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1. INTRODUCTION

India

Reduced Order Modelling and
Balancing Control of Bicycle Robot

A new result for balancing control of a bicycle robot (bicyrobo), employing
reduced-order modelling of a pre-specified design controller structure in
higher-order to derive into a reduced controller has been presented in this
paper. The bicyrobo, which is an unstable system accompanying other
causes of uncertainty such as un-model dynamics, parameter deviations,
and external disruptions has been of great interests to researchers. The
controllers in the literature reviews come up with the higher order
controller (HOC), the overall system becomes complex from the
perspective of analysis, synthesis, enhancement and also not easy to handle
it’s hardware implementation. Therefore, a reduced-order pre-specified
controller is developed in this work. It is effective enough to tackle
unpredictable dynamics. The reduced-order controller (ROC) design is
based on model order reduction (MOR) method, which is a resutl of
hybridization of balanced truncation (BT) and singular perturbation
approximation (SPA) approach. The reduced model so obtained, which
retains DC gain as well, has been named as balanced singular
perturbation approximation (BSPA) approach. It is based upon the
preservation of dominant modes (i.e. appropriate states) of the system as
well as the removal of states having relatively less important distinguishing
features. The strong demerit of the BT method is that, for reduced-order
model (ROM), steady-state values or DC gain do not match with the actual
system values. The BSPA has been enabled to account for this demerit. The
method incorporates greater dominant requirements and contributes to a
better approximation as compared to the existing methods. The results
obtained by applying proposed controller, are compared with those of the
controllers previously designed and published for the same type of work.
Comparatively, the proposed controller has been shown to have better
performance as HOC. The performance of HOC and ROC is also
examined with perturbed bicyrobo in terms of time-domain analysis and
performance indices error.

Keywords: Bicyrobo, MOR, BSPA, Higher-order controller, Reduced-
order modelling.

it difficult to control. As a result, it brings exciting
challenges to the control engineering community.

The main challenge in modern robotics is to produce
behaviour that can be adapted in real time. We need
robots that are adaptive and learning to deal with
dynamic environments such as humans and animals.
Robots perform various tasks that improve quality and
ease of transport. Mobile robots, underwater and flying
robots, robotic networks, surgical robots with high
operational efficiency are playing an increasing role in
society [1-4]. A bicycle robot is a good means of
transportation because of its advantageous attributes
such as being light in weight and environmentally
friendly. The bicyrobo has inherently nonlinear system
dynamics and is naturally unstable as well, which makes
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Several researchers have been conducting research on
various mechatronic systems for dyna—mically
balancing and manoeuvre bicycles.

Bicycles have been used to help people move around
for leisure, recreation, and transportation since the
1800s. Wheeled transportation is the cheapest way to
get around. Between the 19" and 20" centuries, the
bicycle was continually improved, which led to the
modern wheeled transport what we have today [5]. The
history of bicycles can be found in the proceedings of
the international conference on cycling history, which is
held every year since 1990 [6]. Robust control
techniques have been applied to control and move these
two-wheel mobile robots that are always unstable with
nonlinear behaviour, are influenced by external
disturbances also. The work focuses on the balancing
control of the bicyrobo. The efficiency of HOC and
ROC is also evaluated with perturbed bicyrobo. The key
goal of the bicycle is to move properly with and without
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load, to move forward or backward, and to turn left or
right without breaking. Bicycle is a big control
balancing issue, an unstable system associated with
different sources of uncertainty due to unmodeled
dynamics, parameter variations and outside disturbances
[6]. The concept of a self-balancing bicycle or a
bicyrobo is, therefore, an important research subject.
The murata boy robot which was firstly created in
Japan, 2005 is a typical example of a bicyrobo. There
are many solutions to controlling bicycle robots [7],
such as using flywheels [8], steering control [9], balan—
cing control [10,11], stabilization and motion control
[12] or moving the centre of gravity [13] .There are
several practical methods to take from this class. In this
we describe some recommendations for balancing the
flywheel. Among these options, flywheel balancing,
which utilises a spinning wheel as a gyroscopic stabi—
liser, a good option as the response time is short and the
system is stable even when stationary, as shown in
Table 1. The search in the literature identified numerous
investigators who have designed better controllers for
bicyrobo. In this study, the number of linear controllers,
such as H, ,H, came into the picture due to their ro—

bustness. They are more robust than the other cont—
rollers available in the literature review because they are
less sensitive to external disturbances and errors. A
robust controller for a system with varying uncertainties
is being designed by Khargonekar et al., (1991). A
robust technique in which composite H, /H,_, control is

used for such type of systems as suggested in [14]. The
controller design is oriented toward designing cont—
rollers that exhibit robust stability as well as superior
performance, for instance, small tracking error, lower
control energy, etc. Despite its complex design pro—
cedures, advanced control methods like PID (propor—
tional integral derivative) and lead-lag are rarely utilised
like the mixed H, /H,, control due to the requirement

for advanced design procedures and resulting in ad—
vanced controllers. The controllers are of high order and
achieve the same results as augmented plants through
the application of a Riccati equation approach [15].
Several investigators have used nature-inspired search
algorithms to design robust controllers [16—18].

The HOC architecture can contribute to several
drawbacks as we run robot balanced control prog—ram—
mes due to dynamic software that increases the running
time, the slow response speed of the control system
without a reasonable solution to the controller's real-
time specifications and the stability of the balanced
system. In order to improve the efficiency of this
controller, the ROC should be set up to simplify the
programme code, reduce the computational time,
increase the response speed, but still comply with the
system's reliability requirements [19]. The complex
design process and HOC achievements are the greatest
disadvantages for these controllers. To contribute,
several researchers in the literature have recently
proposed a large number of order reduction techniques
[20-25].Therefore, a ROC is needed to preserve all the
appropriate characteristics of the HOC. ROC may lead
to a reduction in computing effort, cost reduction and
simulation time.
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The proposed article provides a methodology as a
new result to design pre-specified structure [16] for
balancing control of bicyrobo using reduced order
modelling, which is based upon a hybridization of BT
and SPA called BSPA approach [26]. Is is based on the
concept of preserving the essential parameter and
characteristics of the HOC in the ROC. The proposed
method is based upon this preservation of dominant
modes or states of the system as well as the removal of
relatively less important distinguishing feature.

The reduced controllers developed by the proposed
approach are compared to HOCs and other ROCs for
reported research in terms of performance index error
criteria. Based on the effect disturbance and uncertainty
generated by the multiple sources of instability related
to un-modelled dynamics, it is difficult to suppress
parameter variations using the conventional and higher
order controller methodology. The 1%, 2™, 3™ 4™ and 5™
order controllers designed by the proposed method are
compared with the higher order controller and other
reduced order controllers available in the literature
review, on the basis of the time domain specification
and various performance indices. The performance of
the bicycle robot is also analysed with higher and lower
order controllers in the presence of uncertainty. The
proposed 3rd order controller has been found to have
excellent and superior performance compared to other
controllers.

This paper is divided into five sections. Section 1
includes an overview and a detailed summary of the
literature review for control strategies of bicycle robot
studies. The mathematical modelling of the bicycle
robot is defined in section 2. The proposed methodology
for reduced order modelling is described out here in the
Sect. 3. Computational analysis for HOC and imple—
mentation of ROC of bicyrobo using the proposed
methodology is given in Sect. 4, followed by bicycle
robot’s controller taken from the literature and com—
pared with, for the validity of the proposed method.
Finally, section 5 points out the premise and the future
scope of the work discussed.

2. MATHEMATICAL MODELLING OF THE SYSTEM

We describe generalized »” order LTI continuous-time
systems in a state-space model form is given by

2 4, B
a on(’“BO“(’)@z::(cO_r: —DOJ M)
y(@)=C, x(t)+ D, u(t) o | o

where suffix ‘o’ is denoted for the actual system and an
n-dimensional state vector x€R", u eR? are the in—
puts of the system and, y e R? of the system outputs.
The state-space model matrices have dimensions

nxn nx Xn xXm —
4, R, B, eR p,CoeRq ,DoeRq p=
q = 1, the actual system is referred to as the SISO
system, otherwise, it will be called the multi-
dimensional system. In the case of multi-dimensional, it

is assumed that the number of inputs and outputs is
much lower than the number of states., i.e., p,g <<n.
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Dynamical system refer to (1) is called asym—
ptotically stable when all the finite values of the matrix
write are specified in [27-31] The frequency response is
another important measure to study the characteristics
of the LTI system. To determine the frequency res—
ponse, the system referring to (1) appears to be applying

the transformation of Laplace is given as

Y, (8) =G, (s)U(s) @
where Gy (s) = Co [s1, — 4o ] By + Dy . 3)
N (s) ny+ns+ns*+--n_s""
Gp(S)Z u( ) — 0 1 2 > m-1 (4)
D (s) d,+ds+d,s +---+d,s"
where n;, d; are scalar constants of the n dimensional.
Table 1: A literature summary of control strategies for
bicyrobo
" Objectives Methods to tackle a
Y problem
=
2
£
Q
o~
[13] Self-stabilizing strategy Sliding Patch Theory

—
O
[

Bicycle steering based on
acceleration control

Disturbance Observer
design Setting gain
values

[7] Dynamic stabilization and SMC
control moment gyroscope
[8] control of autonomous Gyroscopic
motion Stabilisation, PID
controller
[32] Dynamic compensation and  PD controller
balancing control
[33] Balancing control with LQR method
uncertain COG
[16] Balancing control PSO
[11]  Self-balance using steering ~ PID controller in
control python, raspberry pi
[34] Rider control while steering  Linear feedback
and stabilizing control
[35] Stabilization control CADO
[36] Attitude control by steering  PD control
angle and variable COG
control
[6] Control moment gyroscope  PD controller
(CMQ) for balancing
[37] Balancing control Pole placement
technique
[38] Trajectory control LQR method
[39] Self-balancing control Feedback control
[17] Balancing control Hoo loop shaping
control, PSO
[40] Self-balancing control Optimization-based
PID controller
[19] Balancing control MOR based on Schur
analysis
[20] Balancing control ROC using CSA

2.1 Modelling of a Bicyrobo

The bicyrobo was developed as a platform for eva—luating
the effectiveness of the advanced control algorithm and
strategies (Bui et al., 2008) study at the Mechatronics
Laboratory, the Asian Institute of Technology (AIT),
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Klong Luang, Pathum Thani 12120, Thailand [16]. This
paper considers the typical example of the model of a
bicyrobo. The system is adapted to the normal size of a
bicycle. Figure 1 shows a picture of the bicyrobo,
consisting of two wheels mounted on a different axis.

The aim of this bicyrobo is to move properly with and
without load, to move forward or backward, and to turn
left or right without falling. Bicyrobo is a major problem
in control balancing, an unstable system and nonlinear
associated with various causes of uncertainty due to
unmodeled dynamics, parameter variations and external
disturbances. As a result, many authors have suggested a
variety of control strategies to address the problem of
perturbed bicyrobo. Flywheel balancing is used among all
strategies, mainly to equalise the torque caused by the
gravity of the robot's flywheel. The bicyrobo of dynamics
model is derived by Lagrange equation as follows:

OE
i{ai}ai_ P )
dt | op; | Ip;  op;

where Ej is the total kinetic energy of the system, E,, is
the total potential energy of the system, P; is external
forces, p; is generalized coordinate. E; and E, are
computed and defined by the following equations.

E, =m gh, cos@+m,gh, cosd 6)

By = m, (0282 )+ S m, (6203 ) 2 1,6° .
+%[1y52 +1, (ésin5)2 +1, (90055)2}

where m, and m, are both mass of bicycle and flywheel,
I, is flywheel polar moment of inertia (MI) and I, is
flywheel radial moment of inertia respectively. I, is
bicycle moment of inertia.

Axis

Figure 1. Reference Diagram of Bicyrobo (side view)

Axis
E ¥
Xl
P

B

Flywheel Centers of Gravif lean ang

m gh, cos
m_gh, cos@
Bicycle Centers of Gravity
X
Axis

Figure 2. Reference diagram of bicyrobo (front view)
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According to the above, Figure 1 and Figure 2, in a
side view and back view, display the bicyrobo co-
ordinate system and parameters, where 6 is the lean
angle of bicyrobo along the Z-axis and also it is the
angular velocity of the bicyrobo along with this axis, ¢
is the angle of the flywheel along with Z; axis, also it is
the angular velocity of the flywheel along with X axis,
h, is the height of the COG of a bicycle robot, whereas
h, is the height of flywheel COG, respectively.

For p; =6 use refer to the above equation (5 to 7).
The equation is derived below.

é[mth+myh)2,+lx+lz sinzé‘+1ycos2 5} ®)

+2sin5cos S(I, —1,,)06 — g(myhy +myh,)sin = Iwd cos 5

According to the same way as referred to the above
equation, for p; = ¢ the following equation is computed
by

51), —92(12 —1,)sindcosd =7, ~LwhcosS -y, 6 (9)

where 7,, is a torque established by DC motor and y,, is
viscosity coefficient of DC motor.

Table 2: Value of the bicyrobo Parameters

Name of Parameters Symbols Value in SI units
Gravity constant g 9.81m/ s>
Bicyrobo MI I, 27.584kgm’
Flywheel radial MI [y 0.112304kgm’
Flywheel polar M1 ]Z 0.2159260kgm>
Mass of flywheel m,, 43.10kg
Mass of Bicyrobo m, 8.lkg
Bicyrobo Heights (COG) hy 0.860m
Height of flywheel (COG) h, 0.80m
Viscosity coefficient of Vi 0.000253kgm> / s
DC motor
Back emf constants of DC E, 0.1184rad / s
motor
Armature resistant of DC R 0.41Q
motor
The inductance of DC L 0.0006H
motor
Flywheel speed (0] 157.08rad / s
Torque constants of DC 0.119Nm/ A4
motor "

The dynamics of the DC motor with a 5:1 ratio is
supposed to be for the chain transmission system as
follows the equations.

7, =511 (10)
Y—L£+Ri+E5 (1D
dt b

where T, is the torque of DC motor and E, is known as
back EMF or counter EMF (E;) of DC motor. R and L
are armature resistant and inductance of the DC motor
correspondingly. The 7, is the torque produced by the
motor.

By substitution of equation number (10) into equ—
ation number (9), and linearization (8) and (9) around the
equilibrium point, the following equations are obtained.
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e[mth 2, +1y}- glmh, +mh)0~Lwd=0 (12)

61, + 1,00 +7,,6—5T,i=0 (13)

Let us consider that xz[@éé‘i]’, y=60 and u=Y,

on combining the equations. (11) to (13), the state-space
model of the system is represented according to equa—
tion higher-dimensional system (1) as follows-

0 1 0 0
g(mxhx Jrmyhy) 0 IZa) 0
(mxh,%+myh32,+1x+1y) mxh§+myhf+lx+1y
= 0 Lo o st | (14)
Iy Iy Iy
0 0 b R
L L L]
- 1 T
B=|0 0 0 f} ,C:[l 00 0],D:0

3. PROPOSED METHODOLOGY FOR REDUCED
ORDER MODELLING

MOR aims to replicate a significantly reduced di—
mensional system with the same characteristics for a
higher-dimensional system, refer to (1). This has
approximated the system itself in some way and pre—
serves the key parameters of a higher dimension system.
Such a solution is the higher order solution for the same
input form as closely as possible.

dx(1) |
o~ A0+ B0 :[%%J 15)
y(t) =C.x(t) + D,u(r) reer
where 7 < n so that the transfer function of the reduced
-dimensional system [41].

Let, n = higher -dimensional system, k = minimal
order of the higher -dimensional system (for the non-

minimal higher-order system; for a minimal system k =
h

n, " = reduced-order model of higher -dimensional
system.

Analogous to (2), applying the Laplace
transformations to the system (15) we get

Y.(s) = G(s)U(s) (16)

where
-1
Gr(s):Rr(s):Cr(Slnr_Ar) Br+Dr (17)

The Gr(s) is a ROM, and it is in the form of the
polynomial coefficient is given as
N, (s) g +iys +iips? +--hp 5™

G, (s)== L
D,(s)  dy+dys+dys®+-+d,s"

(18)

3.1 Balanced Truncation Method

We can find a good incentive for a BT initially suggested
[29]. BT is one of the most widely used MOR methods in
the frequency domain. A reduced model is to be obtained
by removing those states which are the least or weakly
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controllable and observable measured in accordance with
the size of the Hankel singular value (HSV). HSV,
provide a measure of energy for each state within the
control theory system structure. They are the basis for a
balanced reduction of the system, which preserves high
energy levels while discarding low-energy states. The
reduced model retains significant features of the original
systems [27,31,42—45].The pri-mary concept is that the
singular values of cont-rollability gramians relate to the
amount of energy that must be put into the system in
order to move the app—ropriate states. The reduced model
is achieved in this approach by eliminating the least
controllable and least observable states of the balanced
system. The original system has been balanced by using a
transformation of similarity [46,47].

A stable, original system Gy(s) is called balanced if
the solution both gramians such as controllability (P.)
and observability (P) to the following equation,

AyPr + P Ay +ByBy! =0 (19)
AT By + Bydy +Cy  Cy =0 (20)
are such that Py, = P, = dia(oy, 03, ..., 0,):X with o) >0, >

.. > 0,> 0 and P. and P, are called controllability
gramian and observability gramian, respectively. when
the system is balanced, both gramians are diagonal and
equal o;,i=1,---n, is the i".

The Steps of MOR algorithm using BT Method are
given below.

Table 3: MOR Algorithm Using Balanced Truncation
Method

Input: (Ag, By, Co, Do): Higher -dimensional system
Output: Proposed ROM (A,, B,, C,, D,)

Step 1. Calculate the factor X = RMandy=1L"

Step 2. Calculate the singular value decomposition (SVD)

) rl
Rler=uxv’ =[v,u,] ! !
2, VZT
With Z1 =diag(&y,.....¢)), Z2 =diag(&415-8y)-
1 1

Step 3. Construct V' =LV} X, 2, T=RU, X, 2.
Step 4. Compute the ROM
(A, B, C,,D,)=(T" A", T, By, Cy, T, Dy): lower -dimensional
system
Properties

e (A, B, C, D,) is asymptotically stable

e  Error bound:

IR (s)— G(s)||Hw <UE ot )

. Must solve the large -scale Lyapunov equations.

Unlike getting the direct 7™ order BT model [47],
first, we eliminate to obtain the minimal order (k™ order)
balanced truncated model of higher -dimensional system
(G(s)) using the truncation matrices is called Trans—
formation matrices (T). Now the system is balanced,
which is partitioned as [28,48,49].

-1 [ ~ A

N T AT T B A1 B

G(s)=| —2& 1~ 9= —1— @21
c,T ! D, C:D
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where A€ R”"and 4eRP* G(s) is balanced system
for higher -dimensional system.

Here, k < n is for non-minimal system while k=n
is for higher -dimensional system (minimal system).

é(s) balanced system (21) will be the (k" order) ba—

lanced realized model for non-minimal systems, while
in case of the minimal system it will be the higher -
dimensional system (n™ order) balanced realization
model. Thus, up to this step, the algorithm works self-
minimal realisation method.

Select the reduced model number, 7( < k < n) of the
system based on higher magnitudes of Hankel singular
values [50]. Balanced which is partitioned as strong
subsystem and weak subsystem [44].

|4 B |4 B 12 0
{Cl DrHCz O}DZ'{O Zj (22)

Strong Weak

= Strong Subsyustem+ Weak Subsystem <> 3.

(to be retained) (to be retained) (23)

Since partition, the balanced system (/Al,l}, C ,ﬁ) and
the gramian X conformally given as

~ | A4 A A B
A:{ 1 12}32[ 1}

Ay A B, (24)
é':[Cl Cz],D:D

where Ay, and X, are lower-order matrix, it is part of a
strong subsystem which is also (r<n).The subsystem
(41,B,,C;) must be a good approximation of the

balanced system é(s) if o, > o, proposed by the B

C. Moore, 1981 [29]. We call this I ordering system a
direct reduction (DR) or direct truncation (DT) appro—
ximation of the balanced system. Several nicely-recog—
nized results that are relating to the approximation is
available in the [51].

Therefore, stronger subsystem, the " order balanced
truncation model is,

41| B
G, pr(s)= G D (25)

where 4;;R"™" and X, are reduced matrix (r<n).

The above BT model does not give the guarantee to
preserve the DC gain of the actual or higher system
[52]. refer to (12) has been achieved as a minimally
realized model comprising strong and weakly subsys—
tems. Thus, the SPA can be extended effortlessly to the
(12) subsystems. Reduced (r) balanced states are pre—
ser—ved in the BT model, which are entirely control—
lable and observable such that balanced states are
maintained and the remaining weakly controllable
and/or measurable states are truncated. The SPA [47] is
used to preserve the DC gain value of the original
system in the model [50,52,53]. The concerned
researcher may referee to [54] for more indications of
the method.
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3.2 Hybrid Method for Approximation

In numerous engineering, the system's steady-state gain,
usually referred to as DC gain (the system gains at an
infinitive time, equivalent to Gy(0), plays an important
role in evaluating system performance. It is, therefore,
better to maintain the DC gain in the ROM, i.e., G(0)=
Gy(0), the balanced truncation method introduced in the
above subsection does not keep the DC gain unchanged
[55]. Suppose that (4o, By, Co, Dy) is compatible with
minimal and balanced truncation of the stable Gy(0)and
partitioned system as in the previous subsection. It can
be demonstrated that stable is Aj,.

In this section, we address the order reduction
procedure for higher-dimensional systems resulting in a
hybrid approach using BT and a balanced SPA. In the BT
method, all balanced systems are divided into two parts
as a slow and fast mode by defining the lower Hankel
singular values (HSV) as a fast mode, while the others are
defined as a slow mode. First, the derivative of all states
equal to zero in fast mode can be achieved by defining a
reduced system. The main objective of maintaining the
structure of the ROM is to preserve the dominant
frequencies of the original system, in the reduced system,
therefore, to preserve dominant dynamic modes [26].

The resulting reduced system which preserves the
DC gain and steady state values is called BSPA app—
roach [26] and is given [53,56].

Now, the final system (A4,B,C,D) conformally as

in (26).

_ | 1
Ay~ Ay Ayy Ay) 1 By~ Ay A3y B,
3, =| - 2LIRIRIZ o)
-Gy 4 By

| o

Balanced SPA

The bicyrobo tests to demonstrate the method will
be discussed in the preceding section and successfully
validate the proposed method to balancing control by
reduced controller.

Also, the accuracy and performance of the proposed
method is measured by calculating indices error, which is
commonly used as an integral square error (ISE), integral
absolute error (IAE) and integral time-weighted absolute
error (ITAE) to validate the output of the system. A
comparison of the response has been done based on the
unit step response. The performance of ROM obtained is
also compared based on measures by calculating the per—
formance indices, the accurateness of the proposed method
which is index error between the transient sec—tions of the
actual system and the ROM. performance indices error
refer by [25,57-59] as discussed by the following equation

ISE = [[n(0)-y2 (0 dr. 28)
0
IAE = [[n(6) = yp (1) dr . (29)
0

924 = VOL. 49, No 4, 2021

ITAE = j 1l (&) -y, (1)) dt . (30)
0

where y;(f) and y,(¢) are the outputs of the actual system
and ROM [59]-[64].

4. COMPUTATIONAL ANALYSIS FOR HIGHER-
ORDER CONTROLLER OF BICYROBO

The values of the parameters of autonomous bicyrobo
are identified as shown in Table 2. By substituting these
values into state space model equation (14), the
balancing system of bicyrobo is representation in the
form of a nominal transfer function described as
T(S)= 9s) .

Y(s)

4887

Ts)= 3 2
s +683.30s” +1208.00s~ +109700.00s —6949.00

G

where 6(s) is the bicyrobo output lean angle and y(s) is
the DC motor input voltage controlling the flywheel
control axis. Suppose the bicyrobo system is affected by
multivariate uncertainties and external disturbance,
followed by cases for bicyrobo perturbed.

Case-1: Let the load be added with a further 10 kg, and
the flywheel speed is decreased to 147 rad/s. Therefore,
the bicyrobo perturbed model becomes the transfer
function represented as the following.

~ 3784
s*+683.30s> +1162.00s2 +78290.00s — 6857.00

Case -2: As for an additional 10 kg, the additional load
is applied again, and the speed of the flywheel is
increased to 167rad/s. And the bicyrobo perturbed
model is described as the following transfer function.

A 4299

1(s)

(32)

1(s)=— - - (33)
s 1+683.30s” +1197.00s” +102300.00s — 6857.00
» ‘ Hankel Singul(arViIues [State ( ibuti : :
[Ilstable Six modes

20 Bl
Bs- 1
o |

5

Figure 3. Hankel singular values plot of higher-order
controller

Design of the controller for balancing control of bi—
cyrobo system under H-infinity full sustainable control
procedure and strategies is developed by (Bui et
al.,2008) [16,17] and the H-infinity (Hoo) controller is
designed as follows
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4 3

12755° +8.695¢05s
2

+5.151e05s

+1.359¢08s
5 4 2.355¢04s

+2.435¢075+1.091¢06
4 42.789¢05s

Te(s)=—

34
$® 471575 3G9

+3.802¢06s2 +6.519¢055+2.872¢04

Hankel singular values of the original system are
expressed as o is given by

o =[19.2747, 18.9796, 17.8203, 0.9214, 0.0432, 0.0002] (35)

Through control theory, eigenvalues are classified as
system stability, while HSV defines the "energy" of
each state in the system. Retaining a larger energy state
of the system retains much of its characteristics in terms
of stability, frequency, and time response. The model
reduction strategies presented are all based on the
system's HSV. We can achieve a ROM that preserves
much of the appearance of the system. The HSV bar
chart diagram of the higher order controller is shown in
Figure 3 and from the matrix refer to Eq. (35), the
singular value of the controller has been also calculated.
it is observed that o3 >> o4. The first-third, HSVs are
important here, and the singular values fall very rapidly
to the fourth value and are insignificant in the process of
reduction. As a result, the order of reduction has been
chosen as a third order.

The design and simulation of controllers is a
complex task for a large system. This infinity controller
(H,) is in sixth order. This higher-order controller is
therefore practically difficult to implement. Due to the
complex program that increases the processing time, the
slow response rate of the control system is slow, without
a good response to the controller's real-time requi—
rements and the stability of the balanced system. As the
order of the system increases, the complexity and cost
of the design of the controller increase simultaneously.

Thus, this difficulty can be resolved if a "good"
approximate reduced system is available for the original
large-scale model and the design of the controller is
carried out using a reduced model to make the program
code easier, reduce the processing time, increase the
response speed of the controller. In the case of a large-
scale system, for the design of feedback controllers, an
enormous number of sensors is needed to detect the
state variables of the systems. To improve the quality of
this controller, a reduced-order controller should, there—
fore, be put in place to simplify the implementation,
reduce the configuration of the system but still meet the
system requirements for sustainable stability.

4.1 Design of Reduced Order Balancing Control of
Bicyrobo System

In this section, the H_ controllers are defined as full

order Eq. (34). Implementation of reduced-order H-in—
finity controllers as third-order ROC designs is pro—
posed and compared with other well-known controllers
described in the literature survey. In this higher-order
controller, the proposed method reduced to a ROC. The
researchers examined and simulated the excessive
response of the HOC and ROC. time response of
bicyrobo using different ROCs is shown in Figure 4.

As a result of the reduction of the order in
accordance with Figure 4. It can be seen that the
response of the fifth, fourth-order reduction controller
has an accurate approximation compared to the response
of the HOC; the response of the third-order ROC has
very small variations; the response of the second and
first order.

In addition, Table 4 shows the time response of the
HOC to the third order ROC without bicyrobo and has
also been compared with the ROC obtained by different
methods as found in the type of literature search.

Table 4: Response comparison of HOC with ROC of without bicyrobo

Author by design Methods for the Rise Time Settling Time ~ Overshoot ISE IAE ITAE
controllers reduced controller (s) (s) (s)
6" order controller by ~ Particle Swarm 0.2810 NaN 10.1376 - - -
(Bui et al.,2008,2010) ~ Optimization
(PSO), Genetic
Algorithm (GA)
3" order controller by BSPA 0.2686 0.9138 154310 0.01259 03119 1.504
proposed
3" order controller by Cuckoo search 0.2706 0.9056 15.2120 2.047 3.865 24.97
A. Sikander et al., algorithm (CSA)
(2019)
3" order controller by ~ Schur analysis (SA) 0.2673 0.9138 15.4436 7.32 7.655 49.23
(Huu et al., 2013)
3" order controller by =~ Model truncation 0.2783 0.8641 14.0878 7.808 8.026 47.72
(Liuetal, (1989)and ~ (MT)
R. Pinnau, (2008)
3" order controller by Stability Equation 0.2052 6.6709 0 19.93 3.466 1.575
D.K. Sambariya et al., Method (SEM)
(2019)
Balanced stochastic 0.2686 0.9139 15.4435 7.33 7.654 49.23

3™ order controller by
A. Varga et al., (1993)

model truncation
(BST)
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Performance comparison based on time-domain
characteristics and performance indices for error
calculation is shown in Table 4. It is understood that the
response of the reduced controller approximates the
results of the HOC very closely with no steady-state
error in the response time and precisely matches the
response time. So, in this work, I'm trying to implement
a third-order ROC for balancing the bicyrobo system.

Step Response
50 T T T T

T

7" 4 == 6th Order Higher Controller
030k :" =~ 5th Order Controller Obtained by Proposed Method 4
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Figure 4: Time response of original and different reduced
order controllers by proposed method without bicyrobo

4.2 Implementation of 3rd order Reduced Controller

After applying the proposed method focused on the
hybridization of BT and SPA, the third-order ROC is as
follows:

The ROC in third order obtained by the proposed
approach is expressed as :

2 49217 s+ 1.719¢05

2 439595 + 4525

1757 s3> + 1107 s

T, (s)=
Cr_p 3 +28.01 s

whereas third-order ROC developed by several rese—
archers recommended. The following transfer functions
are defined by various suggested methods, respectively.
whereas, the ROC in third-order obtained by the method
based upon balanced stochastic truncation (BST), A.
Varga et al.,(1993) [65] is as follows

1275 s> + 234.65 + 1.993¢05
$3 +33.78 s2 +395.1s + 5503

Ter psr(s)=

A. Sikander er al.,, (2019) also recommended a
cuckoo search algorithm (CSA) to obtain a ROC in third
order for the above sixth-order H infinity HOC which is
based upon by diminishing the performance indices
error using a cuckoo search algorithm. The transfer
function of the ROC is given by.

2
1241s
T (s)=

Cr_CAS™ 3 30,476

The following ROC in third-order is obtained by
using the thought of the MOR based on Schur Analysis
(SA) method referred to by (Huu et al., 2013) [19].

+234.85+1.936¢05
2 13955+5274

1275 s2 + 234.8s + 1.993¢05

T, ()=
Cr_s4 $3 +33.78 s2 +395.1s + 5506

926 = VOL. 49, No 4, 2021

Furthermore, also ROC design based on reduced
order method using stability equation method (SEM) D.
Sambariya et al., (2019) and reduced controller using
Modal Truncation (MT) [51] suggested by Liu et al.,
(1989) and R. Pinnau, (2008) [66] are represented by in
form of transfer function expressed as:

1.359¢08 52 +2.435¢07s + 1.091¢06
278900 5 +3.802¢06 s2 + 651900 s + 28720
1057 s2 +226.50s + 1.638¢05

T (s)=
Cr_MT 3 +27.99s2 +395.90s + 4521

Ter SEM®)=
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Figure 5. Time response of original and reduced third order
controllers (a) with bicyrobo (b) with bicyrobo (Case-1) (c)
with bicyrobo (Case-2)

Tables 5 to 7 show a comparison of ROCs in terms
of error indices, and it is clear that the proposed ROC
has the lowest values of these error indices. Furt—her—
more, to demonstrate the effectiveness of the proposed
controller, its behaviour is examined in two different
perturbed bicyrobo cases, as previously discussed.
Figures 5(a) to (d) show the performance of perturbed
bicyrobo with full and reduced order controllers in cases
1 and 2, respectively.
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Step Response

— Proposed Method with Bicycle Robot (Bicyrobo)
— Proposed Method with Perturbed Bicycle Robot Case-1
— Proposed Method with Perturbed Bicycle Robot Case-2
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Figure 6. Time response of bicyrobo with reduced third
order controllers

Table 5: Performance comparison of closed-loop bicyrobo
using third-order controllers

is for case 2. Figure 5(b) and 5(c) shown close-loop
time response of proposed controller with bicyrobo with
perturbed bicyrobo case-1 and with perturbed bicyrobo
case-2. Furthermore, in terms of time response speci—
fications and performance indices, Figure 6 depicts a
performance comparison of closed loop bicyrobo using
third order controllers. It is also clear from this picture
that the closed loop step response of the bicyrobo with
the proposed third order controller is significantly better
with perturbed in both situations. So, we can say the
reduced controller is more efficient and easier than
HOC. This way by minimizing the cost and compu—ta—
tional time implementation of the controller and reduced
the hardware complexity.

Table 6: Performance comparison of closed-loop bicyrobo
using third order controllers with Case -1

Authors by  Methods ISE IAE ITAE
design for the

34 order  reduced

controller  controller
Proposed BSPA 1.183e-06 0.002475 0.007867
Method
A. Sikander CSA 5.081e-05 0.01936  0.08185
etal., (2019)

(Huuetal,, SA 3.169¢e-05  0.01498  0.05845
2013)
(Liuetal, MT 0.0001763  0.02165  0.05801
(1989) and
R. Pinnau,
(2008)

DX SEM 0.007725 0.1852 0.5091
Sambariya
etal., (2019)
A.Vargaet BST 3.169¢e-05  0.01498  0.05845
al., (1993)

(B.C. BT 3.077e-05  0.01475  0.05936
Moore,
1981) and
S.K suman

etal., (2019)

Authors by ~ Methods ISE IAE ITAE
design for the
reduced
controller

3" order
controller

Figure 5(a) shows the closed-loop time response of
the HOC with the third in ROC with bicyrobo and also
it has been compared with ROC obtained by different
methods as found in the works of literature. The same
has been performance comparison based on perfor—
mance index error calculation is depicted in Table 5. It
is understood that the response of ROC approximates
the results of the HOC very closely with no steady-state
error in time response and exactly matches in response.

To illustrate the strength of the proposed controller,
the action is studied in two different cases of perturbed
bicyrobo, as described above section 4.2, with the HOC
and the third-order ROCs for case-1 and case-2 shown
in Figure 5(b) and Figure 5(c) well, respectively. It is
observed that the proposed control strategy often shows
outstanding efficiency and efficacy for disturbed bicy—
robo comparison to other renowned controllers via the
published research. Also compared with a results com—
parison of closed-loop bicyrobo using third-order ROCs
by ascertain-mathematically (compute) of performance
indices error to measure the accuracy of the controllers.
It is also seen that the proposed controller compared
with ISE, IAE, ITAE is much lesser than other
controllers depicted in Table 6 is for case 1, and Table 7

FME Transactions

Proposed BSPA 1.329¢-06  0.00249 0.007835
Method

A. Sikander CSA
etal.,

(2019)

(Huu et al., SA
2013)

(Liu et al., MT
(1989) and

R. Pinnau,

(2008)

DXK. SEM
Sambariya

etal.,

(2019)

A. Varga et BST 2.4e-05
al., (1993)

(B.C. BT
Moore,

1981) and

S.K Suman

et al.,

(2019)

5.582e-05 0.01846  0.07042

2.4e-05 0.01235  0.04408

0.0004686  0.03978

0.08863

0.01213 0.2885 1.14

0.01235

0.04408

2.329e-05 0.01211  0.04434

Table 7: Performance comparison of closed-loop bicyrobo
using third order controllers with Case -2

Authors by  Methods ISE TIAE ITAE
design 3"d for the

order reduced
controller controller
Proposed BSPA 1.212e-06  0.002394 0.006864
Method
A. CSA 5.435e-05  0.02021 0.08662
Sikander et
al., (2019)
(Huu et SA 3.475¢-05 0.01559  0.06073
al.,2013)
(Liu et al., MT 0.000175  0.02197  0.05948
(1989) and
R. Pinnau,
(2008)
D.K. SEM 0.005949 0.1642 0.4548
Sambariya
etal.,
(2019)
A. Varga BST 3475e-05 0.01559  0.06073
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etal.,

(1993)

B.C. BT
Moore,

1981) and

S.K Suman

et al.,

(2019)

3.375e-05  0.01535  0.06172

It is also clear and confirmed that all of the results in
the form of Tables and Figures of bicyrobo with pro—
posed third ROC are improved and superior to other
controllers reported via published research.

5. CONCLUSION AND FUTURE SCOPE

The concept of reduced-order modelling has been
successfully implemented to design a pre-specified
controller structure for bicyrobo balancing control. The
five controllers have been designed in the order from
first to fifth. To obtain the unknown parameters of the
proposed ROCs, the BSPA method has been employed.
The ROCs are constructed using the BSPA method and
are used to achieve the proposed optimal third-order
ROC with identical characteristics to the six order Heo,
HOC. The performance of the controllers proposed /
designed is assessed in terms of time-domain response
analysis and performance indices error. The study of
two separate cases of disturbed bicyrobo system with
too many sources of uncertainty such as un-model dy—
namics, parameter variations and external disturbances
is also considered to analyse the robustness, effecti—
veness, and power of the reduced controller. The
efficiency of the proposed controllers is compared with
newly established controllers such as Hoo controller,
PID controller-based based on optimization such as GA,
PSO and also, MOR based on a reduced controller such
as Schur analysis, CSA and modal truncation, etc. An
interesting fact has been observed, which is, when third
order reduced controllers are employed, that they
perform quite well for normal operations, as well as in
cir-cum-stances with parameters uncertainty. The
discussion here is only about the simulation results. The
proposed method provides far superior results which are
justified by the compromise of the higher order of the
Hoo controller for typical examples of published work.
This approach is more effective when applied
successfully to a higher-order system. We can say that
the ROC is more efficient and useful than HOC. This
way, it is useful for hardware design of controller for
any system, which forms the course of the future work,
by minimising the cost and computational time for the
real-time implementation of the controller.
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MOJAEJIUPAIBE CMAILEHOI PEJIA 1
KOHTPOJIA BAJIAHCHPAIBA
BUIUKJINCTHYKOI POBOTA

C.K. Cyman, A. Kymap

[pukasyjy ce pe3yiraTd HCTpaXKUBama KOHTPOJIE
OamaHcupama OWIMKIACTHIKOT po0oTa TNPUMEHOM
MOJZeUpama CMarbEeHOT pena TPETXOJHO
JM3ajHAPAHOT KOHTpOJIepa BUILET pesia fa Ou ce u3Beo
pPEIYKOBaHU KOHTPOJIEP. BUIMKIMCTHYKK POOOT KOjU
j€ HecTalMoHapaH CUCTEM a KOjH Mpare OPYrH Y3pOIH
HEM3BECHOCTH, Kao IITO je AWHaMuKa Oe3 Mojena,
napaMeTpu OJCTyMama M Crhojbammu mnopemehaju,
npe/cTaB/ba MPEAMET HHTEPECOBama HCTpaxuBaya. Y
JUTEpaTypyu C€ TOjaBJbyjy KOHTPOJEPH BHILCT pefa
(HOC), neo cuctem je KOMILIEKCaH C acleKTa aHaJu3e,
cuHTe3e, yHanpehema u UMa XapABep 4Hja je mpuMeHa
oTexaHa. 3aTo je y paxy pa3BHjeH KOHTpOIEp
penykoBanor pema (ROC) koju ycmemHo caBiamaBa
HenpeBUbMBY auHaMuKy. ROC je nu3ajHmpan
npuMeHoM Mmerona penykuuje mozena (MOR) koju je

FME Transactions

SISO -Single Input Single Output
SMC -Sliding Mode Controller
SPA -Singular Perturbation Approximation

pesynTaT xubpuausalyje HpPHCTyNa YpPaBHOTEKEHOT
ckpahuBaa (BT) u ampokcumarje CHHIYJapHOT
nopemehaja  (SPA). Tako 100HMjeHH peayKOBaHH
Mozen, Koju 3agpxkaBa DC mojavame, ce Has3uBa
NPUCTYII aPOKCHMAIIMj€ YPABHOTEKEHOT CHHTYJIapHOT
nmopemehaja (BSPA). bBasupa ce Ha ouyBamy
JOMHUHAHTHUX peXuMa (CTama) CHUCTeMa Kao U Ha
CIMMUHHCAy CTaka Ca pEaTHBHO Oe3HauajHIM
KapaKTepUCTHYHUM cBojcTBUMa. Hemocratak BT
METOJa je Taj INTO 3a MOAEN CMAameHOT pena,
BPEIHOCTH CTanMoHapHOT crama win DC mojagama He
OJIrOBapajy TPEHYTHUM BPEJHOCTUMA CUCTEMa. 33 OBaj
HenmocTartak je oaroBopan BSPA. V mopehemy ca
nocrojehM MeTonuMa OBaj METOJ| MHTETPHILE BHIIIE
JOMUHAHTHUX  3aXTeBa W  JIOMPHHOCH  0O0JHO]
anpoKcUMaIju. Pesynratm  JA00HMjeHH TNPUMEHOM
MIPEIJIOKEHOT  KOHTposiepa  ymopeheHm cy ca
pesyiratuMa J0OMjeHMM JN33jHUPAEM  CTaphjux
KOHTpoJIepa M 00jaBJbeHHM Y JIUTEpPAaTYypH 3a HCTE
¢yakumje. HoBu koHTpOsep nma OoJbe mepdopmance
Hero KoHTposep Bumer pena. Ileppopmarnce HOC u
ROC cy ucrintane y BpeMEHCKOM JOMEHY U C acIieKTa
rpelke uHaekca nephopMaHcy.
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