |Gy
M| |0 -G 00 Coeoshy -Cgsinby | |G (18)
Ep 0 0 0 0 Cjeost, GCysind, | |Gy
E, 0 0 0 0 C;sind, -C;eos0; ||Gs
M, 0 G 0 0 CgeosB, Cgsinb, ||Gg

It is sufficient to obtain {G;} from (12) and replace it

in (17) to obtain the stiffness matrix of the curved beam
element.

{F} =[D]{G;} =[DI[BI {8} =[K]{3} . (19)
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where [K]=[D][B]'1is the stiffness matrix of the

curved beam element in in-plane vibrations. This matrix
is symmetric. This property of the stiffness matrix
accommodates a suitable way of checking the
correctness of the analysis.

2.4 The mass matrix of the Timoshenko curved
beam element

A general term for the kinetic energy of a curved beam
element that vibrates with frequency ® on its plane is in
the form of:

T=05p0?f 32f rz)br{vz+[u+(r0-r)y]2}drd6 (20)

If (20) is written in matrix form, and the inner
integral is calculated, (21) is obtained:
where

Ry={l -6 cosd -sind Ocosd Osind}1 (22)

Ry={1/fy 0/fp 0 0 Cssind/ry -Cscosd/ry}’ (24)

In order to obtain the kinetic energy relation in thin
beams, it is sufficient to apply changes Cy = C1y=0, 1y =
r; in (21). By substituting (12) in (21), the vector {G;} is
removed, and (21) is simplified to:

T=0.5pw’ {3} [B]" [H][B] {5} (25)
where the mass matrix of a curved beam element
p[B]'T [H] [B]'1 can be easily obtained.

2.5 Vibration absorbing element

If the vibration absorber (Figure 3) is considered an
element with two nodes, the stiffness, mass, and
damping matrices of the vibration absorber element are
in the form of (27) to (29) [36].

L/Z/.
krmp

Mrymp

[Mrap ] = (— ){0 0 } @7
TMPEER T 0 mpywp
R? | Koyp ‘KTMDl
K =(— 28
[Ktmp] (EIX)['KTMD Koas (28)
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It should be noted that for obtaining the optimal
answer, the range of dimensionless parameters of
vibration absorber must be observed. This range is as
follows:

®OTMD

frmp = » 0<fpyp <1 (30)

n

Crmp

2{KtMpmT™mMD

3. NUMERICAL EXAMPLES AND DISCUSSIONS

Ermp = ,0<&pvp <25 (31)

2.6 Example 1: A curved beam with simply
supported boundary conditions

The first example calculates the natural frequencies of a
curved beam with and without absorber and simply
supported boundary conditions (S-S). The dimensions
and material properties have been selected from the
reference [34,36] and shown in Table 1.

The first five frequencies of this beam with S-S
boundary conditions are given in Table 2. These
frequencies have been compared with the values given
in the references [33,34].

The natural frequencies in the second column of
Table 2 are obtained using the exact solution of the
frequency equations in the reference [34]. In reference
[33] (fourth column of Table 2), natural frequencies are
calculated using the straight beam element. It is shown
that the exact answer was not obtained using 40
elements.

By comparing the results obtained from the In-plane
computer program and the results are given in the
references [33,34], it can be seen that by using the same

number of curved elements, the numerical values of the
frequencies obtained from this program are less than the
frequencies given in the reference [33].

Table 1. Geometrical and physical data of the curved beam

Parameter value
Radial thickness of the beam [cm] 0.0327
Axial thickness of the beam [cm] 2.560
Radius of curvature [cm] R =76.200
Beam cross-sectional area [sz] 0.0839
shear correction factor k = 0.800
The central angle of the curved beam [rad] | ¢ =1
k
pl=3] 2764
m
N
E[—] 6.89x10"°
m
ul-] 0.300
Mmvplkel 100000
Kmp[N/m] 475000.320
Cr[N.s/m] 63547.970

This is due to the fact that in the reference [33], only
the rotational inertia of the curved beam is considered
while in this program, in addition to the rotational
inertia, the effects of shear deformation are also
considered. As a result, the overall stiffness, and its
natural frequencies will be reduced.

By comparing the second and 11" columns in Table
2, it can be seen that using 20 elements, the answers
obtained from the computer program have been reduced
from the reference answers [34].

It should be noted that the reference [34] does not
take into account the rotational inertia of the beam, and
therefore at high frequencies the answers obtained from
the computer program are less than the values given in
the reference [34].

Table 2. Natural frequencies of curved beams (Hz) with S-S boundary conditions ( V| .¢ = VRight = 0).

In-plane code without In-plane code
Reference [33] .

5| g absorber with absorber

S| .8 - -

| B With straight Wi

== ith curved beam . .

2| g X beam elements With curved beam elements With curved beam elements

3 ‘g = elements

o

S| 8 20 40 2 4 6 2 4 6 20 2 4 6 8

ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE | ELE
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2.7 Example 2

The second example is considered a curved beam with
two different boundary conditions: clamped-clamped
(C-C) and simply supported (S-S) conditions. The
material properties and dimensions of the beam are
selected from reference [33,36] and shown in Table 3.

Table 3. Geometrical and physical data of the curved beam.

Parameter value
Radial thickness of the beam [m] 0.8
Axial thickness of the beam [m] 1.5
Radius of curvature [m] R =20
shear correction factor k=0.800
The central angle of the curved beam a=120°
p[k—%] 2700

m
E [lz] 12x10"

m

u[-] 0.300
Mryplkg] 100000
Kymp[N/m] 475000.320
Cr[N.s/m] 63547.970

The first five frequencies of the curved beam are
calculated with C-C and S-S boundary conditions and
have been shown in Table 4. In the computer program
40 elements have been used to calculate the natural
frequencies of a curved beam. By comparing the
numbers in Table 4, it can be seen that the frequencies
calculated by the computer program are still slightly
lower than the values given in the reference [33] (the
reason mentioned).

There is a small difference between the frequencies of
Timoshenko (In-plane program) and Euler-Bernoulli
(reference). The reason for this slight difference can be
explained by calculating the slenderness coefficient of the

b2 15°

R?a  20%(2n/3)
seen, the slenderness coefficient of the beam is less than
0.01. Therefore, the effects of shear forces can be igno—red.

It is observed that the frequencies of the curved
beam with the absorber are lower than without the
absorber. The reason is the changes in the stiffness and
total mass matrices.

The mode shape of the C-C beam is plotted without
and with absorber in Figure 4 and Figure 5, respectively.

Figure 6 shows the displacement of the nodal points
of a curved beam with C-C boundary conditions, and
without absorber, for the first four modes of this beam.

example. S, = =0.00269 As can be

Figure 7 shows the displacement of the nodal points
of a curved beam with C-C boundary conditions and
with absorber for the first four modes of this beam.

According to Figure 6, it can be seen thatv has
more values thanuandy in all modes. That is, the

displacement values related to the y direction are greater
than the rotation values of the cross-section and the
displacement in the X direction (Figure 7).

The mode shape of the S-S beam is plotted without
and with absorber in Figure 8 and 9, respectively.

Figure 10 and 11 shows the displacement of the
nodal points of a curved beam with S-S boundary
conditions, and without and with absorber, for the first
four modes of this beam, respectively.

According to Figure 10 and 11, it can be seen that v
has more values thanu and y in all modes. That is, the

displacement values related to the y direction are greater

than the rotation values of the cross-section and the
displacement in the X direction.

2.8 Example 3

In the third example, the beam radius has been altered
between 2 to 10 m, and the first three frequencies of the
curved beam are calculated. The rest of the parameters
are the same as in the second example.

In Figure 12, the frequency calculated by a
computer program (Timoshenko beam theory) has
been compared by the results of ref. [33] (Euler-
Bernoulli beam theory). For calculating the natural
frequencies in the computer program, the curved beam
is modeled with 20 elements.

It can be seen in Figure 12, the frequencies of the
Timoshenko curved beam less than the frequencies of
the Euler-Bernoulli beam. The reason is that the
effects of shear deformation, which reduces the
stiffness and the natural frequencies of the curved
Timoshenko beam.

Moreover, it is observed that with the increasing curved
beam slender coefficient, the difference between the
frequencies calculated of the two theories has increased
and cannot be ignored. In this case, the more accurate
theory or the Timoshenko beam theory must be used.

It is also observed that in the second mode, there is
not much difference between the frequencies of the
curved beam in the theory of Timoshenko and Euler
Bernoulli. This ignorable difference is because the
second mode shape, which is called the breathing mode,
has a more radial displacement, and the angular
displacement is almost zero, and therefore the shear
angle is equal to zero in this mode shape.

Table 4. Natural frequencies of curved beams (Hz) with C-C and S-S boundary conditions.

Mode cC S-S

number Reference I.n-plane code In.—plane code Reference I.n-plane code In.—plane code
[33] without absorber with absorber [33] without absorber | with absorber

1 27.892 27.746 0.1007 16.316 16.284 0.10066

2 54.993 54.507 27.7460 41.069 40.893 16.2844

3 100.710 99.418 54.5071 79.357 78.790 40.8933

4 143.866 141.721 99.4179 124.036 122.730 78.7902

5 198.849 198.392 141.7208 187.173 181.474 122.7296
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Figure 4. The mode shape of the curved beam without absorber for the first four modes (C-C)
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Figure 5. The mode shape of the curved beam with absorber for the first four modes (C-C)
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Figure 6. Displacement of nodal points of the curved beam without absorber for the first four modes (C-C)
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Figure 7. Displacement of nodal points of the curved beam with absorber for the first four modes (C-C)
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Figure 8. The mode shape of the curved beam without absorber for the first four modes (S-S)
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Figure 9. The mode shape of the curved beam with absorber for the first four modes (S-S)
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Figure 10. Displacement of nodal points of the curved beam without absorber for the first four modes (S-S)
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Figure 11. Displacement of nodal points of the curved beam with absorber for the first four modes (S-S)
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Figure 12. Natural frequencies of Timoshenko and Euler-Bernoulli curved beam with the S-S condition versus the slender

coefficient

4. CONCLUSION

In order to analyze the in-plane vibrations of the curved
Timoshenko beam, the mass and stiffness matrices of
the curved beam were obtained using finite element
methods for in-plane vibration mode. The stiffness and
mass matrices of the curved beam were obtained from
the force-displacement relationships and the kinetic
energy equations, respectively. Due to the use of the
local polar coordinate system, the elements were
assembled easily without the need for coordinate
conversion matrices. Curved beam frequencies with
different boundary conditions were calculated using the
Timoshenko theory, and the effect of the slender
coefficient on the difference between Timoshenko and
Euler-Bernoulli theory was investigated. Therefore, as
the curvature of the curved beam increases, the
difference between the frequencies calculated from the
two theories of Timoshenko and Euler-Bernoulli
increases, and this difference cannot be ignored. In these
cases, a more accurate theory, namely the theory of the
Timoshenko beam, must be wused. The natural
frequencies for the state with the vibration absorber are
lower than without the vibration absorber, and the
convergence of the finite element method was well after
using 20 elements. Moreover, the maximum
displacement value with the vibration absorber on the
curved beam is less than without one, and this shows the
efficiency of the vibration absorber in reducing the
displacement value.

APPENDIX A: OBTAINING THE RADIUS OF THE
NEUTRAL LINE AND THE STRESS-STRAIN
RELATIONSHIP IN THE ELEMENT UNDER BENDING

This appendix describes how to obtain two
relationships. First, the radius at which pure bending in
the thick curved beam element does not create any
stress is obtained, and then the stress-strain interface in
the bending element is calculated.

The thick curved beam element, under pure bending
moment, is shown in Figure A-1. The initial plate length
of the beam that is in radius I relative to the center of
the beam is equal tord0 . In the deformed state from the
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shape geometry, increasing the length of this element is
equal to (A-1).

Rp-9) 59 (A-1)
R+I'0

Figure A-1. Thick curved beam element, under a pure
bending moment.

The tensile forcedF at the end of this plate is
obtained from (A-2).

SF—bSrE[ ot J E. (A-2)
r{ R+

The net tangential force is equal to the sum of the
tensile forces on the cross-section of the beam.

[mor=f P PRY BT TRy (a3
fa a r | R+y

For small displacements R <<rt,,1, and therefore
(A-4) is obtained.

Ry ® bty /r-1)dr = ER| [ PR AR (a9
Iy a a r Iy

In the case of pure bending, the net tangential force must
be zero, so (A-5) is obtained for the neutral axis radius.

r() = ; (A-S)

[ ™ b/rdr
Ta
The bending moment around the center of curvature

of the curved beam element (pointo in Figure A-1) is
equal to:
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_ [ m _[m Ip-r
M= n roF = X bR[R+rOJEdr. (A-6)

Assuming small displacements, (A-6) takes the form
(A-7).
M--ER| b (ry -r)dr. (A-7)
Iy a

Now with respect to the two (A-8) and (A-9).

®brdr=nA . (A-8)

Ta

[® brydr=

_ brpdr= A . (A-9)

a

A simplified (A-10) is obtained.
M—ERA[HJ (A-10)
To

On the other hand, due to the shape geometry.

dy
R=1—. A-11
030 (A-11)
wherey is the angle of rotation of the beam cross-
section, therefore:

R—roi[iﬂ-le. (A-12)
According to (A-11) and (A-12) are.

_ 2
M=pA| A0 || 4V du dvi )
o )| do> d8 °do

2
dv du+C dF,

M=¢C,| SX. Hic, v
N ge2 do 2 de

(A-14)

Equation (A-14) is the stress-strain relationship in
which the thick curved beam element is subjected to
pure bending load on its plane.

APPENDIX B: SOLVING DIFFERENTIAL EQUATIONS
() TO(7)

This appendix describes how to solve differential (3) to

).

M=c1[%-%+cz‘%]. (B-1)
F,=C, (%w} . (B-2)

i—f =1,F, (B-3)

(fe“ =F,. (B-4)

dng =F,. (B-5)

It is obtained (B-6) by using (B-1), (B-2) and (B-5).
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M=C[v -t -CyCi(u +V)]

, TR oo - (B9
M =C[v -u -CC3@u +v )]
(B-7) is obtained from (B-2) to (B-4).
M =rCiu +v ). (B-7)
According to (B-6) and (B-7) are:
-Cju"-C;C,C3u" -1yC5u" . ®8)
=-Cv"+CC,C3v +1yC3 V'
Then by using (B-2) and (B-4).
C3;(u"+Vv)=F, _ der&6 . (B9)

C3 (um + VH) — -C3 (u! + V) _)u(4) +u'=v"-v'

By removing v between (B-8) and (B-9), (B-10) is
obtained.

MONE MO N (B-10)

which is a 6th order differential equation, and its
solution is in the form of (B-11).

u =Gy -G,0+G3c0s0 - Gysind

. (B-11)
+G40cos0 + G¢0sind
v can also be obtained by replacing u in (B-8).
v =G, +G3sinf + G4cos0
21703 4 (B-12)

+G5(0sin0 + C4c0s0) + G (C4s5ind - Ocosh)

By obtaining u , v and with the given relations, other

unknowns can be easily obtained. By replacing u and v
in (B-2), (B-13) is obtained.

E, = C5[-G;, - G35inb - G4c0s0 + G5 (cosO - Osinh)
+ G (5in@ +0cos0) + G, + G3sind + G 4c0s0
+G5(0sinf + C4c080) + G4 (Cysinbd - Ocosh)] - (B-13)
=C3[G5(1+Cy)cos0+Gg(1+Cy)sinbd]
=C;c0s0 G5 +C7sinb Gg
With the help of (B-4), (B-14) is obtained.
F, =-C4sin0 G5 + C;co0s6 Gg. (B-14)
Substitutingu, vand F, in (B-1) and simplification,

M is also obtained.

APPENDIX C: DEFINITION OF CONSTANTS C; - Cj

Mass and stiffness matrices are defined by (C-1) and
(C-2) relations.

[K]=[D][BT". (C-1)
[M]=p[BT " [H][BT". (C-2)

Constants C; to Cyg are defined as (C-3) to (C-12) in
the curved beam element.

C = EA[m] . (C-3)

)
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To
C, = . C-4
27 GA (C-4)
o, =EA (C-5)
Iy
= 10G3-G-CG) (C-6)
t Gy -G (1 CyCy)
Cs =1-C4-CyC3(14Cy) . (C-7)
C6 = C1C5 . (C-S)
Cr =C3(1+Cy). (C-9)
—| ®
Cs =] Pbrdr. (C-10)
Co=[ P -n)brdr. (C-11)
a
Cio =] (-0 brdr. (C-12)
where
P S (C-13)

jrfab(b/r)dr'

For a beam with a rectangular cross-section, the
relations are calculated as (C-14) to (C-17).

1+h/ 2
=h/log| —— L1, C-14
K /Og[l-h/ij (19
Cg =Ar. (C-15)
C9:AI'1(I'0-I'1-I/AI'1) . (C-16)

Cio :Aq[roz+r12+h2/4-2r0(1/Ar1+r1)J . (C-17)

In order to rewrite (C-14) to (C-17) for thin curved
beams, in which there are no rotational shear angle and
inertia effects. The constants must be defined as (C-18)
to (C-20).

C, =El/5? . (C-18)
C2 :Cg :CIOZO. (C-19)
In=1. (C-ZO)
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MOJEJ KOHAYHHUX EJIEMEHATA KPYKHO
3AKPUB/bEHE TUMOLIEHKOBE I'PEJIE
3A AHAJIN3Y BUBPAIIMJA Y PABHHU

A. Hagu, M. Parxeon

3aKkpuBJBCHE Tpele Ce HajBUIIC KOPHUCTE KOJ JIYKOBA H
XKEJIEe3HHYKHX MOCTOBa Kao M KO ompeMe 3a 3a0aBHe
nmapkoBe. Vima Mmano pagoBa O YTHIAjy 3aKpHBIbCHE
rpege Ha gedopManujy cMHL@ama U POTAlMOHY HHEp—
nujy. Pax ucrpaxyje npuMeHy HOBOT Mo/jiesia KOHAYHUX
eJleMeHaTa 3a aHaJu3y BHOpauuja y paBHH kox Tumo-
IIEHKOBE 3aKpHBJbEHE Tpene. Marpuie KpyTOCTH |
Mace eleMeHara rpene Io0HMjeHe ¢y M3 OJHOca CHuila-
IoMepaj OJHOCHO jeJHAaYMHAa 3a KUHETHKY EHEpTHjy.
Ckionm MaTpuIla eleMEHTapHUX CBOjCTaBa j€ jeIHOC-
TaBaH 0e3 morpebe 3a MATPUIIOM TpaHChopManuje jep
Ce KOPUCTH JIOKAIHH TIOJAPDHU KOOPAWHATHU CHCTEM.
[puponne ¢pexBenmmje 3akpuBibeHe Ojnep-beprynn-
jeBe rpene Benuke AeOJbHHE HUCY JTOBOJHHO IMpEHU3HE.
Y oBOM ciny4ajy, MOTPEOHO je KOPHUCTHTH THMOIICH-
KOBy Trpeny. Pa3smatpa ce ytuiiaj arncopdepa BuOpaiuja
Ha pupoiHe (pEeKBEHIIN]e 3aKPHBIbEHE TPEIE.
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