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Accuracy of Wind Speed Predictability with 
Heights using Recurrent Neural Networks  
 
Accurate prediction of wind speed in future time domain is critical for 
wind power integration into the grid.  Wind speed is usually measured at 
lower heights while the hub heights of modern wind turbines are much 
higher in the range of 80-120m. This study attempts to better understand 
the predictability of wind speed with height. To achieve this, wind data was 
collected using Laser Illuminated Detection and Ranging (LiDAR) system 
at 20m, 40m, 50m, 60m, 80m, 100m, 120m, 140m, 160m, and 180m 
heights. This hourly averaged data is used for training and testing a 
Recurrent Neural Network (RNN) for the prediction of wind speed for each 
of the future 12 hours, using 48 previous values. Detailed analyses of 
short-term wind speed prediction at different heights and future hours 
show that wind speed is predicted more accurately at higher heights.For 
example, the mean absolute percent error decreases from 0.19 to 0.16as 
the height increase from 20m to 180m, respectively for the 12th future hour 
prediction. The performance of the proposed method is compared with 
Multilayer Perceptron (MLP) method. Results show that RNN performed 
better than MLP for most of the cases presented here at the future 6th 
hour.  
 
Keywords:Short Term Forecasting; Wind Speed Prediction with heights; 
Recurrent Neural Network; Multilayer perceptron. 

 
 
1. INTRODUCTION 
 
Exponentially growing population and at the same or 
even at higher pace increasing power demands are the 
concerns of people from all walks of life. Renewable 
energy penetration into the energy mix and wind in 
particular is increasing globally due to its environ–
mentallyfriendly nature, fast technological development, 
commercial acceptance, ease of operation and main–
tenance, and competitive cost. Additionally, the deploy–
ment of wind power projects reduces the dependence on 
fossil fuels and consequently cut down the greenhouse 
gases (GHG) emissions into the local atmosphere. As a 
sign of progress in wind power sector, in 2020, the 
cumulative global wind power installed capacity 
reached 743 GW with new addition of 93 GW [1,2]. At 
present, there are more than 90 countries cont–ributing 
towards wind power capacity build up inc–luding 9 
countries with more than 10 GW and 29 more than 1 
GW of installed capacities globally.  

Wind speed, among all the meteorological para–me–
ters, is highly fluctuating both in temporal and spatial 
domains. It changes with time of the day, month of the 
year, and day of the year. This fluctuating nature of 
wind speed creates an uncertainty in the availability of 
continuous power and more importantly the stability of 
the grid. Hence, understanding the variability of the 

wind speed at a location with time is critical for quality 
and magnitude of wind energy yield, which is directly 
proportional to the cube of wind speed. It simply means 
that proper understanding of the wind speed variations 
based on long-term historical wind data and its future 
trends is a pre-requisite for the success of huge 
investments. Hence, when planning the deployment of a 
farm at a site, an indispensable task is to conduct on-site 
wind speed measurements at least for one complete year 
(the longer the better) and analyse it to extract 
information on the variability of the wind [3–12]. The 
variability of wind covers a wide spectrum of time-
scales starting from seconds, hours, days, months, year, 
and to several years. So, predicting the wind speed 
accurately ahead of time, few hours to days, is 
important for power producers, grid operators, energy 
managers, and lastly the consumers [13–15]. Advanced 
but accurate knowledge of wind speed availability 
ahead of time can be utilized in applications, such as 
wind power dispatch planning, power quality, grid 
operation, reserve allocation, and generation scheduling. 

Artificial intelligence techniques such as Artificial 
Neural Networks (ANN)[9], Convolution LSTM Net–
works [16], neuro-fuzzy systems [17], support vector 
machines [18], long-short term memory networks [19], 
Particle Swarm Optimization (PSO) [20],modes decom–
position based low rank multi-kernel ridge regre–ssion 
[21], Gaussian process regression combined with nume–
rical weather predictions [22], Singular Spectrum 
Analysis and Adaptive Neuro Fuzzy Inference System 
[23], optimal feature selection and a modified bat 
algorithm with the cognition strategy [24], and spatial 
model[25] have been applied to capture the nonlinear 
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trend of the wind speed data series. Since early 2000, 
the trend of using hybrid methodologies has emerged in 
the literature in which more than one models is 
combined to achieve better forecasts of wind speed in 
future and spatial domains [26–28]. These modern 
machine learning methods are very useful and provide 
relatively better estimates both in time and spatial 
domains as can be seen from wide ranging applications 
like perfor–mance prediction of thermosiphon solar 
water heaters [29], analysis of absorption systems [30], 
sizing of pho–tovoltaic systems [31,32] ground 
conductivity map generation [33], and solar radiation 
forecasting [34]. 

Akçay and Filik[35] developed a framework based 
on data de-trending, covariance-factorization via sub–
space method and one and/or multi-step-ahead Kalman 
filter for the prediction of wind speed. The numerical 
experiments on the real data sets showed that the wind 
speed forecast particularly using multi-step-ahead filter 
outperformed persistence model-based predictions. In 
another study, Filik and Filik [36]used ANN based 
models in conjunction with weather parameters like 
ambient temperature and pressure and found good 
agreement between the measured and predicted values 
of wind speed. Santamaría-Bonfil et al. [37] predicted 
wind speeds 1-24 hours ahead using hybrid metho–do–
logy comprised of Support Vector Regression and sho–
wed better forecast compared to persistence and 
autoregressive models. Hu et al. [38] introduced deep 
learning neural network technique to predict the wind 
speed and showed that the proposed approach reduced 
significantly the error between the predicted and 
measured values. 

Kang et al. [39]proposed a hybrid Ensemble Empi–
rical Mode Decomposition (EEMD) and Least Square 
Support Vector Machine (LSSVM) model to improve 
short-term wind speed forecasting precision. The results 
showed that the proposed hybrid model outperformed 
some of the existing methods such as Back Propagation 
Neural Networks (BP), Auto-Regressive Integrated Mo–
ving Average (ARIMA), and combination of Empirical 
Mode Decomposition (EMD). Liu et al. [40] used 
combination of Secondary Decomposition Algorithm 
(SDA) and the Elman neural networks and showed that 
the hybrid model performed better than the multi-step 
wind speed predictions. Wang et al.[41]showed that 
Least Square Support Vector Machine and the Markov 
hybrid model performed better than other models for 
wind speed prediction. Marović et al. [42] proposed 
ANN based wind speed prediction model for imp–
lementation in the early warning system to announce the 
possibility of the harmful phenomena occurrence due to 
winds, which proved to be accurate in terms of alerting 
the community ahead of time due to bad wind con–
ditions. Shukur and Lee [43]used artificial neural net–
work and Kalman filter hybrid model to address the 
nonlinearity and uncertainty issues and reported to be 
accurate in comparison with measured values. Jianzhou 
et al.[44], used support vector regression combined with 
seasonal index adjustment and Elman recurrent neural 
network techniques and obtained relatively better 
forecast compared to other models. 

Koo et al. [45]evaluated the accuracy of the wind-
speed prediction using artificial neural networks in 
terms of correlation coefficients between actual and 
simulated wind-speed data for plain, coastal, and 
mountainous areas. The study concluded that the geog–
raphical location played important role in prediction 
accuracy of wind speed. For hourly prediction, Wu et al. 
[46] integrated single multiplicative neuron model with 
iterated nonlinear filters for updating the wind speed 
sequence accurately. The results indicated better per–
formance of the proposed model compared to autoreg–
ressive moving average, artificial neural network, kernel 
ridge regression based residual active learning and 
single multiplicative neuron models. Zhang et al. [47] 
used hybrid models (combination of empirical mode 
decomposition, feature selection with artificial neural 
network, and support vector machine) for short term 
wind speed prediction and found better results 
compared to single ANN, SVM, traditional EMD-based 
ANN and EMD-based SVM models. Doucoure et al. 
[48] used multi-resolution analysis of the time-series by 
means of Wavelet decomposition and artificial neural 
networks and achieved around 29% reduction resources 
without affecting the predictability. Based on wavelet, 
wavelet packet, time series analysis, and artificial neural 
networks, Liu et al. [49] developed three hybrid models 
[Wavelet Packet-BFGS, Wavelet Packet-ARIMA-BFGS 
and Wavelet-BFGS] and compared the performance 
with Neuro-Fuzzy, ANFIS (Adaptive Neuro-Fuzzy 
Inference Systems), Wavelet Packet-RBF (Radial Basis 
Function) and PM (Persistent Model). The results 
showed that the proposed hybrid models produced 
better results than the other models.Most of the above 
methods use wind speed measurements and predictions 
at lower heights, while in reality wind energy is 
generated at hub height. At lower heights, the wind is 
influenced by ground activities such as heat of the 
ground, near surface turbulences and human activities. 
However, at higher heights (more than 80m) these 
effects are minimized and better predictions are 
obtained. This paper utilizes machine-learning method 
to predict wind speeds at different heights and analyzes 
the predictability of wind speed with height. The paper 
is organized as follows: Section II discusses the 
methodology, while Section III is devoted to numerical 
experimental results. Section IV concludes the paper. 

2. METHODOLOGY 

2.1 Recurrent Neural Networks Model 
 

The main purpose of this paper is to analyze correlation 
of windspeed predictability and its measurement 
heights. Therefore, a proven WS prediction technique 
namely the Recurrent Neural Networks (RNN) is 
utilized to assess the WS predictability with respect to 
the measurement height. The RNN [50] is one of the 
NN architectures that represents the information pro–
cessing performed by human brain by connecting layers 
of input and output variables using hidden units. In 
addition, the RNN also utilizes a feedback from one or 
more of the hidden units as input to calculate the next 
output.  
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Figure 1 shows the architecture of the RNN. The 
input layer (X) is a vector from the past WS values. This 
paper uses the Elman model where the hidden layer (H 
= {h0,… hN-1})  is computed from a non-linear function 
of the weighted sum of the input layer and the value of 
the hidden layer from the previous samples.  
Mathematically, the output of hidden unit at th sample 
hn(k)  is given by: 

( ) ( ) ( )( )1n n h n nh k U x k W h k bσ= + − +  (1) 

where U denotes the matrix that connects input and hid–
den layer and b is the bias vector.  Matrix W connects the 
hidden units to the value of units from the previous input 
sample. The output layer represents the predicted future 
WS values.  The output of th sample y(k)  is given by: 

( ) ( )( )yy k Vh k bσ= +    (2) 

where  represents the output layer weights. This paper 
uses tangent-hyperbolic activation function given by: 

 ( )
z z

z z
e ez
e e

σ
−

−
−

=
+

  (3) 

 
Figure 1. RNN architecture (a) Recurrent notation (b) 
Unrolled recurrent architecture 
 

2.2 Levenberg-Marquardt Algorithm for RNN 
 

The Levenberg-Marquardt (LM) algorithm [51]is com–
monly used to train neural networks due to its speed and 
guaranteed convergence. Therefore, for neural networks 
with medium number of units and layers, LM algorithm 
is the best candidate for the training the RNN. The LM 
algorithm weights update (Δw) is given by: 

( )
1

ˆTw J J J y yλ
−

⎡ ⎤Δ = − + −⎣ ⎦
TI   (4) 

where J denotes the Jacobian matrix of the error 
function with respect to the weight vector of the RNN. 

The scalar factor λ governs the step size that is 
decreased if the updates successfully minimize the error 
function. Otherwise, if the updates failed to reduce the 
error function, λ is increased. The error function is 
calculated using the difference of the actual values 
(y and the predicted outputs ( ŷ ). 

In this paper, three performance measures are emp–
loyed including mean absolute percent error (MAPE), 
root mean squared error (RMSE), and the adjusted 
coefficient of determination (R2

adj).These performance 
measures are calculated using the following equations: 

1

ˆ1 N
n n

nn

y y
MAPE

N y
=

−
= ∑  (5) 
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where N denotes the number of samples.Number of 
inputs is denoted by  and the regular coefficient of de–
termination (R2) is given by  

( )

( )

2
2 1

2
1

1
ˆ

N
nn

N
nn

y y
R

y y
=

=

−
= −

−

∑
∑

  (8) 

where y  is the mean of the actual data. The regular R2 
will always increase when more samples are included 
while R2

adj corrects for this issue and provides a more 
solid outcome. 
 
3. EXPERIMENTAL RESULTS  
 
This paper utilizes hourly averaged WS data measured 
by LiDAR system for 90 days between April 2nd and 
30th June 2017 where the data was measured at ten 
different heights namely 20, 40, 50, 60, 80, 100, 120, 
140, 160, and 180 m above ground level (AGL). As 
shown in Figure 2, hourly averaged WS measured at 
closer to ground level tends to be slower due to friction 
from the surrounding terrain. The acquired dataset is 
further divided, where the WS data from the first 80 
days is used for training and the remaining for testing. 
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Figure 2. Measured wind speed at 20m, 100m, and 180m 
height 
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This paper provides WS prediction up to 12 hours 
ahead of time. For each height, 12 different RNN 
models were trained as a function of WS values at 
previous hours to exploit its temporal correlation. Based 
on the initial experimental results, WS values from 48 
previous hours yield more accurate prediction at the 
future hours. Therefore, all models at each height use 
the same 48 previous hours WS values as inputs to 
estimate the WS at the 1st to 12th future hours. Each 
RNN model uses 48 inputs, 30 hidden units, and a 
single output. The LM algorithm with scalar factor λ = 3 
and a maximum of 30 iterations exhibited the best 
performance based on the cross-validation analysis. The 
training is also terminated when the MSE as the cost 
function fails to improve more than 10-7 after six 
iterations as an indication of convergence. As a 
comparative method, separate Multilayer-Perceptron 
(MLP) models were built for predicting WS at the ten 
heights at 6th hour ahead. 

 
3.1 Results and Discussions 
 
The resulting values of the performance parameters 
such as MAPE, RMSE, and R2

adj are summarized in 
Tables 1, 2, and 3 respectively for each hour and 
height. In general, the MAPE values tend to decrease 
as the prediction height increases (Table 1). For 
example, the MAPE was 0.15 at 20 m for 1 hour ahead 
prediction but decreased to 0.11 at 180 m. Similarly, 
the MAPE values increased with increasing prediction 
duration as can be observed from column 2 of Table 1. 
In early hours the MAPE was around 0.15 while for 

12-hour duration it increased to 0.19. The RMSE 
(Table 2) and the adjusted coefficient of determination 
values (Table 3) do follow the trends of MAPE values 
presented in Table 1. 

The measured and the predicted WS at 20m and 1 
hour ahead are compared in Figure 3(a). The predicted 
WS are found to be in close agreement with the 
measured values and follow the trend quite closely. 

The corresponding scatter plot between the mea–
sured and predicted WSs at hour 1, Figure 3(b), shows 
an adjusted coefficient of determination of 0.91. The 
predicted and the measured WSs at 12 hours show 
relatively poor comparison compared to that for 1 hour 
ahead of time predictions, Figure 3(c), but do follow 
the trend quite closely. The scatter diagram, Figure 
3(d), resulted in R2

adj value of 0.84. At 100m, the 
comparison between the predicted and the measured 
WS values at 1 hour (Figure 4(a)) is much better than 
that at 12 hours (Figure 4(c)). However, in both the 
cases the predicted WSs follow the trends of measured 
values closely. The scatter plots for 1 hour (Figure 
4(b)) and 12 hours ahead of time predictions show less 
scatter with R2

adj value of 0.88 at 1 hour compared to 
that at 12 hours with R2

adj value of 0.77. Similar 
comparisons are made at 140m and 180m in Figure 5 
and 6, respectively. In all of these cases, it is 
confirmed that the comparisons between the predicted 
and measured values at hour 1 are much better than 
those at 12 hours ahead. This observation is further 
strengthened by the higher values of R2

adj at 1 hour 
ahead of time predictions than those at 12 hours ahead. 

Table 1. Mean absolute percentage error (MAPE) at different heights and different prediction hours. 

 20 m 40 m 50 m 60 m 80 m 100 m 120 m 140 m 160 m 180 m 
1 hour 0.15 0.14 0.14 0.13 0.13 0.14 0.13 0.11 0.11 0.11 
2 hour 0.16 0.14 0.14 0.13 0.14 0.14 0.13 0.14 0.12 0.12 
3 hour 0.17 0.15 0.14 0.16 0.15 0.16 0.15 0.13 0.14 0.12 
4 hour 0.17 0.16 0.15 0.16 0.15 0.16 0.16 0.15 0.15 0.14 
5 hour 0.18 0.16 0.15 0.17 0.17 0.17 0.14 0.15 0.16 0.14 
6 hour 0.17 0.17 0.17 0.17 0.15 0.16 0.16 0.16 0.16 0.16 
7 hour 0.18 0.18 0.16 0.18 0.18 0.16 0.17 0.15 0.15 0.14 
8 hour 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.17 0.15 
9 hour 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.17 0.17 0.15 

10 hour 0.18 0.18 0.17 0.16 0.17 0.17 0.16 0.16 0.15 0.14 
11 hour 0.19 0.19 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 
12 hour 0.19 0.18 0.18 0.18 0.18 0.17 0.16 0.17 0.16 0.16 

Table 2. Root mean squared error (RMSE) at different heights and different prediction hours. 

 20 m 40 m 50 m 60 m 80 m 100 m 120 m 140 m 160 m 180 m 
1 hour 1.06 1.05 1.03 1.01 1.00 1.00 0.99 0.97 0.95 0.95 
2 hour 1.06 1.06 1.03 1.02 1.01 1.00 1.00 0.98 0.98 0.98 
3 hour 1.22 1.22 1.19 1.18 1.18 1.18 1.14 1.13 1.05 1.05 
4 hour 1.18 1.26 1.24 1.24 1.23 1.21 1.21 1.19 1.19 1.17 
5 hour 1.27 1.27 1.22 1.22 1.19 1.20 1.20 1.17 1.17 1.17 
6 hour 1.29 1.29 1.29 1.27 1.27 1.28 1.28 1.27 1.27 1.27 
7 hour 1.42 1.41 1.42 1.40 1.40 1.40 1.33 1.30 1.28 1.26 
8 hour 1.44 1.43 1.42 1.42 1.40 1.40 1.44 1.35 1.32 1.23 
9 hour 1.48 1.48 1.47 1.47 1.48 1.48 1.48 1.36 1.28 1.28 

10 hour 1.51 1.50 1.48 1.48 1.47 1.48 1.47 1.36 1.31 1.31 
11 hour 1.49 1.49 1.48 1.48 1.46 1.43 1.43 1.33 1.29 1.30 
12 hour 1.52 1.50 1.48 1.47 1.45 1.44 1.40 1.34 1.35 1.34 
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Table 3. Adjusted coefficient of determination (R2
adj) at different heights and different prediction hours. 

 20 m 40 m 50 m 60 m 80 m 100 m 120 m 140 m 160 m 180 m 
1 hour 0.91 0.87 0.89 0.88 0.88 0.88 0.89 0.92 0.92 0.92 
2 hour 0.87 0.87 0.85 0.85 0.87 0.87 0.88 0.88 0.92 0.92 
3 hour 0.87 0.87 0.85 0.83 0.84 0.83 0.84 0.88 0.89 0.89 
4 hour 0.85 0.83 0.83 0.83 0.81 0.84 0.83 0.85 0.85 0.87 
5 hour 0.85 0.83 0.84 0.80 0.83 0.81 0.85 0.87 0.87 0.87 
6 hour 0.85 0.83 0.81 0.81 0.80 0.83 0.83 0.83 0.81 0.85 
7 hour 0.85 0.78 0.83 0.80 0.81 0.84 0.78 0.83 0.83 0.87 
8 hour 0.85 0.80 0.80 0.77 0.76 0.80 0.78 0.81 0.82 0.87 
9 hour 0.85 0.78 0.80 0.81 0.80 0.81 0.77 0.81 0.85 0.86 

10 hour 0.85 0.77 0.81 0.82 0.80 0.80 0.82 0.82 0.88 0.88 
11 hour 0.84 0.80 0.80 0.78 0.78 0.82 0.81 0.82 0.85 0.86 
12 hour 0.84 0.77 0.77 0.78 0.77 0.77 0.81 0.84 0.85 0.86 

 

W
in

d 
sp

ee
d 

(m
/s

)

  
a) Measured and predicted WS at 20m height and 1 hour 
ahead 

b) R2
adj  for measured and predicted WS at 20m height 

and 1 hour ahead 
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c) Measured and predicted WS at 20m height and 12 hours 
ahead 

d) R2
adj for measured and predicted WS at 20m height 

and 12 hours ahead 

Figure 2. Performance at height 10m 

3.2 RNN andMLP Models Performance Comparison 

In this section, the performance of RNN and MLP 
methods based on the predictions of WS at 6th future 
hour and at different heights is compared. The predicted 
WS values from the two methods are compared with the 
measurements.  

The values of the performance measures RMSE, 
MAPE, and R2

adj for both the methods are summarized 
in Table 4. The RMSE are around 1.5 m/s in case of 

MLP approach and always less than 1.3 m/s in case of 
RNN method. On the other hand, MAPE values 
decreased from 0.33 to 0.18 corresponding to 20m and 
180 m heights; respectively in case of MLP method 
while these values decreased to 0.16 at 180m from 0.17 
at 20m in case of RNN approach. Relatively smaller 
magnitudes of RMSE and MAPE along with the higher 
values of R2

adj are indicative of better perfor–mance of 
RNN model over MLP approach. 
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a) Measured and estimated WS at 100m height and 1 hour 
ahead 

b) R2
adj for measured and predicted WS at 100m height 

and 1 hour ahead 
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c) Measured and estimated WS at 100m height and 12 hour 
ahead 

d) R2
adj for measured and predicted WS at 100m height 

and 12 hour ahead 

Figure 3. Performance at height 100m 

 
a) Measured and estimated WS at 140m height and 1 hour 
ahead 

b) R2
adj for measured and predicted WS at 140m height and 1 

hour ahead 

 
c) Measured and estimated WS at 140m height and 12 hour 
ahead 

d) R2
adj for measured and predicted WS at 140m height and 

12 hour ahead 

Figure 4. Performance at height 140m 

a) Measured and estimated WS at 180m height and 1 hour 
ahead 

b) R2
adj for measured and predicted WS at 180m height and 1 

hour ahead 

  
c) Measured and estimated WS at 180m height and 12 hour 
ahead 

d) R2
adj for measured and predicted WS at 180m height and 

12 hour ahead 

Figure 5. Performance at height 180m 
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The WS values predicted using the two methods are 
compared with the measured ones at 20, 80, 140, and 
180m for the 6th hour and are shown Figure 7. The 
corresponding scatter plots are also provided in this 
figure. It is evident from Figure 7(a, c, e, and g) that the 
comparisons between the predicted and measured WS 
values keep on improving with increasing height. The 
corresponding scatter plots shown in Figure 7 (b, d, f, 
and h) have also confirmed this fact. In these scatter 
plots, the R2

adj values are found to be larger in the case 
of RNN methods based prediction compared to those 
based on MLP methodology. Furthermore, the adjusted 
coefficient of determination values tends to increase 
with height, which shows better predictions at higher 
heights. 

Table 1. Comparison between RNN and MLP model based 
on estimated wind speed at 6th hour ahead of time. 

 RMSE MAPE R2
adj 

  RNN MLP RNN MLP RNN MLP 
20m 1.29 1.53 0.17 0.33 0.85 0.66 
40m 1.29 1.50 0.17 0.22 0.83 0.69 
50m 1.29 1.51 0.17 0.21 0.81 0.70 
60m 1.27 1.47 0.17 0.21 0.81 0.72 
80m 1.27 1.43 0.15 0.20 0.80 0.73 

100m 1.28 1.43 0.16 0.20 0.83 0.74 
120m 1.28 1.47 0.16 0.29 0.83 0.76 
140m 1.27 1.53 0.16 0.19 0.83 0.76 
160m 1.27 1.56 0.16 0.20 0.81 0.76 
180m 1.27 1.65 0.16 0.18 0.85 0.76 

 

 
(a) Measured and estimated WS at 20m height  

 
(b) R2

adj for measured and estimated WS at 20m 

 
(c) Measured and estimated WS at 80m height  

 
(d) R2

adj for measured and estimated WS at 80m 

 
(e)  Measured and estimated WS at 140m height 

 
(f) R2

adj for measured and estimated WS at 140m 

 
(g) Measured and estimated WS at 180m height 

 
R2

adj for measured and estimated WS at 180m 

Figure 6. Comparison of RNN and MLP at 6th future hour and different heights 
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(a) Variation of MAPE with prediction hour (b) Variation of R2

adj with prediction hour 

Figure 7. Predictability in relation to the future hours 

 
 

(a) Variation of MAPE with respect to height (b) Variation of R2
adj with respect to height 

Figure 8. Predictability with heights 

3.3 Predictability Analysis of WS with Heights 
 
This sub-section is devoted to the analysis of the pre–
dictability of WS with heights. The MAPE and R2

adj 
values for WS predictions for each of 1 to 12 hours 
ahead at each height are compared in Figure 8 using 
RNN. It is seen that as the prediction period in future 
time domain increases, the MAPE values also increase 
(Figure 8(a)). In general, a slower increment is observed 
in the values of MAPE up to hours 6 and a bit faster at 
further longer time durations. It is also worth men–
tioning that as the height of prediction increases, the 
MAPE value decreases. The R2

adj values remained 
above 0.85 at 180m predictions for all the future hours 
of prediction (Figure 8(b)). At 20 to 120m heights the  
R2

adj values between the predicted and the measured 
WSs are seen to be between 0.8 and 0.9 up to hours 6 
and then decreased faster beyond (Figure 8(b)). Figure 9 
shows the variation of MAPE and R2

adj with respect to 
heights using RNN. It can be observed that the perfor–
mance measures MAPE and R2

adj improve with heights. 

4. CONCLUSION 
 

An accurate knowledge of future wind speed is critical 
and also helpful for the estimation of available wind 
power which is important for utility grid planning and 
operation. Typically, wind speed measurements are per–
formed at low heights (20-40m). Modern wind turbines 
operate at hub heights of 80m to 120m. For the first 
time, to the best of the authorsknowledge, this paper 
assesses the predictability of wind speed relative to 
heights. LiDAR device was deployed to collect hourly 
averaged wind speed data and machine learning method 
was used for short term prediction of wind speed. 
Recurrent neural networks (RNN) are used to predict 
wind speed during next at each of the 12 hours based on 
previous 48-hour values. Predicted future values from 
1st to the 6th hours did not deviate significantly (at 
height 120m MAPE ranged between 0.13-0.16) compa–
red to the 7th to the 12th future hours (MAPE is 
increased up to 0.18).  
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It is observed that the predictability of wind speed 
improved with increasing heights. The MAPE values 
decreased from 0.15 at 20m to 0.13 at 120m and further 
reduced to 0.11 at 180m height for the first hour future 
wind speed prediction. For the 12th hour future pre–
dictions, these values decrease from 0.19 to 0.17, and 
0.16 corresponding to heights, 20, 100, 180m, respect–
tively. The coefficient of determination R2

adj for the 12th 
hour prediction is improved from 0.84 to 0.85 and 0.86 
corresponding to heights 20, 160, and 180m, respect–
tively. The proposed method is compared with the mul–
tilayer perceptron (MLP)for the prediction of WS at 
different heights for the 6th future hour. Comparison 
show that the RNN performed better than MLP in terms 
of all performance measures.  
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ТАЧНОСТ ПРЕДВИДЉИВОСТИ БРЗИНЕ 
ВЕТРА СА ВИСИНОМ КОРИШЋЕЊЕМ 
РЕКУРЕНТНИХ НЕУРОНСКИХ МРЕЖА 

 
М. Мохандес, С. Рехман, Х. Нуха, М.С. Ислам, 

Ф.Х. Шулц 
 

Тачно предвиђање брзине ветра у будућем вре–
менском домену је критично за интегрисање снаге 
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ветра у мрежу. Брзина ветра се обично мери на 
мањим висинама док је висина чворишта 
савремених ветротурбина много већа, 80-120м. Циљ 
рада је да се оствари боље разумевање предвид–
љивости брзине ветра са висином. Подаци о ветру 
су прикупљени помоћу LiDAR система на висини од 
20, 40, 50, 60, 80, 100, 120, 140, 160 и 180 м. Про–
сечни подаци по часу су коришћени за обуку и 
тестирање RNN  у циљу предвиђања брзине ветра за 
сваких будући 12 часова, уз вредности за прет–
ходних 48 часова.  Детаљна анализа кратко–рочног 

предвиђања брзине ветра на различитим висинама и 
будућим часовима показује да се брзина ветра 
тачније предвиђа на већим висинама. На пример, 
вредност средње апсолутне процентуалне грешке 
опада са 0.19 на 0,16 са порастом висине од 20 на 
180м, односно за 12. час предвиђања. Перформансе 
предложеног метода су упоређене са MLP методом. 
Резултати показују да RNN има боље перформансе 
него MLP у већем броју случајева приказаних у 
овом раду у будућем 6. часу.   

 
 


