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Reduced Order Modelling and 
Balancing Control of Bicycle Robot 
 
A new result for balancing control of a bicycle robot (bicyrobo), employing 
reduced-order modelling of a pre-specified design controller structure in 
higher-order to derive into a reduced controller has been presented in this 
paper. The bicyrobo, which is an unstable system accompanying other 
causes of uncertainty such as un-model dynamics, parameter deviations, 
and external disruptions has been of great interests to researchers. The 
controllers in the literature reviews come up with the higher order 
controller (HOC), the overall system becomes complex from the 
perspective of analysis, synthesis, enhancement and also not easy to handle 
it’s hardware implementation. Therefore, a reduced-order pre-specified 
controller is developed in this work. It is effective enough to tackle 
unpredictable dynamics. The reduced-order controller (ROC) design is 
based on model order reduction (MOR) method, which is a resutl of 
hybridization of balanced truncation (BT) and singular perturbation 
approximation (SPA) approach. The reduced model so obtained, which 
retains DC gain as well, has been named as balanced singular 
perturbation approximation (BSPA) approach. It is based upon the 
preservation of dominant modes (i.e. appropriate states) of the system as 
well as the removal of states having relatively less important distinguishing 
features. The strong demerit of the BT method is that, for reduced-order 
model (ROM), steady-state values or DC gain do not match with the actual 
system values. The BSPA has been enabled to account for this demerit. The 
method incorporates greater dominant requirements and contributes to a 
better approximation as compared to the existing methods. The results 
obtained by applying proposed controller, are compared with those of the 
controllers previously designed and published for the same type of work. 
Comparatively, the proposed controller has been shown to have better 
performance as HOC. The performance of HOC and ROC is also 
examined with perturbed bicyrobo in terms of time-domain analysis and 
performance indices error. 
  
Keywords: Bicyrobo, MOR, BSPA, Higher-order controller, Reduced-
order modelling. 

 
 

1. INTRODUCTION  
 

The main challenge in modern robotics is to produce 
behaviour that can be adapted in real time. We need 
robots that are adaptive and learning to deal with 
dynamic environments such as humans and animals. 
Robots perform various tasks that improve quality and 
ease of transport. Mobile robots, underwater and flying 
robots, robotic networks, surgical robots with high 
operational efficiency are playing an increasing role in 
society [1–4]. A bicycle robot is a good means of 
transportation because of its advantageous attributes 
such as being light in weight and environmentally 
friendly. The bicyrobo has inherently nonlinear system 
dynamics and is naturally unstable as well, which makes 

it difficult to control. As a result, it brings exciting 
challenges to the control engineering community. 
Several researchers have been conducting research on 
various mechatronic systems for dyna–mically 
balancing and manoeuvre bicycles. 

Bicycles have been used to help people move around 
for leisure, recreation, and transportation since the 
1800s. Wheeled transportation is the cheapest way to 
get around. Between the 19th  and 20th  centuries, the 
bicycle was continually improved, which led to the 
modern wheeled transport what we have today [5]. The 
history of bicycles can be found in the proceedings of 
the international conference on cycling history, which is 
held every year since 1990 [6]. Robust control 
techniques have been applied to control and move these 
two-wheel mobile robots that are always unstable with 
nonlinear behaviour, are influenced by external 
disturbances also. The work focuses on the balancing 
control of the bicyrobo. The efficiency of HOC and 
ROC is also evaluated with perturbed bicyrobo. The key 
goal of the bicycle is to move properly with and without 
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load, to move forward or backward, and to turn left or 
right without breaking. Bicycle is a big control 
balancing issue, an unstable system associated with 
different sources of uncertainty due to unmodeled 
dynamics, parameter variations and outside disturbances 
[6]. The concept of a self-balancing bicycle or a 
bicyrobo is, therefore, an important research subject. 
The murata boy robot which was firstly created in 
Japan, 2005 is a typical example of a bicyrobo. There 
are many solutions to controlling bicycle robots [7], 
such as using flywheels [8], steering control [9], balan–
cing control [10,11], stabilization and motion control 
[12] or moving the centre of gravity [13] .There are 
several practical methods to take from this class. In this 
we describe some recommendations for balancing the 
flywheel. Among these options, flywheel balancing, 
which utilises a spinning wheel as a gyroscopic stabi–
liser, a good option as the response time is short and the 
system is stable even when stationary, as shown in 
Table 1. The search in the literature identified numerous 
investigators who have designed better controllers for 
bicyrobo. In this study, the number of linear controllers, 
such as 2H , H∞ came into the picture due to their ro–
bustness. They are more robust than the other cont–
rollers available in the literature review because they are 
less sensitive to external disturbances and errors. A 
robust controller for a system with varying uncertainties 
is being designed by Khargonekar et al., (1991). A 
robust technique in which composite 2H / H∞ control is 
used for such type of systems as suggested in [14]. The 
controller design is oriented toward designing cont–
rollers that exhibit robust stability as well as superior 
performance, for instance, small tracking error, lower 
control energy, etc. Despite its complex design pro–
cedures, advanced control methods like PID (propor–
tional integral derivative) and lead-lag are rarely utilised 
like the mixed 2H / H∞  control due to the requirement 
for advanced design procedures and resulting in ad–
vanced controllers. The controllers are of high order and 
achieve the same results as augmented plants through 
the application of a Riccati equation approach [15]. 
Several investigators have used nature-inspired search 
algorithms to design robust controllers [16–18]. 

 The HOC architecture can contribute to several 
drawbacks as we run robot balanced control prog–ram–
mes due to dynamic software that increases the running 
time, the slow response speed of the control system 
without a reasonable solution to the controller's real-
time specifications and the stability of the balanced 
system. In order to improve the efficiency of this 
controller, the ROC should be set up to simplify the 
programme code, reduce the computational time, 
increase the response speed, but still comply with the 
system's reliability requirements [19].  The complex 
design process and HOC achievements are the greatest 
disadvantages for these controllers. To contribute, 
several researchers in the literature have recently 
proposed a large number of order reduction techniques 
[20–25].Therefore, a ROC is needed to preserve all the 
appropriate characteristics of the HOC. ROC may lead 
to a reduction in computing effort, cost reduction and 
simulation time. 

    The proposed article provides a methodology as a 
new result to design pre-specified structure [16] for 
balancing control of bicyrobo using reduced order 
modelling, which is based upon a hybridization of BT 
and SPA called BSPA approach [26]. Is is based on the 
concept of preserving the essential parameter and 
characteristics of the HOC in the ROC. The proposed 
method is based upon this preservation of dominant 
modes or states of the system as well as the removal of 
relatively less important distinguishing feature. 

The reduced controllers developed by the proposed 
approach are compared to HOCs and other ROCs for 
reported research in terms of performance index error 
criteria. Based on the effect disturbance and uncertainty 
generated by the multiple sources of instability related 
to un-modelled dynamics, it is difficult to suppress 
parameter variations using the conventional and higher 
order controller methodology. The 1st, 2nd, 3rd, 4th and 5th 
order controllers designed by the proposed method are 
compared with the higher order controller and other 
reduced order controllers available in the literature 
review, on the basis of the time domain specification 
and various performance indices. The performance of 
the bicycle robot is also analysed with higher and lower 
order controllers in the presence of uncertainty. The 
proposed 3rd order controller has been found to have 
excellent and superior performance compared to other 
controllers. 

This paper is divided into five sections. Section 1 
includes an overview and a detailed summary of the 
literature review for control strategies of bicycle robot 
studies. The mathematical modelling of the bicycle 
robot is defined in section 2. The proposed methodology 
for reduced order modelling is described out here in the 
Sect. 3. Computational analysis for HOC and imple–
mentation of ROC of bicyrobo using the proposed 
methodology is given in Sect. 4, followed by bicycle 
robot’s controller taken from the literature and com–
pared with, for the validity of the proposed method. 
Finally, section 5 points out the premise and the future 
scope of the work discussed. 

 
2. MATHEMATICAL MODELLING OF THE SYSTEM 

 
We describe generalized  thn  order LTI continuous-time 
systems in a state-space model form is given by  

( ) ( ) ( )
:

( ) ( ) ( )

o oo o

o o
o o

x t A BA x t B u t
dt C D

y t C x t D u t

⎧ ⎛ ⎞= +⎪ ⇔ ∑ = ⎜ ⎟⎨ ⎜ ⎟
⎪ ⎝ ⎠= +⎩

  (1) 

 where suffix ‘o’ is denoted for the actual system and an 
n-dimensional state vector  nx∈ , pu∈  are the in–
puts of the system and,  qy∈  of the system outputs. 
The state-space model matrices have dimensions 

n n
oA ×∈ , n p

oB ×∈ , q n
oC ×∈  , q m

oD ×∈  .p = 
q = 1, the actual system is referred to as the SISO  
system, otherwise, it will be called the multi-
dimensional system. In the case of multi-dimensional, it 
is assumed that the number of inputs and outputs is 
much lower than the number of states., i.e., ,p q n<< .  
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Dynamical system  refer to (1) is called asym–
ptotically stable when all the finite values of the matrix 
write are specified in [27–31] The frequency response is 
another important measure to study the characteristics 
of the LTI system. To determine the frequency res–
ponse, the system referring to (1) appears to be applying 
the transformation of Laplace is given as  

Y (s) = G (s)U(s)r r    (2) 

where ( ) [ ] 1
0 0 0 0 0nG s C sI A B D−= − + .                (3) 

2 1
0 1 2 1

2
0 1 2

( )
( )

( )

m
o m

p n
o n

N s n n s n s n s
G s

D s d d s d s d s

−
−+ + + ⋅⋅ ⋅

= =
+ + + ⋅⋅ ⋅ +

  (4) 

where ni, di are scalar constants of the n dimensional. 
Table 1: A literature summary of control strategies for 
bicyrobo 

R
ef

er
en

ce
s  Objectives  Methods to tackle a 

problem  

[13] Self-stabilizing strategy Sliding Patch Theory 
[9] Bicycle steering based on 

acceleration control  
Disturbance Observer 
design Setting gain 
values 

[7] Dynamic stabilization and 
control moment gyroscope 

SMC 

[8] control of autonomous 
motion 

Gyroscopic 
Stabilisation, PID 
controller 

[32] Dynamic compensation and 
balancing control 

PD controller 

[33] Balancing control with 
uncertain COG 

LQR method 

[16] Balancing control PSO 
[11] Self-balance using steering 

control 
PID controller in 
python, raspberry pi 

[34] Rider control while steering 
and stabilizing 

Linear feedback 
control 

[35] Stabilization control  CADO 
[36] Attitude control by steering 

angle and variable COG 
control 

PD control 

[6] Control moment gyroscope 
(CMG) for balancing 

PD controller 

[37] Balancing control Pole placement 
technique 

[38] Trajectory control LQR method 
[39] Self-balancing control Feedback control 
[17] Balancing control H∞ loop shaping 

control, PSO 
[40] Self-balancing control Optimization-based 

PID controller 
[19] Balancing control MOR based on Schur 

analysis 
[20] Balancing control ROC using CSA 
 
2.1 Modelling of a Bicyrobo 
 
The bicyrobo was developed as a platform for eva–luating 
the effectiveness of the advanced control algorithm and 
strategies  (Bui et al., 2008) study at the Mechatronics 
Laboratory, the Asian Institute of Technology (AIT), 

Klong Luang, Pathum Thani 12120, Thailand [16]. This 
paper considers the typical example of the model of a 
bicyrobo. The system is adapted to the normal size of a 
bicycle. Figure 1 shows a picture of the bicyrobo, 
consisting of two wheels mounted on a different axis. 

The aim of this bicyrobo is to move properly with and 
without load, to move forward or backward, and to turn 
left or right without falling. Bicyrobo is a major problem 
in control balancing, an unstable system and nonlinear 
associated with various causes of uncertainty due to 
unmodeled dynamics, parameter variations and external 
disturbances. As a result, many authors have suggested a 
variety of control strategies to address the problem of 
perturbed bicyrobo. Flywheel balancing is used among all 
strategies, mainly to equalise the torque caused by the 
gravity of the robot's flywheel. The bicyrobo of dynamics 
model is derived by Lagrange equation as follows: 

pk k
i

i i i

EE Ed P
dt p p p

∂⎧ ⎫∂ ∂
− + =⎨ ⎬

∂ ∂ ∂⎩ ⎭
                     (5) 

where Ek is the total kinetic energy of the system, Ep is 
the total potential energy of the system, Pi is external 
forces, pi is generalized coordinate. Ek and Ep are 
computed and defined by the following equations. 

cos cosp x x y yE m gh m ghθ θ= +                  (6) 

( ) ( )
( ) ( )

2 2 2 2 2

2 22

1 1 1
2 2 2

1 sin cos
2

k x x y y x

y z y

E m h m h I

I I I

θ θ θ

δ θ δ θ δ

= + +

⎡ ⎤+ + +⎢ ⎥⎣ ⎦

  (7) 

where mx and my are both mass of bicycle and flywheel, 
Iz is flywheel polar moment of inertia (MI) and Ix is 
flywheel radial moment of inertia respectively. Iy is 
bicycle moment of inertia. 

 
Figure 1. Reference Diagram of Bicyrobo (side view) 

 
Figure 2. Reference diagram of bicyrobo (front view) 
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According to the above, Figure 1 and Figure 2, in a 
side view and back view, display the bicyrobo co-
ordinate system and parameters, where θ is the lean 
angle of bicyrobo along the Z-axis and also it is the 
angular velocity of the bicyrobo along with this axis, δ 
is the angle of the flywheel along with Z1 axis, also it is 
the angular velocity of the flywheel along with X1 axis, 
hx is the height of the COG of a bicycle robot, whereas 
hy is the height of flywheel COG, respectively. 

For  pi = θ  use refer to the above equation (5 to 7). 
The equation is derived below. 

2 2 2 2sin cos

2sin cos ( ) ( )sin cos

x x y y x z y

z m x x y y z

m h m h I I I

I I g m h m h I

θ δ δ

δ δ θδ θ ωδ δ

⎡ ⎤+ + + +⎣ ⎦
+ − − + =

  (8) 

According to the same way as referred to the above 
equation, for pi = δ the following equation is computed 
by 

2 ( )sin cos cosy z y m z mI I I Iδ θ δ δ τ ωθ δ γ δ− − = − −    (9) 
where τm is a torque established by DC motor and γm is 
viscosity coefficient of DC motor.  
Table 2: Value of the bicyrobo Parameters 

Name of Parameters Symbols Value in SI units 
Gravity constant  g  29.81 /m s  
Bicyrobo MI Ix 227.584kgm  
Flywheel radial MI Iy  20.112304kgm  

Flywheel polar MI I z  20.2159260kgm  

Mass of flywheel my 43.10kg
Mass of Bicyrobo mx 8.1kg
Bicyrobo Heights (COG) hx 0.860m
Height of flywheel (COG) hy 0.80m
Viscosity coefficient of 
DC motor 

γm 20.000253 /kgm s  

Back emf constants of DC 
motor 

Eb 0.1184 /rad s

Armature resistant of DC 
motor 

R  0.41Ω

The inductance of DC 
motor 

L  0.0006H

Flywheel speed ω  157.08 /rad s
Torque constants of DC 
motor mτ  0.119 /Nm A

 
The dynamics of the DC motor with a 5:1 ratio is 
supposed to be for the chain transmission system as 
follows the equations. 

5m mT iτ =                             (10) 

b
diY L Ri E
dt

δ= + +                         (11) 

where Tm is the torque of  DC motor and Eb is known as 
back EMF or counter EMF (Eb) of DC motor. R and L 
are armature resistant and inductance of the DC motor 
correspondingly. The τm is the torque produced by the 
motor. 

By substitution of equation number (10) into equ–
ation number (9), and linearization (8) and (9) around the 
equilibrium point, the following equations are obtained. 

2 2 ( ) 0x x y y x y x x y y zm h m h I I g m h m h Iθ θ ωδ⎡ ⎤+ + + − + − =⎣ ⎦   (12) 

5 0y z m mI I T iδ ωθ γ δ+ + − =                     (13) 

Let us consider that x iθ θ δ ′⎡ ⎤= ⎣ ⎦ , y θ=  and u Y= , 
on combining the equations. (11) to (13), the state-space 
model of the system is represented according to equa–
tion higher-dimensional system (1) as follows- 

[ ]

2 2 2 2

0 1 0 0
( )

0 0
( )

,50

0 0

10 0 0 , 1 0 0 0 , 0

x x y y z

x x y y x y x x y y x y

m mz
y y y

b

T

g m h m h I
m h m h I I m h m h I I

A TI
I I I

E R
L L

B C D
L

ω

γω

⎫⎡ ⎤
⎪⎢ ⎥+ ⎪⎢ ⎥
⎪⎢ ⎥+ + + + + + ⎪⎢ ⎥

= ⎪⎢ ⎥
⎪− −⎢ ⎥
⎬⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥− − ⎪⎢ ⎥⎣ ⎦
⎪
⎪⎡ ⎤= = = ⎪⎢ ⎥⎣ ⎦ ⎭

  (14) 

 
3. PROPOSED METHODOLOGY FOR REDUCED 

ORDER MODELLING 
 
MOR aims to replicate a significantly reduced di–
mensional system with the same characteristics for a 
higher-dimensional system, refer to (1). This has 
approximated the system itself in some way and pre–
serves the key parameters of a higher dimension system. 
Such a solution is the higher order solution for the same 
input form as closely as possible. 

( ) ( ) ( )
:

( ) ( ) ( )

r rr r
r

r r
r r

dx t A BA x t B u t
dt C D

y t C x t D u t

⎫ ⎛ ⎞= + ⎪ ∑ = ⎜ ⎟⎬ ⎜ ⎟
⎪ ⎝ ⎠= + ⎭

      (15) 

where r n so that the transfer function of the reduced 
-dimensional system [41].  

Let, n =  higher -dimensional system, k = minimal 
order of the higher -dimensional system (for the non-
minimal higher-order system; for a minimal system k = 
n, rth = reduced-order model of higher -dimensional 
system. 

Analogous to (2), applying the Laplace 
transformations to the system (15) we get 

( )  ( ) ( )r rY s G s U s=                         (16) 

where   
1( ) ( ) ( )G s R s C sI A B Dr r r n r r rr
−= = − +

   
(17)

 
The Gr(s) is a ROM, and it is in the form of the 

polynomial coefficient is given as  

2 1
0 1 2 1

2
0 1 2

ˆ ˆ ˆ ˆ ˆ( )( ) ˆ ˆ ˆ ˆ ˆ( )

m
mr

r n
r n

n n s n s n sN sG s
D s d d s d s d s

−
−+ + + ⋅⋅ ⋅

= =
+ + + ⋅⋅ ⋅ +     

(18)
 

 
3.1 Balanced Truncation Method  
 
We can find a good incentive for a BT initially suggested 
[29]. BT is one of the most widely used MOR methods in 
the frequency domain. A reduced model is to be obtained 
by removing those states which are the least or weakly 
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controllable and observable measured in accordance with 
the size of the Hankel singular value (HSV). HSV, 
provide a measure of energy for each state within the 
control theory system structure. They are the basis for a 
balanced reduction of the system, which preserves high 
energy levels while discarding low-energy states. The 
reduced model retains significant features of the original 
systems [27,31,42–45].The pri–mary concept is that the 
singular values of cont–rollability gramians relate to the 
amount of energy that must be put into the system in 
order to move the app–ropriate states. The reduced model 
is achieved in this approach by eliminating the least 
controllable and least observable states of the balanced 
system. The original system has been balanced by using a 
transformation of similarity [46,47]. 

A stable, original system  G0(s) is called balanced if 
the solution both gramians such as controllability (Pc) 
and observability  (P0) to the following equation,  

0 0 0 0 0T T
C CA P P A B B+ + =                (19) 

0 0 0 0 0 0 0T TA P P A C C+ + =               (20) 

are such that P0 = P0 = dia(σ1, σ2, …, σn):Σ with σ1 ≥ σ2 ≥ 
… ≥ σn ≥ 0 and Pc and P0 are called controllability 
gramian and observability gramian, respectively. when 
the system is balanced, both gramians are diagonal and 
equal iσ ,i 1, ,n,= ⋅⋅⋅  is the ith. 

The Steps of MOR algorithm using BT Method are 
given below. 

Table 3:  MOR Algorithm Using Balanced Truncation 
Method 

Input:  (A0, B0, C0, D0): Higher ‐dimensional system 
Output:  Proposed ROM (Ar, Br, Cr, Dr)  
Step 1. Calculate the factor X = RRT and Y = LLT 
Step 2.  Calculate the singular value decomposition (SVD)  

1 1
1 2

2 2
[ ]

T
T T

T

V
R L U V U U

V

⎡ ⎤∑⎡ ⎤
⎢ ⎥∈ = ∑ = ⎢ ⎥∑ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

With  1 1( ,...., ),ldiag ξ ξ∑ =   2 1( ,..., ).l ndiag ξ ξ+∑ =  

Step 3. Construct  

1 1
2 2

1 11 1, .V LV T RU
− −

= ∑ = ∑  

Step 4. Compute the ROM 
(Ar, Br, Cr, Dr) = (T

T A0
T, TT, B0, C0, T, D0): lower ‐dimensional 

system 
Properties 

• (Ar, Br, Cr, Dr)  is asymptotically stable 
• Error bound: 

1( ) ( ) 2( ... )r r nR s G s ξ ξ+Η∞
− ≤ + + . 

•  Must solve the large ‐scale Lyapunov equations. 
 
Unlike getting the direct rth order BT model [47], 

first, we eliminate to obtain the minimal order (kth order) 
balanced truncated model of higher -dimensional system 
(G(s)) using the truncation matrices is called Trans–
formation matrices (T). Now the system is balanced, 
which is partitioned as [28,48,49]. 

1 1 ˆ ˆ
ˆ ( ) ˆ ˆ

o o

o o

A BT A T T B
G s

C T D C D

− − ⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                (21)    

where n nA ×∈ and ˆ k kA ×∈  ˆ ( )G s is balanced system 
for higher -dimensional system. 

Here, k < n is for non-minimal system while k n=   
is for higher -dimensional system (minimal system). 
ˆ ( )G s  balanced system (21) will be the ( thk  order) ba–

lanced realized model for non-minimal systems, while 
in case of the minimal system it will be the higher -
dimensional system (nth order) balanced realization 
model. Thus, up to this step, the algorithm works self-
minimal realisation method. 

Select the reduced model number, r(t < k < n) of the 
system based on higher magnitudes of Hankel singular 
values [50]. Balanced which is partitioned as strong 
subsystem and weak subsystem [44]. 

11 1 22 2 1

1 2 2

0
:

0 0r
Strong Weak

A B A B
C D C

∑⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⇔∑⎢ ⎥ ⎢ ⎥ ⎢ ⎥∑⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

(22)

 

(to be retained) (to be retained)

Strong Subsyustem Weak Subsystem= + ⇔ ∑

  (23) 

Since partition, the balanced system ˆ ˆˆ ˆ( , , , )A B C D and 
the gramian Σ conformally given as 

[ ]

11 12 1

21 22 2

1 2

ˆ ˆ, ,

ˆ ˆ,

A A B
A B

A A B

C C C D D

⎫⎡ ⎤ ⎡ ⎤
= = ⎪⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎬

⎪= = ⎭

                (24) 

where A11 and Σ1 are lower-order matrix, it is part of a 
strong subsystem which is also (r<n).The subsystem 

11 1 1( , , )A B C  must be a good approximation of the 

balanced system ˆ ( )G s  if 1r rσ σ +  proposed by the B 

C. Moore, 1981 [29]. We call this thr  ordering system a 
direct reduction (DR) or direct truncation (DT) appro–
ximation of the balanced system. Several nicely-recog–
nized results that are relating to the approximation is 
available in the [51]. 

Therefore, stronger subsystem, the rth order balanced 
truncation model is, 

11 1
_

1
( )r BT

A B
G s C D

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                   (25) 

where 11
r rA ×  and 1∑ are reduced matrix (r<n). 

The above BT model does not give the guarantee to 
preserve the DC gain of the actual or higher system 
[52]. refer to (12) has been achieved as a minimally 
realized model comprising strong and weakly subsys–
tems. Thus, the SPA can be extended effortlessly to the 
(12) subsystems. Reduced (r) balanced states are pre–
ser–ved in the BT model, which are entirely control–
lable and observable such that balanced states are 
maintained and the remaining weakly controllable 
and/or measurable states are truncated. The SPA [47] is 
used to preserve the DC gain value of the original 
system in the model [50,52,53]. The concerned 
researcher may referee to [54] for more indications of 
the method. 
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3.2 Hybrid Method for Approximation 
 
In numerous engineering, the system's steady-state gain, 
usually referred to as DC gain (the system gains at an 
infinitive time, equivalent to G0(0), plays an important 
role in evaluating system performance. It is, therefore, 
better to maintain the DC gain in the ROM, i.e., Gr(0)= 
G0(0), the balanced truncation method introduced in the 
above subsection does not keep the DC gain unchanged 
[55]. Suppose that (A0, B0, C0, D0) is compatible with 
minimal and balanced truncation of the stable G0(0)and 
partitioned system as in the previous subsection. It can 
be demonstrated that stable is A22. 

In this section, we address the order reduction 
procedure for higher-dimensional systems resulting in a 
hybrid approach using BT and a balanced SPA. In the BT 
method, all balanced systems are divided into two parts 
as a slow and fast mode by defining the lower Hankel 
singular values (HSV) as a fast mode, while the others are 
defined as a slow mode. First, the derivative of all states 
equal to zero in fast mode can be achieved by defining a 
reduced system. The main objective of maintaining the 
structure of the ROM is to preserve the dominant 
frequencies of the original system, in the reduced system, 
therefore, to preserve dominant dynamic modes [26]. 

The resulting reduced system which preserves the 
DC gain and steady state values  is called BSPA app–
roach [26] and is given [53,56]. 

Now, the final system ( , , , )A B C D  conformally as 
in (26).  

r r

r r

A B
( ) :

C Dr
A B

G s
C D
⎡ ⎤ ⎡ ⎤

= ∑ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

             (26)   

 
1 1

11 12 22 21 1 12 22 2
1 1

1 2 22 21 2 22 2
r

o

Balanced SPA

A A A A B A A B

C C A A D C A B

− −

− −

⎡ ⎤− −
⎢ ⎥∑ =
⎢ ⎥− −⎣ ⎦

     (27) 

The bicyrobo tests to demonstrate the method will 
be discussed in the preceding section and successfully 
validate the proposed method to balancing control by 
reduced controller. 

Also, the accuracy and performance of the proposed 
method is measured by calculating indices error, which is 
commonly used as an integral square error (ISE), integral 
absolute error (IAE) and integral time-weighted absolute 
error (ITAE) to validate the output of the system. A 
comparison of the response has been done based on the 
unit step response. The performance of ROM obtained is 
also compared based on measures by calculating the per–
formance indices, the accurateness of the proposed method 
which is index error between the transient sec–tions of the 
actual system and the ROM. performance indices error 
refer by [25,57–59] as discussed by the following equation 

2
1 2

0
[ ( ) ( )]ISE y t y t dt

∞
= −∫ .                    (28)        

1 2
0

( ) ( )IAE y t y t dt
∞

= −∫ .                    (29)             

                                                                                           1 2
0

( ) ( )ITAE t y t y t dt
∞

= −∫ .                     (30)                          

where y1(t) and y2(t) are the outputs of the actual system 
and ROM [59]–[64]. 
 
4. COMPUTATIONAL ANALYSIS FOR HIGHER-

ORDER CONTROLLER OF BICYROBO 
 
The values of the parameters of autonomous bicyrobo 
are identified as shown in Table 2. By substituting these 
values into state space model equation (14), the 
balancing system of bicyrobo is representation in the 
form of a nominal transfer function described as 

( )( )
( )
sT S

Y s
θ

= . 

4 3 2
4887( )

s +683.30s 1208.00s 109700.00 6949.00
T s

s
=

+ + −
  (31) 

where θ(s) is the bicyrobo output lean angle and ( )Y s is 
the DC motor input voltage controlling the flywheel 
control axis. Suppose the bicyrobo system is affected by 
multivariate uncertainties and external disturbance, 
followed by cases for bicyrobo perturbed. 
 
Case-1:  Let the load be added with a further 10 kg, and 
the flywheel speed is decreased to 147 rad/s. Therefore, 
the bicyrobo perturbed model becomes the transfer 
function represented as the following.  

4 3 2
3784ˆ( )

s +683.30s 1162.00s 78290.00 6857.00
T s

s
=

+ + −
 (32) 

Case -2:  As for an additional 10 kg, the additional load 
is applied again, and the speed of the flywheel is 
increased to 167rad/s. And the bicyrobo perturbed 
model is described as the following transfer function. 

4 3 2
4299ˆ̂( )

s +683.30s 1197.00s 102300.00 6857.00
T s

s
=

+ + −
 (33) 

 
Figure 3. Hankel singular values plot of higher-order 
controller 

Design of the controller for balancing control of bi–
cyrobo system under H-infinity full sustainable control 
procedure and strategies is developed by (Bui et 
al.,2008) [16,17] and the H-infinity (H∞) controller is 
designed as follows 
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2

5 4 31275s 8.695 05s 5.151 05s
21.359 08s 2.435 07s+1.091e06( ) 6 5 4 3s 715.7s 2.355 04s 2.789 05s

3.802 06s 6.519 05s+2.872e04

e e

e eT sC
e e

e e

+ +

+ +
=

+ + +

+ +  

(34)

 
Hankel singular values of the original system are 

expressed as σ is given by  

[ ]19.2747, 18.9796, 17.8203, 0.9214, 0.0432, 0.0002σ =  (35) 
Through control theory, eigenvalues are classified as 

system stability, while HSV defines the "energy" of 
each state in the system. Retaining a larger energy state 
of the system retains much of its characteristics in terms 
of stability, frequency, and time response. The model 
reduction strategies presented are all based on the 
system's HSV. We can achieve a ROM that preserves 
much of the appearance of the system. The HSV bar 
chart diagram of the higher order controller is shown in 
Figure 3 and from the matrix refer to Eq. (35), the 
singular value of the controller has been also calculated. 
it is observed that σ3 >> σ4. The first-third, HSVs are 
important here, and the singular values fall very rapidly 
to the fourth value and are insignificant in the process of 
reduction. As a result, the order of reduction has been 
chosen as a third order. 

The design and simulation of controllers is a 
complex task for a large system. This infinity controller 
(H∞) is in sixth order. This higher-order controller is 
therefore practically difficult to implement. Due to the 
complex program that increases the processing time, the 
slow response rate of the control system is slow, without 
a good response to the controller's real-time requi–
rements and the stability of the balanced system. As the 
order of the system increases, the complexity and cost 
of the design of the controller increase simultaneously. 

Thus, this difficulty can be resolved if a "good" 
approximate reduced system is available for the original 
large-scale model and the design of the controller is 
carried out using a reduced model to make the program 
code easier, reduce the processing time, increase the 
response speed of the controller. In the case of a large-
scale system, for the design of feedback controllers, an 
enormous number of sensors is needed to detect the 
state variables of the systems. To improve the quality of 
this controller, a reduced-order controller should, there–
fore, be put in place to simplify the implementation, 
reduce the configuration of the system but still meet the 
system requirements for sustainable stability. 

 
4.1 Design of Reduced Order Balancing Control of 

Bicyrobo System   
 

In this section, the H∞  controllers are defined as full 
order  Eq. (34). Implementation of reduced-order H-in–
finity controllers as third-order ROC designs is pro–
posed and compared with other well-known controllers 
described in the literature survey. In this higher-order 
controller, the proposed method reduced to a ROC. The 
researchers examined and simulated the excessive 
response of the HOC and ROC. time response of 
bicyrobo using different ROCs is shown in Figure 4. 

As a result of the reduction of the order in 
accordance with Figure 4. It can be seen that the 
response of the fifth, fourth-order reduction controller 
has an accurate approximation compared to the response 
of the HOC; the response of the third-order ROC has 
very small variations; the response of the second and 
first order. 

In addition, Table 4 shows the time response of the 
HOC to the third order ROC without bicyrobo and has 
also been compared with the ROC obtained by different 
methods as found in the type of literature search. 

Table 4: Response comparison of HOC with ROC of without bicyrobo  

Author by design 
controllers  

Methods for the 
reduced controller 

Rise Time 
(s) 

Settling Time 
(s) 

Overshoot 
(s) 

ISE IAE ITAE 

6th  order controller by 
(Bui et al.,2008, 2010) 

Particle Swarm 
Optimization 
(PSO), Genetic 
Algorithm (GA) 

0.2810 NaN 10.1376 --- ---- --- 

 3rd  order controller by 
proposed 

BSPA 0.2686 0.9138 15.4310 0.01259 0.3119 1.504 

3rd  order controller by 
A. Sikander et al., 
(2019) 

Cuckoo search 
algorithm (CSA) 

0.2706 0.9056 15.2120 2.047 3.865 24.97 

3rd  order controller by 
(Huu et al., 2013) 

Schur analysis (SA) 0.2673 0.9138 15.4436 7.32 7.655 49.23 

3rd  order controller by 
(Liu et al., (1989) and 
R. Pinnau, (2008)  

Model truncation 
(MT) 

0.2783 0.8641 14.0878 7.808 8.026 47.72 

3rd  order controller by 
D.K. Sambariya et al., 
(2019) 

Stability Equation 
Method (SEM) 

0.2052 6.6709 0 19.93 3.466 1.575 

3rd  order controller by 
A. Varga et al., (1993) 

Balanced stochastic 
model truncation 
(BST)  

0.2686 0.9139 15.4435 7.33 7.654 49.23 
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Performance comparison based on time-domain 
characteristics and performance indices for error 
calculation is shown in Table 4. It is understood that the 
response of the reduced controller approximates the 
results of the HOC very closely with no steady-state 
error in the response time and precisely matches the 
response time. So, in this work, I'm trying to implement 
a third-order ROC for balancing the bicyrobo system. 

 
Figure 4: Time response of original and different reduced 
order controllers by proposed method without bicyrobo 

4.2 Implementation of 3rd order Reduced Controller 
 
After applying the proposed method focused on the 
hybridization of BT and SPA, the third-order ROC is as 
follows: 
The ROC in third order obtained by the proposed 
approach is expressed as  : 

3 21.757 s  + 1107 s  + 921.7 s + 1.719e05( )_ 3 2               s  + 28.01 s  + 395.9s + 4525
T sCr P =  

whereas third-order ROC developed by several rese–
archers recommended. The following transfer functions 
are defined by various suggested methods, respectively.  
whereas, the ROC in third-order obtained by the method 
based upon balanced stochastic truncation (BST), A. 
Varga et al.,(1993) [65] is as follows 

2

_ 3 2
1275 s  + 234.6s + 1.993e05( )

 s  + 33.78 s  + 395.1s + 5503
Cr BSTT s =

  
A. Sikander et al., (2019) also recommended a 

cuckoo search algorithm (CSA) to obtain a ROC in third 
order for the above sixth-order H infinity HOC which is 
based upon by diminishing the performance indices 
error using a cuckoo search algorithm. The transfer 
function of the ROC is given by. 

21241s 234.8s+1.936e05( )_ 3 2s 32.47s 395s+5274
T sCr CAS

+
=

+ +   
The following ROC in third-order is obtained by 

using the thought of the MOR based on Schur Analysis 
(SA) method referred to by (Huu et al., 2013) [19]. 

21275 s  + 234.8s + 1.993e05( )_ 3 2 s  + 33.78 s  + 395.1s + 5506
T sCr SA =

  

Furthermore, also ROC design based on reduced 
order method using stability equation method (SEM) D. 
Sambariya et al., (2019) and reduced controller using 
Modal Truncation (MT) [51] suggested by Liu et al., 
(1989) and R. Pinnau, (2008) [66] are represented by in 
form of transfer function expressed as: 

21.359e08 s  + 2.435e07s + 1.091e06( )_ 3 2278900 s  + 3.802e06 s  + 651900 s + 28720
T sCr SEM =

21057 s  + 226.50s + 1.638e05( )_ 3 2s  + 27.99s  + 395.90s + 4521
T sCr MT =  

 
(a) 

 
(b) 

 
(c) 

Figure 5. Time response of original and reduced third order 
controllers (a) with bicyrobo (b) with bicyrobo (Case-1) (c) 
with bicyrobo (Case-2) 

Tables 5 to 7 show a comparison of ROCs in terms 
of error indices, and it is clear that the proposed ROC 
has the lowest values of these error indices. Furt–her–
more, to demonstrate the effectiveness of the proposed 
controller, its behaviour is examined in two different 
perturbed bicyrobo cases, as previously discussed. 
Figures 5(a) to (d) show the performance of perturbed 
bicyrobo with full and reduced order controllers in cases 
1 and 2, respectively. 
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Figure 6. Time response of bicyrobo with reduced third 
order controllers  

Table 5: Performance comparison of closed-loop bicyrobo 
using third-order controllers 

Authors by 
design    

3rd  order 
controller  

Methods 
for the 

reduced 
controller 

ISE IAE ITAE 

Proposed 
Method 

BSPA 1.183e-06 0.002475 0.007867 

A. Sikander 
et al., (2019) 

CSA 5.081e-05 0.01936 0.08185 

 (Huu et al., 
2013) 

 SA 3.169e-05 0.01498 0.05845 

(Liu et al., 
(1989) and 
R. Pinnau, 
(2008)  

MT 0.0001763 0.02165 0.05801 

 D.K. 
Sambariya 
et al., (2019) 

SEM 0.007725 0.1852 0.5091 

A. Varga et 
al., (1993) 

BST 3.169e-05 0.01498 0.05845 

 (B.C. 
Moore, 
1981) and 
S.K suman 
et al., (2019) 

BT 3.077e-05 0.01475 0.05936 

 
Figure 5(a) shows the closed-loop time response of 

the HOC with the third in ROC with bicyrobo and also 
it has been compared with ROC obtained by different 
methods as found in the works of literature. The same 
has been performance comparison based on perfor–
mance index error calculation is depicted in Table 5. It 
is understood that the response of ROC approximates 
the results of the HOC very closely with no steady-state 
error in time response and exactly matches in response. 

To illustrate the strength of the proposed controller, 
the action is studied in two different cases of perturbed 
bicyrobo, as described above section 4.2, with the HOC 
and the third-order ROCs for case-1 and case-2 shown 
in Figure 5(b) and Figure 5(c) well, respectively. It is 
observed that the proposed control strategy often shows 
outstanding efficiency and efficacy for disturbed bicy–
robo comparison to other renowned controllers via the 
published research. Also compared with a results com–
parison of closed-loop bicyrobo using third-order ROCs 
by ascertain-mathematically (compute) of performance 
indices error to measure the accuracy of the controllers. 
It is also seen that the proposed controller compared 
with ISE, IAE, ITAE is much lesser than other 
controllers depicted in Table 6 is for case 1, and Table 7 

is for case 2.  Figure 5(b) and 5(c) shown close-loop 
time response of proposed controller with bicyrobo with 
perturbed bicyrobo case-1 and with perturbed bicyrobo 
case-2. Furthermore, in terms of time response speci–
fications and performance indices, Figure 6 depicts a 
performance comparison of closed loop bicyrobo using 
third order controllers. It is also clear from this picture 
that the closed loop step response of the bicyrobo with 
the proposed third order controller is significantly better 
with perturbed in both situations. So, we can say the 
reduced controller is more efficient and easier than 
HOC. This way by minimizing the cost and compu–ta–
tional time implementation of the controller and reduced 
the hardware complexity. 
Table 6:  Performance comparison of closed-loop bicyrobo 
using third order controllers with Case -1 

Authors by
design  

3rd  order 
controller 

Methods 
for the 

reduced 
controller 

ISE IAE ITAE 

Proposed 
Method 

BSPA 1.329e-06 0.00249 0.007835 

A. Sikander 
et al., 
(2019) 

 CSA 5.582e-05 0.01846 0.07042 

 (Huu et al., 
2013) 

 SA 2.4e-05 0.01235 0.04408 

 (Liu et al., 
(1989) and 
R. Pinnau, 
(2008) 

MT 0.0004686 0.03978 0.08863 

D.K. 
Sambariya 
et al., 
(2019) 

SEM 0.01213 0.2885 1.14 

A. Varga et 
al., (1993) 

 BST  2.4e-05 0.01235 0.04408 

 (B.C. 
Moore, 
1981) and 
S.K Suman 
et al., 
(2019) 

BT 2.329e-05 0.01211 0.04434 

Table 7: Performance comparison of closed-loop bicyrobo 
using third order controllers with Case -2 

Authors by 
design 3rd  

order 
controller 

Methods 
for the 

reduced 
controller 

ISE IAE ITAE 

 Proposed 
Method 

BSPA 1.212e-06  0.002394 0.006864 

A. 
Sikander et 
al., (2019) 

CSA 5.435e-05 0.02021 0.08662 

 (Huu et 
al., 2013) 

SA 3.475e-05 0.01559 0.06073 

 (Liu et al., 
(1989) and 
R. Pinnau, 
(2008)  

MT 0.000175 0.02197 0.05948 

D.K. 
Sambariya 
et al., 
(2019) 

SEM 0.005949 0.1642 0.4548 

A. Varga     BST 3.475e-05 0.01559 0.06073 
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et al., 
(1993) 
B.C. 
Moore, 
1981) and 
S.K Suman 
et al., 
(2019) 

BT 3.375e-05 0.01535 0.06172 

 
It is also clear and confirmed that all of the results in 

the form of Tables and Figures of bicyrobo with pro–
posed third ROC are improved and superior to other 
controllers reported via published research. 
 
5. CONCLUSION AND FUTURE SCOPE 
 
The concept of reduced-order modelling has been 
successfully implemented to design a pre-specified 
controller structure for bicyrobo balancing control. The 
five controllers have been designed in the order from 
first to fifth. To obtain the unknown parameters of the 
proposed ROCs, the BSPA method has been employed. 
The ROCs are constructed using the BSPA method and 
are used to achieve the proposed optimal third-order 
ROC with identical characteristics to the six order H∞, 
HOC. The performance of the controllers proposed / 
designed is assessed in terms of time-domain response 
analysis and performance indices error. The study of 
two separate cases of disturbed bicyrobo system with 
too many sources of uncertainty such as un-model dy–
namics, parameter variations and external disturbances 
is also considered to analyse the robustness, effecti–
veness, and power of the reduced controller. The 
efficiency of the proposed controllers is compared with 
newly established controllers such as H∞ controller, 
PID controller-based based on optimization such as GA, 
PSO and also, MOR based on a reduced controller such 
as Schur analysis, CSA and modal truncation, etc. An 
interesting fact has been observed, which is, when third 
order reduced controllers are employed, that they 
perform quite well for normal operations, as well as in 
cir–cum–stances with parameters uncertainty. The 
discussion here is only about the simulation results. The 
proposed method provides far superior results which are 
justified by the compromise of the higher order of the 
H∞ controller for typical examples of published work. 
This approach is more effective when applied 
successfully to a higher-order system. We can say that 
the ROC is more efficient and useful than HOC. This 
way, it is useful for hardware design of controller for 
any system, which forms the course of the future work, 
by minimising the cost and computational time for the 
real-time implementation of the controller. 
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ACRONYMS 

Bicyrobo -Bicycle Robot 
BSPA -Balanced Singular Perturbation  

Approximation 
BST -Balanced Stochastic Truncation  
BT -Balancd Truncation 
CADO -Camber Angle Disturbance Observer 
CMG -Control Moment Gyroscope  
COG -Centre of Gravity 
CSA -Cuckoo Search Algorithm 
 DR -Direct Reduction 
 DT -Direct Truncation 
EMF -Electromotive force 
GA -Genetic Algorithm 

HOC -Higher Order Controller  
HSV -Hankel Singular value 
IAE -Integral Absolute Error 
ISE -Integral Square Error 
ITAE -Integral Time-Weighted Absolute Error  
LQR -Linear Quadratic Regulator 
LTI -Linear Time Invarient 
MI -Moment of Ineria 
MOR -Model Order Reduction 
MT -Model truncation  
PD -Propotional Derivative 
PID -Propotional Integral Derivative 
PSO     -Particle Swarm Optimization 
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ROC -Reduced Order Controller 
ROM -Reduced Order Modelling 
SA -Schur analysis  
SEM -Stability Equation Method  

SISO  -Single Input Single Output 
SMC -Sliding Mode Controller 
SPA -Singular Perturbation Approximation 

 
 

МОДЕЛИРАЊЕ СМАЊЕНОГ РЕДА И 
КОНТРОЛА БАЛАНСИРАЊА  
БИЦИКЛИСТИЧКОГ РОБОТА 

 
С.К. Суман, А. Кумар 

 
Приказују се резултати истраживања контроле 
балансирања бициклистичког робота применом 
моделирања смањеног реда претходно 
дизајнираног контролера вишег реда да би се извео 
редуковани контролер. Бициклистички робот који 
је нестационаран систем а који прате други узроци 
неизвесности, као што је динамика без модела, 
параметри одступања и спољашњи поремећаји, 
представља предмет интересовања истраживача. У 
литератури се појављују контролери вишег реда 
(НОС), цео систем је комплексан с аспекта анализе, 
синтезе, унапређења и има хардвер чија је примена 
отежана. Зато је у раду развијен контролер 
редукованог реда (ROC) који успешно савладава 
непредвидљиву динамику. ROC је дизајниран 
применом метода редукције модела (МОR) који је 

резултат хибридизације приступа уравнотеженог 
скраћивања (ВТ) и апроксимације сингуларног 
поремећаја (SPA). Тако добијени редуковани 
модел, који задржава DC појачање, се назива 
приступ апроксимације уравнотеженог сингуларног 
поремећаја (BSPA). Базира се на очувању 
доминантних режима (стања) система као и на 
елиминисању стања са релативно безначајним 
карактеристичним својствима. Недостатак BT 
метода је тај што за модел смањеног реда, 
вредности стационарног стања или DC појачања не 
одговарају тренутним вредностима система. За овај 
недостатак је одговоран BSPA. У поређењу са 
постојећим методима овај метод интегрише више 
доминантних захтева и доприноси бољој 
апроксимацији. Резултати добијени применом 
предложеног контролера упоређени су са 
резултатима добијеним дизајнирањем старијих 
контролера и објављеним у литератури за исте 
функције. Нови контролер има боље перформансе 
него контролер вишег реда. Перформансе НОС и 
ROC су испитане у временском домену и с аспекта 
грешке индекса перформанси. 

 


