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Robust Assembly Sequence Generation 
in a Human-Robot Collaborative 
Workcell by Reinforcement Learning 
 
Human-Robot Collaborative (HRC) workcells could enhance the inclusive 
employment of human workers regardless their force or skills. 
Collaborative robots not only substitute humans in dangerous and heavy 
tasks, but also make the related processes within the reach of all workers, 
overcoming lack of skills and physical limitations. To enable the full 
exploitation of collaborative robots traditional robot programming must 
be overcome. Reduction of robot programming time and  worker cognitive 
effort during the job become compelling requirements to be satisfied.  
Reinforcement learning (RL) plays a core role to allow robot to adapt to a 
changing and unstructured environment and to human undependable 
execution of repetitive tasks. The paper focuses on the utilization of RL to 
allow a robust industrial assembly process in a HRC workcell. The result 
of the study is a method for the online generation of robot assembly task 
sequence  that adapts to the unpredictable and inconstant behavior of the 
human co-workers. The method is presented with the help of a benchmark 
case study. 
 
Keywords: Reinforcement Learning, Machine Learning, Task-based Robot 
Programming, Human-Robot Collaboration, Markov Decision Process, 
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1. INTRODUCTION 
 

Assembly process impacts both the quality of product 
and the process efficiency. The challenge is transferring 
concepts sedimented in mass production to small 
assembly through the introduction of innovative techno–
logies in robot automation [1]. 

Human-Robot Collaborative workcells (HRC) emp–
loy collaborative robots, light weight, highly flexible, 
easy to program and intrinsically safe. They can comply 
with small batch productions to meet the challenges of 
short-term production [2]. 

The ISO Technical Standard 15066 defines the 
safety requirements for collaborative industrial robot 
systems and the work environment. HRC has been clas–
sified as: 
• safety-rated monitored stop (temporal and spatial 

separation); 
• hand-guiding (temporal separation); 
• speed and separation monitoring (spatial separa–

tion); 
• power and force limiting (workspace sharing). 

The last class represents the most complete and 
challenging kind of human-robot collaboration and it is 
the one addressed in present study (Figure 1). 

Despite the advantages of HRC, its full exploitation 
in actual industrial workplaces is limited. What hinder 
the transition from manual assembly to HRC assembly, 

apart from safety concerns, is the cognitive difference 
between human and robot. Robot follows rigidly the 
assigned task sequence and cannot adjust its operations 
to the actions of the human counterpart. While the 
human adapts his way of working to the partner, the 
robot has no empathy, therefore can execute only the 
assembly task in the programmed order. 

The rigidity of the robot in following the planned 
program hinders the collaboration with the humans that 
carry all the burden of cognitive effort in adapting to the 
automaton. Therefore, working with a collaborative 
robot induce a stress state considerably greater than 
working with other human teammates [3]. 

What is worst, robot has no fault tolerance, therefore 
if some assembly operation is incorrect it stops the 
process and cannot try to recover to the correct course 
of action.  

 
Figure 1. HRC workspace sharing: RW, HW and SW are 
respectively robot, human and shared workspace 
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Adding flexibility, dependability and even empathy 
to a collaborative robot is therefore an objective of 
research in HRC. Reinforcement Learning (RL) has 
been extensively adopted as an outstanding method to 
simplify and empower robot programming, making it 
concurrently more flexible and fault tolerant [4].  

In present study, a model-free RL algorithm is used 
to guide the robot operations at high level, allowing the 
robot to adapt the assembly sequence if its human par–
tner changes the order of the operations. The robot be–
comes able to plan and follow a new assembly sequence 
if it doesn’t prevent the completion of the job, perhaps 
at the price of a limited waste of time. Since in small 
productions time constraints are not as strict as in mass 
productions, provided that product quality and work 
safety be assured, a slowdown is preferrable to a 
protective stop. The method is explained and applied to 
a case study to show its effectiveness. 

 
2. STRUCTURING THE ASSEMBLY SEQUENCE 

 
To assist the transition from manual to HRC assembly, 
[5] proposes to exploit a hierarchical model of the 
assembly job obtained by decomposing the assembly 
sequence. A slightly modified model is used here 
(Figure 2). Assembly job is decomposed in tasks, then 
in operations that eventually are split down in actions. 

 
Figure 2. Hierarchical model of assembly job, tasks and 
operations 

Assembly tasks conventionally identify the assembly 
of 2 or more parts, in a self-contained, comprehensive 
way, independent from other tasks. Individual 
operations are generic assembly actions and are used as 
a building block in different tasks. Operations must be 
further decomposed in specific robot actions, like open 
or close the gripper, move from a point to another, etc. 

At the task level, the robot and the human are both 
involved. At the operation level, it is possible to have 
robot or human working in separate working areas 
(speed and separation monitoring) or together in 
operations that need their collaborative interaction in the 
shared workspace (power and force limiting). It must be 
stated that some tasks can be executed by the robot 
alone without human support. Fully automated tasks are 
not present in the experiment of section 5 as they don’t 
present interaction issues, i.e., the robot can stick to the 
optimal assembly strategy defined at the beginning. 

Having the Assembly Structure, it is possible to 
build a method to program the assembly robot adopting 
force and position control [6]. Note that also high-level 
robot programming is called task-level, but the term 
‘task’ is used here with a different meaning.  

Another outcome of the decomposition of the 
Assembly Structure is that now it is possible to 

associate an execution time to every action by using the 
predetermined time method systems (PTMS) [7]. 

It is important to remark that tasks, operations and 
actions are different concepts. Actions are equivalent to 
trajectory-level lines of code. Operations are task-level 
sequences of actions and constitute a set of primitives to 
be used by all similar tasks. Tasks are specific instances 
of the assembly diagram and their sequence is usually 
optimized respecting time and functional constraints. In 
industrial productions often tasks are further clustered in 
in macro-tasks. 

In manual assembly every trained worker is able to 
execute all the assembly operations in a task and needs 
to know only the task sequence and the operation’s 
parameters, e.g. position and number of welding points 
on a metal sheet. In small productions, when more than 
one worker is assigned to the task, the role of everyone 
is not defined and can be agreed among the components 
of the team. In HRC the role of human and robots are 
distinct: robot executes dangerous, heavy operations, 
human the ones that require dexterity or movements 
outside the robot work-area. 

There are several methods to build an assembly task 
sequence. In present study the Hierarchical Task 
Analysis is adopted, a method developed in the context 
of ergonomic studies [8]. 
It has already been successfully extended to the task 
assignment inside a HRC team, using an expert guide 
[9] or a Machine Learning classification [10]. In the 
next section, starting from a given task assignment to 
both robots and humans, the task sequence planning 
problem is addressed. 

 
3. FROM THE ASSEMBLY SEQUENCE TO THE 

MARKOV DECISION PROCESS 
 

In literature, there are several solutions to the task 
planning problem, that is to find the optimal task 
sequence that minimize a cost objective, usually 
completion time, subject to a number of constraints. 
Authors of [11] proposed a simple simulated annealing 
(SA) algorithm to generate the optimal assembly 
sequence. Several capability variables were considered 
to obtain the best assembly sequence. Tseng and others 
[12] combined the factory information with the 
evaluation of assembly sequence scheme and achieved 
the best assembly sequence by genetic algorithm (GA). 
Authors [13] further improved the performance of the 
GA algorithm. 

The above-mentioned algorithms work in a 
deterministic assembly workcell where the robot or 
even the human follow the planned task sequence. In 
manual assembly, a degree of uncertainty is present as it 
happens that an operator follows a different task 
sequence, either because he knows that it is equivalent 
to the one planned, or because of a small fault, often 
with negligible consequences on the completion time. 

What in manual workcell would be just a source of 
variability in the cycle time, in an HRC workcell would 
cause the halt of the process as the robot could not be 
able to adapt to the change. To allow a greater degree of 
flexibility, the robot should be enabled to find an 
alternative assembly sequence with respect to the 
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original optimal sequence. The new sequence can be 
equivalent or worse than the original one, but it would 
guarantee the achievement of the assembly goal [14-16]. 

To be able to adopt an alternative sequence, it is 
necessary to have a representation of the set of all the 
feasible assembly tasks. This set is formalized as a 
Markov Decision Process (MDP) and is used to train a 
RL algorithm that, for every considered task, will 
suggest a completion task sequence, hopefully the best 
one. The robot therefore will no more chose a 
predetermined task but will adapt its behaviour to the 
human partner. 

Assembly process is a collection of a set of states 
(S), events (V) and relations (R). Here, S defines the 
individual tasks, V drives the progress of the assembly 
process from one step to another. R specifies the effect 
of a given event Sm on a given state Vt progressing the 
assembly process [17]. 

A state St has the Markov property if and only if 
respect (1): 

1 1 1, ,t t t tP S S P S S S+ +⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦…                               (1) 

P is the state transition matrix, which can describe 
the transition probability of two states and reflect the 
uncertainty of the system. A MDP is a 5-tuple (S, A, P, 
R, γ), where: S is a finite set of states, A is a finite set of 
actions, P is the state transition matrix (2), R is the 
reward function (3) and γ is the discount rate. 

'
'

1 ,a
t t tSS

P P S s S s A a+⎡ ⎤= = = =⎣ ⎦   (2) 

'
'

1 1, ,a
t t t tSS

R E R S s A a S s+ +
⎡ ⎤= = = =⎣ ⎦   (3) 

For any MDP, there is an optimal policy π* better 
than or equal to other policies. In present study MDP 
represents the set of all feasible tasks and the optimal 
policy corresponds to the solution of the task planning 
problem. 

 
4. Q-LEARNING OF THE ASSEMBLY SEQUENCE 

 
RL is a behavioural decision-making method, which is 
widely used in the field of artificial intelligence. RL 
does the training by maximizing the value function of 
the rewards obtained in the crossed states. It constantly 
adjusts the agent’s behaviour to gather the maximum 
cumulative reward. The action sequence is called policy 
and it is updated through a continuous interaction with 
the environment. Because the agent optimizes the policy 
by trial and error exploration, it can learn from unknown 
environment.  Policy is the mapping relationship 
between state space s and agent action space a of the 
system. If the policy is stochastic, a probability 
distribution of action selection for agents is provided. 

The task sequence in an assembly problem is 
defined and deterministic, therefore a model-free 
algorithm appears unnecessary. The basic assumption of 
present study is that the human worker could decide to 
execute an unplanned state. From the viewpoint of the 
robot it is the same as a stochastic policy, with a small, 
but not null, probability that some actions lead to 
unexpected states.  

The state-value function for a policy π is used to 
estimate the cumulative future rewards (4). 

( ) 1
0
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t k t

k
V R S sπ π γ

∞

+ +
=

⎡ ⎤
= Ε =⎢ ⎥

⎣ ⎦
∑                          (4) 

The action-value (Q) function for a π is similarly 
used to estimate the cumulative future rewards (5). 

( ) 1
0
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The optimal state-value function is (6): 

( ) ( )maxV s V sππ∗ =                                   (6) 

The optimal policy π* is estimated by the optimal 
value function *v  as (7):   

( ) ( )( )' '

'
s arg max 'a a

SS SS
a A s S

P R V sπ γ∗ ∗
∈ ∈

= +  ∑              (7) 

Formula (7) requires the knowledge of the optimal 
state value function. When the system is model-free, the 
optimal policy cannot be obtained. When the action 
value function Q(s,a) is known, the optimal policy 
derives from (8): 

( ) ( )s arg max *
a A

Q s,aπ∗
∈

=                                        (8) 

Where Q* is the optimal action value function (9): 

( ) ( )maxQ s,a Q s,aππ∗ =    (9) 

Q-learning is a model-free RL family of algorithms 
that learns an approximator for the optimal action-value 
function based on the Bellman equation. Optimization is 
performed off-policy, therefore uses data collected at 
any point during training. The first proposal of a Q-
learning algorithm is due to [18]. 

An initial estimate of Q value is updated iteratively 
in (10) with a learning rate α: 

( ) ( ) ( ) ( )
'

max ' '
a

Q s,a Q s,a r Q s ,a Q s,aα γ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

  (10) 

When Q-learning updates Q-value, it directly uses 
the ( )

'
max ' '

a
Q s ,a , with a difference between behaviour 

and target policy (off-policy). The agent uses ε-greedy 
strategy to select the action. In this way it is possible to 
balance the exploration of the solution space with the 
exploitation of the best strategy. 

 
5. EXPERIMENTAL SETUP 

 
The experimental setup consists of UR3 robot equipped 
with an OnRobot 2-finger gripper and is shown in Fig 3. 
Several different and complementary human-robot 
interaction interfaces have been implemented and are 
present in the work area, ranging from Optirack motion 
capture in combination with a pointer equipped with 
markers, a gesture communication device based on Leap 
Motion hand tracking or a task selection menu accessed 
through a touch display. The strengths and weaknesses 
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of the interfaces are outside the scope of present study 
and since now they will be generally referred as 
Human-Robot Interface (HRI). 

The case study is composed of human operator, light 
weight collaborative robot and a desk corresponding to 
the shared workspace. On the table both robot and human 
worker can access all necessary components for 
assembly, such as base, flanges, bolts and nuts (Figure 3). 
The experiment is similar to the one described in [19], 
with the difference that in their work the focus was on the 
robust execution of operations despite the presence of 
disturbances. In present work the focus is moved to 
higher abstraction level, regarding the sequence of tasks 
and assuming the neat execution of the single operations. 

 
 Figure 3. Experimental setup 

The case study is made of two flanges mounted on a 
base. One flange is a sub-assemble of a square and an 
oval flange. In Figure 4 the components are presented in 
exploded and in assembled view. Figure 5 shows the 
assembly diagram. The two flanges named F1 and F2 in 
figure are identical. Possible positions for the flanges on 
the base are 1, 2, 3, corresponding to the 3 rows of 
holes, starting from the left edge.  

 
Figure 4. Case study in a) exploded and b) assembled view 

 
Figure 5. Assembly tree of the case study 

 
Figure 6. Robot mounts the square flange on the base by 
executing a task-oriented program after receiving the 
indication of the target position by the operator 

The case study, despite its simplicity, allows to 
structure the assembly sequence by introducing sub-
assembled groups. The symmetry of the base allows 
more configurations that are equivalent, in view of the 
final objective. This remark is apparent to humans but 
not to robots. Therefore, the human can start putting 
flanges starting from the right or from the left, 
indifferently. In addition to this fact, human has two 
choices for the position of flange F2, on the first or the 
second row of holes on the square. Only one position is 
correct as the other is a mistake, although it doesn’t 
violate any assembly constraint. 

The collaborative mechanism has been devised as 
follows: the robot picks a flange, move it to a position 
indicated by the operator and hold it while the human 
fasten the flange to the base by screwing the hexagonal 
bolts. The robot actions have been programmed on a 
Universal Robots UR3 as task-oriented programs: the 
target position of the flange is indicated by the human 
through HRI during the execution of the job (see Figure 
6). A snapshot of a collaborative situation is taken in 
Figure 7, during the flange joining. 

 
Figure 7. Collaboration during flange joining to the base 

MDP states in present research correspond to the 
assembly tasks. The feasible assembly tasks can be 
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automatically generated using the assembly sequence 
generation formalism [20].  

The formalism is composed of a set of operations 
and of topological, functional and stability constraints. 
Constraints are represented as matrices with assembly 
pairs in the rows and contact and translation functions in 
the column. In [21] the method has been already applied 
to this case study. The generation of tasks and 
corresponding MDP states can be automated, removing 
from the list of tasks the unfeasible ones by applying in 
sequence the constraints. The list of Table 1 contains the 
resulting feasible assembly tasks. 
Table 1. State list: feasible assembly tasks 

State Task Slot n.  Action 

1 B - Ass F, ass S 

2 B U F1 1 Ass F, ass S, disass 

3 B U F2 2 Ass F, ass S, disass 

4 B U F3 3 Ass F, ass S, disass 

5 B U S12 1,2 Ass F, ass S, disass 

6 B U S23 2,3 Ass F, ass S, disass 

7 B+F1 U S23 2,3 Ass F, ass S, disass 

8 B+F3 U S12 1,2 Ass F, ass S, disass 

9 B+F1+(S23 U F02) 2 Wrong state 

10 B+F1+(S23 U F03) 3 Terminal 

11 B+F3 + (S12 U F01) 1 Terminal 

12 B+F3 + (S12 U F02) 2 Wrong state 

13 B+ (S12 U F01) 1 Ass F, ass S, disass 

14 B+ (S12 U F02) 2 Ass F, ass S, disass 

15 B+ (S23 U F02) 2 Ass F, ass S, disass 

16 B+ (S23 U F03) 3 Ass F, ass S, disass 

17 
B+ (S12 + F01) U 
F3 3 Terminal 

18 
B+ (S12 + F02) U 
F3 3 Wrong state 

19 
B+ (S23 + F02) U 
F1 1 Wrong state 

20 
B+ (S23 + F03) U 
F1 1 Terminal 

 
The state is represented as a tuple made by the task, 

the slot position where the two parts are assembled and 
the actions that can be executed from this state. The 
possible actions are: assemble F, assemble S, 
disassemble. Some tasks are terminal, corresponding to 
the completion of the assembly, while some tasks are 
dead ends: feasible assembly but with a part in a wrong 
position, due to human mistake.  

To understand the logic behind task generation it is 
important to remind that every value of a Markov state 
is determined only by the preceding state and action. 
Therefore, every Markov state must keep memory of the 
whole assembly sequence so far. As an example, states 
S11 and S17 are different, despite representing the same 
assembled configuration because their assembly 
sequence was different. 

The structure of MDP is best understood by the 
graph of Figure 8. For sake of simplicity rewards and 

actions have been omitted. Actual rewards have been 
put equals to -1 for every couple (action, state), except 
for the terminal states that are bestowed a +2 reward. 

 
Figure 8. MDP with initial state in green and terminal states 
in red 

Actions are either assemble oval or squared flange if 
the arrow points to the right. If the arrow points to the 
left, disassembly action is selected. Sometime the same 
action could lead to different solutions. The ‘assemble 
flange’ from S7 leads to S10 corresponding to the cor–
rect mount in slot 3 and to S9 corresponding to a wrong 
position (slot 2). In this case a small statistical pro–
bability has been introduced in the transition function to 
take into account the possibility of a human mistake. 
From S9 the only allowed action is disassembly. 

The optimal sequence was found in [21] using a 
standard optimization method. It corresponds to the 
policy {S1, S2, S7, S10}. 

Rewards should reflect to the task execution time 
with a minus sign. Longer the assembly time, less the 
value. By assigning the same reward -1, to all the tasks 
we made the system much more adaptable. Now there is 
a complete equivalence among the optimal sequence 
and other alternative sequences, namely {S1,S4,S8,S11} 
{S1,S5,S13,S17} {S1,S6,S16,S20}. These sequences 
are not completely equivalent as some of them require a 
slight amount of additional time to complete.  

Anyway, this is knowledge from experience that 
purposely was not provided to the machine. The 
learning phase starts without any clue of which could be 
the best sequence. 

 
6. RESULTS 

 
The learning phase was conducted by privileging 
exploration for a long time in order to build alternative 
strategies for every possible solution. This result has 
been obtained by using the ε–greedy strategy with an 
initial value of ε equal to 0.9 and a decay factor equal to 
0.005 after each episodes. 
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Therefore, the graph of reward (Figure 9) displays a 
purposely long number of episodes before convergence, 
even if the overall optimal policy could have been found 
way faster with a greedy strategy. 

 
Figure 9. Rewards vs. training episodes. Expected return 
for every episode (light grey). 20 episodes-averaged reward 
(dark grey) is considered for terminating the training 
sequence 

 

The optimal assembly sequence was found correctly 
as the states {S1, S2, S7, S10} with corresponding 
actions {assF, assS, assF}.  

It is necessary to remark that in this simple case study, 
every optimization method would have found the same 
result with smaller computational effort. Thus, the objec-
tive of the work was to find all the alternative suboptimal 
sequences, to face unpredicted human interventions. 

To test the robustness of the RL training, simulations 
were executed by having sometime the operator opting 
for states different from the ones belonging to the 
optimal sequence. This corresponds to an unexpected 
action by the human. If the chosen state belonged to an 
equivalent ‘good’ sequence (e.g. S5), the RL algorithm 
was able to accept the proposed alternative sequence. If 
the chosen state was a wrong one (e.g. S14 or S12), the 
algorithm proposes to disassemble the last part in such a 
way to come back to the ‘good’ path. 

The robot initially trys to run the optimal sequence 
{S1, S2, S7, S10}. Due to the relatively small number 
of states, after every correct task, all the feasible 
alternative tasks were tested, to see the reaction of the 
RL trained agent. 

Results are shown in Table 2. It is apparent that the 
agent makes always a ‘minimum effort’ move. If the 
human forced a state belonging to an acceptable task 
sequence, though not the optimal one, the RL agent 
switches on the new task sequence. It is equivalent to 
say that the robot tries to adapt its way of work to the 
human partner. On the contrary, if the human forces a 
state belonging to a wrong sequence, the robot 
disassemble last part (undo the task) and from this point 
proposes the nearest task sequence that allows to 
complete the assembly. 

It is noteworthy that, with this approach, the robot 
never halts during the collaborative work, even if the 
human makes a ‘small’ mistake, as mounting the flange 
in a wrong slot. 

Table 2. Assembly sequences described by the list of 
states, corresponding to assembly tasks. Every row in the 
table corresponds to the activation of a non-expected task 
(the modified states in underlined bold) 

Assembly sequences proposed by RL agent 
Decision Steps 1 2 3 4 5 6 

Optimal 
Sequence 

S1 S2 S7 S10   

Human -> S2 S1 S2 S7 S10   
Human -> S3 S1 S3 S1 S2 S7 S10 
Human –> S4 S1 S4 S1 S2 S7 S10 
Human –> S5 S1 S5 S13 S17   
Human -> S6 S1 S6 S16 S20   
Human -> S9 S1 S2 S7 S9 S7 S10 

Human -> S4&S8 S1 S4 S8 S4 S1,2,7,10 
Human->S5&S14 S1 S5 S14 S5 S13 S17 

 
Unfortunately, there is also some inefficient choices 

by the RL agent. In some observations, the operator 
forces the execution of task4, the robot proposes the 
sequence {S1, S2, S7, S10}, but the human again forces 
S8, leading to both good and wrong terminal states. This 
state is equivalent to S7 but was not explored during 
training. Therefore, the agent is not able to propose the 
termination in S11 but insists in returning to the base 
sequence by disassembling all the work done.  

This is due to uncomplete exploration of the solution 
state. In this simple case study, it would have been 
possible to further fine tune the exploration parameters 
in order to correct even this mistake. Although, in an 
industrial assembly, the number of parts to be 
assembled in a workcell could be far greater than this 
case and full exploration of the solution space would be 
computationally unfeasible. 

This means that in an industrial assembly, if the 
human operator will deviate too much from the 
sequence proposed by the robot (completion-time 
optimal), it is possible that the robot won’t be able to 
cope with the changes and will refuse to follow its 
human partner. 

To be fair, even in manual production, if the 
operators make a too big mistake, or many small ones, 
during the job, the only viable solution is to stop 
everything and restart the job from the beginning. 

 
7. CONCLUSIONS 

 
The paper addresses the problem of improving HRC 
through the introduction of a further degree of flexibility 
in the robot directives. In the case of a collaborative 
assembly job executed by human and robot in a shared 
workspace, flexibility at operation level means trying to 
obtain robust movements, insensitive to disturbances 
and, at a task management level, trying to adapt the task 
sequence to the actual situation, at the price of giving up 
optimality.  

While RL has been extensively exploited to improve  
robot flexibility at the trajectory level, it has not been 
considered until now as a way for optimizing the task 
sequence in presence of disturbances caused by 
unpredictable human behaviour. In this paper RL allows 
the collaborative robot to reach its goal by updating 
online the assembly tasks to meet the human counterpart 
choices. RL not only finds the best assembly sequence, 
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but also explores the solutions space for viable 
alternatives. The robot becomes able to choose not only 
the best solution, but also an acceptable one by adapting 
to human moves. 

The scientific contribution of present study is to 
highlight the importance of exploiting RL in robotic, not 
only for the optimization of continuous trajectory 
control, but also to support decision strategies in order 
to reduce the cognitive effort on the human worker.  

Despite the overall good performances of the 
method, results have also shown that it is difficult to 
match the flexibility of human thinking and excessive 
changes of program could hinder the collaborative 
work.  

Next research step will be using RL algorithms 
devised for the solution of adversarial games. The 
human operator, instead of a collaborator, will be 
considered as an opponent and the goal of the RL agent 
will be to complete the assembly job whichever 
interference the human will carry forward. This is a 
more correct strategy to maximize robustness of robot 
operations. 

Another essential research step will be extending 
present method to a full complexity assembly derived 
by an industrial case study. MDP will consistently 
increase the number of states and the challenge will be 
to guarantee an adequate exploration of the solution 
state. 
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РОБУСТНА ГЕНЕРАЦИЈА СЕКВЕНЦИ 
МОНТАЖЕ У ЧОВЕК-РОБОТ КОЛАБО–
РАТИВНОЈ РАДНОЈ ЋЕЛИЈИ ПОМОЋУ 
УЧЕЊА ПОЈАЧАЊЕМ (REINFORCEMENT 

LEARNING) 
 

Д. Антонели, К. Зенг, Х. Алиев, К. Лиу 
 

Човек-робот колаборативне (ЧРК) производне ће–
лије могле би повећати инклузивно запошљавање 

људске радне снаге без обзира на њихову снагу или 
вештине. Колаборативни роботи не само да 
замењују човека у опасним и тешким задацима, већ 
и чине све повезане процесе приступачним свим 
радницима, превазилазећи недостатак вештина и 
физичка ограничења.  
Да би се омогућило потпуно искоришћавање 
колаборативних робота, потребно је превазићи 
традиционално програмирање робота. Смањење 
времена програмирања робота и когнитивног напора 
радника током посла постају „јаки“ захтеви које 
треба задовољити. Учење појачањем (РЛ) игра 
кључну улогу која омогућава роботу да се 
прилагоди променљивом и нест–руктурираном 
окружењу и људском независном извршавању 
понављајућих задатака. Овај рад се фокусира на 
употребу РЛ -а како би се омогућио робустан 
процес индустријске монтаже у ЧРК производној 
ћелији. Резултат студије је метода за оn-line 
генерисање секвенце монтажних пеоцеса робота 
која се прилагођава непредвидивом и непостојаном 
понашању људских ко-радника. Метода је 
представљена уз помоћ референтне студије случаја. 

 
 


