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A nonlinear magnetic suspension system is considered in this paper. A 
novel online algorithm based on analytical approach is presented to 
stabilize the suspended mass. The new algorithm employs a single 
analytical function to create the ball position and velocity profiles. The 
reference ball position is described by a series of time dependent 
exponential functions. Boundary conditions at both initial and final states 
are automatically satisfied. Moreover, feasible ball position and velocity 
profiles are ensured by evaluating one algorithm parameter (an 
exponential factor). The exponential factor is analytically computed by 
minimizing the peak of electrical power. This new algorithm is capable of 
generating the well-suited coil voltage that guarantees the stability of the 
system with a small closed-loop command. Gain Shechting method is used 
to obtain the closed-loop effort in order to track the analytical reference 
profiles. Compared to the prior magnetic suspension algorithms, the 
proposed analytical scheme is qualified to handle very large dispersions in 
initial ball position while satisfying the ball position and coil voltage 
constraints. Monte-Carlo simulations with change in initial ball position 
are presented. The simulation results demonstrated the great reliable 
performance of the proposed algorithm despite the wide range of initial 
ball position dispersions. 
 
Keywords: Analytical control, magnetic suspension system, initial position 
dispersion Monte-Carlo simulation. 

 
 

1. INTRODUCTION  
 

Substantial reduction in friction that exists between 
moving surfaces can be achieved using magnetic sus–
pension systems which improves the efficiency of these 
systems. The magnetic suspension technology can be 
used in the transportation, environmental, aerospace, 
electrical, biomedical, and advertising engineering. A 
wide range of applications of magnetic suspension 
system is found in the literature such as wind turbines 
[1,2], magnetic bearings [3,4], and superconductor rotor 
suspension of Gyroscopes [5,6]. Various control strate–
gies have been used with the goal of maintaining the 
suspended object in the desired height. In [7], a cont–
roller was designed for a magnetic suspension system 
based on a nonlinear model. Proportional-Integral (PI) 
adaptive robust controller that considers parametric un–
certainty was presented in [8]. In [9], feedback line–
arization control was presented. A robust two degrees of 
freedom controller was designed in [10,11] that takes in 
consideration the parametric uncertainty of the system. 
In [12], H-infinity controller was designed for a mag–
netic suspension system in a gantry-moving type nume–
rically controlled machine tool. The results showed that 
the system has good stability and robustness charac–

teristics. An experimental study of an electromagnetic 
suspension system was presented in [13]. The results 
demonstrated that the loss generated by the current 
induced by the magnetic flux depends on the charac–
teristics of current and the levitation gap.  

Recently, the magnetic suspension system is greatly 
employed to consider the aircraft aerodynamic charac–
teristics using the wind tunnel test. In [14], an active 
magnetic bearing mathematical model relying on L∞-
gain and PID controllers of an electric aircraft was 
presented. The proposed control was designed to cope 
the flight disturbance due to aircraft maneuvering. 
Finally, numerical simulations with and without mane–
uvering loads were conducted to perform the effec–
tiveness of the presented method. The stability and per–
formance issues caused by the aircraft maneuvering 
flight were studied in [15]. A mathematical model was 
created and a feed forward L-infinity gain controller 
was designed. The results of the proposed controller 
were compared to PID controller and showed stability 
and performance improvements. In [16], a suction-type 
su–personic wind tunnel magnetic suspension system 
was investigated. A proportional-integral (PI) controller 
alo–ng with a double-phase advancer was used to 
increase the response speed of the system. The results 
indicated that the system performs well when the 
appropriate values of frequency and moment of inertia 
are used. The persistent current of a magnetic system 
superconducting coil for a suspended object such as an 
aircraft was studied in [16]. PID controller was used and 
the statics and dynamics of the suspended object were 
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studied. The results showed that there is a limit for the 
persistent current which is a function of the density of 
the vertical magnetic flux. In [17], bent sting and 
external model support interference types for a subsonic 
wind tunnel were considered. The author prepared 
conditions that resemble real conditions in order to 
overcome the differences between the flow around a test 
model and real aircraft. The results illustrated that the 
numerical and experimental results were congruent, 
which indicates the effectiveness of the proposed 
algorithm to compute reliable aerodynamic coefficients. 
In [18], a magnetic and balance system that allows 
suspending an object in subsonic flow condition was 
studied. PI and PID cont–rollers were used. The results 
demonstrated that a cylin–drical object of 10mm 
diameter and 156mm length could be suspended at 
Mach number up to 0.6. In [19] and [20], a system of 
control of measurements in the T-35 4.4 m × 3.2 m and 
VTI’s subsonic wind tunnels was instituted and ensured. 
The measurements performance was assured based on 
three parameters; wind tunnel calibration, 
instrumentation calibration, and wind tunnel periodic 
tests. The results performed well-suited measu–rements 
compared with a relevant wind tunnel type. In [21], 
aerodynamic coefficients were computed using six 
transonic wind tunnels at three Mach number values; 
0.77,1, and 1.17. The results showed that the zero-lift 
drag coefficient at sonic Mach number was better than 
other Mach values. In [22], the effect of hot combustion 
products on a CFD model was considered. The missile 
aerodynamic loads were computed using finite volume 
method. The experimental and numerical results of the 
missile aerodynamic coefficients were proposed and 
compared as well. 

Despite recent works consider numerical or optimal 
methods to stabilize the magnetic suspension system, 
some of them are too complicated to be implemented in 
a real time, while other prior studies cannot adequately 
handle wide dispersions of initial conditions. Hence, it 
is important to discover a new algorthim that can 
stabilize the magnetic suspension system in a real time 
in the presence of wide initial conditions dispersions.  

    This work introduces a novel online algorithm  
to stabilize the magnetic suspension system analytically. 
The new algorithm uses a single analytical function, a 
six-term exponential function with time as the 
independent variable to shape the reference ball position 
and velocity profiles. The tracking reference profiles are 
obtained by selecting one free variable, the exponential 
factor while minimizing the peak of electrical power. 
Since the proposed exponential function provides a 
congruent reference ball position with the actual profile, 
the reference coil voltage can guarantee stability of the 
system with small control effort. The closed-loop 
simulation is designed using the gain scheduling 
method. The Monte-Carlo simulation was used to 
demonstrate the effectiveness of the proposed algorithm 
by simulating the system under simultaneous large 
dispersions in initial ball position. Compared to prior 
works, the proposed algorithm ensures a remarkable ball 
position response, zero percentage overshoot, excellent 
damping, and fast response.  
 

2. SYSTEM MODEL 
 
As shown in Figure 1, the magnetic suspension system 
consists of the mechanical system (steel ball) suspended 
by the electromagnetic system (magnetic coil) as pre-
sented in (Khalil and Grizzle, 2002). It was assumed 
that the electrical system is a linear resistance- induc-
tance (RL) circuit.  

 
Figure 1: Magnetic Suspension System  

where m, g, R, and L are the suspended ball mass, gra–
vitational acceleration, circuit resistance, and inductance 
of the electromagnetic circuit, respectively, y is the 
position of the ball measured from a reference position 
(y = 0) and directed downward, i and u are the coil 
current and voltage, respectively, and finally f (y,i) is the 
generated magnetic force.  

The electromagnetic inductance of the system can be 
obtained as a function of the ball position, 

0
1( )

( )
aL

L y L
a y

= +
+

   (1) 

where L0, L1 and a are positive constants. Clearly, Eq. 
(1) shows that the inductance has a maximum value 

1 0( = + )L L L that is associated to the reference position (y 
= 0) while it has a minimum value 1( = )L L  that is 
associated to the ball downward position ( )y = ∞ . The 
inductance profile as a function of ball position is 
illustrated in Fig. 2. 

The suspended ball motion can be modeled using 
Newton’s second law, 

( ),my ky mg f y i= − + −�� �                                   (2) 

where k is the viscous friction coefficient. The energy of 
the magnetic coil can be easily obtained as follows,   

( ) ( ) 21,
2

E y i L y i=                                              (3) 

The electromagnetic force can be computed by 
differentiating Eq. (3) with respect to the ball position, 
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                                     (4) 
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Figure 2: Electromagnetic inductance vs. ball position.   

By applying the Kirchhoff’s voltage law, the coil 
voltage (v) is obtained,   

v Riφ= +�                                                         (5) 

where �| is a magnetic flux linkage, which can be 
determined by,  

( )L y iφ =     (6) 

The second and first order differential equations of 
the mechanical and electrical subsystems, respectively, 
can be written as three first-order differential equations 
by considering X = [x1 x2 x3] = [y y�  i] as the system 
states and u = i as the system input as follows, 

1 2x x=�
    (7) 
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The state space representation (SSR) model can be 
utilized to obtain the three nonlinear differential 
equations a linear, time invariant model as:  

x Ax Bu= +�                                                  (10a) 
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where n nA ×∈\  
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where n mB ×∈\  
Then, the state space representation model of the 

proposed system for three states (n =3) and one input (m 
=1) can be defined as:  
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It can be noted that the matrices are highly nonlinear 
in terms of the ball position, ball velocity, coil current, 
and as well as the coil voltage, while other system 
parameters are constants which values are given in 
Table 1 [23]. 

Table 1: Mechanical and Electrical System Parameters 

Parameter Value 
Ball mass (kg) 0.1 
Viscous friction Coefficient, k, (kg/s) 0.001 
Gravity acceleration, g, (m/s2) 9.81 
Constant, L0, (H) 0.01 
Constant, L1, (H) 0.02 
Constant, a, (m) 0.05 
Circuit resistance, R, (Om) 1 
 
3. ANALYTICAL ALGORITHM  

 
The main goal of magnetic suspension system 
algorithms is to stabilize the suspended mass targeting 
the desired position and velocity profiles. Generally, the 
algorithm requires two basics: creating a reference 
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trajectory, and then designing a closed-loop command 
in order to track the shaped reference trajectory. In most 
suspension systems such as [23], a steady-state con-
dition, which assumes all the states (ball position, ball 
velocity, and coil current) are constant, is used to gene-
rate a reference trajectory. First, a steady state ball po-
sition value is selected, and then the rest states and input 
are computed based on this adopted position. However, 
in this work, the reference trajectories: the ball position, 
ball velocity, coil current, and coil voltage are shaped 
analytically after selecting a single free variable. The 
proposed algorithm utilizes a single analytical function 
to generate the ball position profile. This reference 
position is parametrized by a six-term exponential 
function of time,  

     ( )
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1
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n
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=
= − =∑  (13) 

Taking the derivative of Eq. (13) with respect to time 
produces an expression for the reference magnetic 
suspension velocity profile  
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6
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Similarly, an expression for the reference suspended 
ball acceleration profile can be determined by taking the 
derivative of Eq. (14) with respect to time, 
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= −∑��                               (15) 

Substituting Eqs. (13), (14), and (15) into Eq. (8) 
and solving the resulted equation for i, the reference coil 
current is obtained as shown in Eq. (16). 
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In addition, substituting Eq. (1), (13), (14), (16), and 
the time derivative of Eq. (16) into Eq. (9) and solving 
for the voltage (v) gives the reference coil voltage 
profile. 

Thus, the reference electrical power can be defined as,  

ref ref refP i v=                                                      (18) 

Six boundary conditions are required to evaluate the 
six coefficients, cn. Here we used three pairs of 
suspended ball position, velocity, and acceleration at 
two time positions and solved the set of linear equations 
illustrated by Eqs. (13), (14) and (15). By definition, the 

magnetic suspended ball begins to move from rest at 
(=0)t ; the initial ball  position ( 0y y=  ), initial ball 

velocity 0 ( 0)y =� , and initial ball acceleration 0 ( 0)y =��    
are known parameters. 
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The system reaches steady-state condition at t = 0.6 
sec and its steady-state ball position ( )ssy y= , ball ve–
locity ss ( 0)y =� , and ball acceleration ss ( 0)y =��  are also 
known parameters. It important to mention that all the 
processes to solve the system of linear equations require 
a certain value of an exponential factor (ε ). A feasible 
reference position profile that guides the ball to the 
steady state condition and minimizes the peak of electric 
power was obtained by iteration on the exponential 
factor. It is unlikely that one exponential factor value 
confirms the minimum electric power peak that the 
system needs in order to move the ball from the initial 
state to the desired state. Therefore, the magnetic 
suspension system profile must be re-shaped by setting 
the exponential factor. To perform the process, consider 
the nominal initial and steady state ball positions are 0 
m and 0.05 m, respectively. Figure 3-a illustrates the 
reference ball position profiles for four values of 
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exponential factor: -0.5, -1.134, -1.767, and -2.4. 
Obviously, the trajectory with the largest value of ε 
performs a short track while it follows a long track with 
selecting the smallest value of ε. Figure 3-b shows the 
electrical power computed analytically using Eq. (18). 
Figure 3-b shows that the short trajectory ( 0.5ε = − ) 
begins with the highest electrical power, while the long 
trajectory (ε = -2.4) begins with the lowest electrical 
power (all trajectories end with the target electrical 
power at steady state point). Figure 3-b also shows that 
adopting exponential factor ε = -1.83 will shape the 
position profile so that the minimum peak of the ele–
ctrical power profile is satisfied. The exponential factor, 
ε, is computed by a simple “brute-force” method: the 
minimum peak values of the electrical power were de–
termined for a small number of trial for ε and the mini–
mum peak values are interpolated to hit the well-suited 
exponential factor that performs the lowest minimum 
peak. Six ball position trajectories were employed, and 
evaluating the proper ε was ensured as long as the trials 
bracket the lowest minimum peak of the electrical 
power. Bracketing the desired minimum electrical po–
wer peak is obtained using six exponential factors in the 
range  -2.4 < ε  < -0.5. Figure 4 shows the peaks of 
electrical power vs. the exponential factors for six trial 
position trajectories. The red point presents the correct 
exponential factor that produces the lowest minimum 
peak of the electrical power at the nominal conditions. 

 

 
Fig 3. Re-shaping ball position profile by varying expo–
nenttial factorε  : a) reference ball position vs. time, b) 
reference electrical power vs. time. 

 
Fig.4 Brute-force method for six trial trajectories at nominal 
conditions. 

4. CONTROLLABILITY AND OBSERVABILITY 
COMPUTATIONS 

 
One of the important performance characteristics of a 
good control system is obtaining the controllability and 
observability of a linearized system. The system is line–
arized either around an equilibrium point or a reference 
trajectory. In this work, the reference trajectory is gene–
rated analytically after adjusting the exponential factor 
as previously described. The controllability and obser–
vability matrices of the system can be obtained as fol–
lows, respectively.     

2[ ]Co B AB A B=                                         (19) 
2[ ' ' ' ' ']O C A C A C=                                    (20) 

Substituting Eqs. (13-17) into Eqs. (11) and (12), A(t) 
and B(t) are obtained, respectively, as functions of time.  

Then series of time dependent state space repre–sen–
tations are substituted in Eqs. (19) and (20) to compute a 
set of controllability and observability matrices. Figu–res 
5-a and 5-b show the determinant of controllability and 
observability matrices, respectively, for two initial ball 
positions, nominal value of 0 m and off-nominal value of 
0.1 m. Since the determinant values are not equal to zero, 
the linearized system has no singularity and all the 
controllability and observability matrices have full ranks. 
Thus the linearized model around the proposed reference 
trajectory for both nominal and off-nominal conditions is 
completely controllable and observable. 

 
(a) 
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(b) 

Figure 5.  Controllability and observability computations 
for nominal (y0 = 0 m) and off-nominal (y0 = 0.1 m) condi–
tions, respectively; (a) determinant of controllability matri–
ces vs. time; (b) determinant of observability matrices vs. 
time.  

5. CLOSED-LOOP SIMULATION  
 

After generating the magnetic system references, ball 
position (Eq. 13), ball velocity (Eq. 14), coil current 
(Eq. 16), and coil voltage (Eq. 17), respectively, the 
closed-loop simulation is obtained to design the 
required control in order to track the shaped references 
and to stabilize the suspended mass. In this section, the 
influence of change of an initial ball position, nominal 
value of 0 m and off-nominal value of 0.1 m was 
considered. During the simulation, the closed-loop 
control law was used to model the coil voltage as 
follows,  

refv vδ+                            (21) 

where vref is a reference coil voltage (computed using 
Eq. (16)), and δv is a closed-loop feedback coil voltage 
which was computed using the closed-loop term, 

ref ref ref( ) ( ) ( )y y iv K y y K y y K i iδ = − − − − − −� � �     (22) 
 The closed-loop command tracks the ball position, 

ball velocity, and coil current to their respective profiles 
obtained based on the initial boundary condition of the 
ball position. The magnetic suspension system (the 
third-order system) has been linearized with respect to 
the reference trajectories and then the state gains 

,y yK K � and K a reobtained using pole-placement met–
hod. The three states of the linearized system are ball 
position, ball velocity, coil current while time is the 
independent variable. Since the linearized system is 
controllable along the proposed reference as seen in Fig. 
4 (a), a consecutive of pole placement methods has been 
applied at discrete times to compute feedback gains that 
eventually can be scheduled with time. The closed-loop 
controller is designed so that the coil voltage does not 
exceed the voltage saturation value (15 Volt) as well the 
system performs a good damping and a fast response.  

Figures 6 (a)-6 (e), show the ball position, ball 
velocity, coil current, coil voltage, and electrical power, 
respectively. These profiles were obtained for two initial 

ball positions, nominal value of 0 m and off-nominal 
value of 0.1 m. As it can be seen from Fig. 6 (a) that the 
reference and closed-loop ball position profiles do not 
exceed the interval [0 0.1] and they belong to the term 
even with varying the initial ball position from 0 to 
0.1m. Fig 6 (c) shows that the reference and closed-loop 
coil voltage profiles are limited between [0 15] Volt. All 
figures from 6 (a) to 6 (e) show that the ball position, 
ball velocity, coil current, coil voltage, and electrical 
power references are tracked very accurately with using 
the gain scheduling. This criterion indicates that the 
proposed algorithm is considered to be feasible and 
effective to stabilize the suspended mass under wide 
range of initial ball positions. As much as the proposed 
analytical function awards a conformable reference ball 
position to the actual profile, the reference coil voltage 
confirms remarkably the stability of the system with 
moderate closed-loop effort. 

 

 

 
(c) 



FME Transactions VOL. 49, No 4, 2021 ▪ 983
 

 
Figure 6. Reference and actual profiles for nominal (y0 = 0 
m) and off-nominal (y0 = 0.1 m) conditions, respectively; (a) 
ball position vs. time; (b) ball velocity vs. time; (c) coil 
current vs. time; (e) voltage current vs. time; (f) electrical 
power vs. time. 

Compared to prior works, the steady state condition 
to create the reference profiles was used in [23] 
where , ,

ss ss ss
y y i�  and v  are 0.05 m, 0 m/s, 6.265 Amp, 

and 6.265 Volt, respectively. The feedback gain vector 
was designed using the pole placement method with 
closed-loop eigenvalues of -10, -10+j10, and 10-j10. 
The closed-loop was conducted at t = 1 s as the 
simulation time. Figures 7 (a) and 7 (b) show the actual 
ball position profiles with two initial ball positions 0 m 
and 0.07 m, respectively. Both two position responses 
reach the desired reference position 0.05 m at steady-
state point. In both figures, the current algorithm is 
successfully able to guide the suspended mass reaching 
the steady-state value of 0.05 m in about 0.52 s, while 
suspended mass was stabilized in about 0.625 s by the 
prior work. The proposed work accepts a wide range of 
initial ball position between 0 and 0.1m with satisfying 
the ball position constraints (as shown in Fig. 6 (a)). 
While the initial ball position was restricted to be 
between 0 and 0.07 m in the previous work.  

In summary, the ball position response using the 
proposed algorithm has remarkably evolved: the over–
shoot is extremely low, the system exhibits a good 
damping and stability, and the steady-state time has 
effectively improved. However, it is unlikely to confi–
dently implement the proposed algorithm relying on two 
initial ball positions. Therefore, Monte-Carlo Method 
with random initial ball positions limited between 0 and 
0.1 m was obtained to demonstrate the effectiveness of 

the analytical algorithm under wide range of dispersions 
in the initial ball position. 

 

 
Figure 7. Actual ball position profiles for the current and 
prior woks); (a) ball position vs. time for y0 = 0 m; (b) ball 
position vs. time for y0 = 0.07 m.  

 
6. RESULTS AND DISCUSSION 
 
A Monte-Carlo simulation is a technique that precisely 
illustrates uncertainties in model states. By using this 
method, a random value is adopted for each of the trails, 
relying on range of assessments. The statistics results 
are stored and the process is repeated several times with 
dissimilar randomly-adopted values. Recognized statis–
tics results such as the standard deviation, and mean 
value were applied to dissect the algorithm results as 
used by [24] and [25].    

 In this paper, 1000 Monte-Carlo numerical simu–
lations were implemented in order to perform the effec–
tiveness of the proposed algorithm under wide range of 
initial ball position dispersions. The initial ball position 
was set uniformly between 0 and 0.1 m.   

 Figures 8a-8e show the 1000 ball position, ball 
velocity, coil current, coil voltage, and electrical power 
histories, respectively. These figures show that the actual 
profiles track accurately the reference trajectories with 
using a slight closed-loop effort. Figure 8-a shows that 
the ball position profiles are bounded between 0 and 0.1 
which indicates the ability of the proposed to stabilize the 
magnetic system while achieving the ball position 
constraints. Figure 8-d indicates that the maximum and 
minimum required coil voltage are limited between 0 and 
15 Volt, respectively, for all the tested trajectories, thus 
the magnetic system can remarkably satisfy the steady 
state position without excessive coil voltage.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 8 Magnetic suspension system profiles for 1000 
Monte-Carlo trials; (a) ball position vs. time; (b) ball 
velocity vs. time; (c) coil current vs. time; (d) coil voltage 
vs. time; (e) electrical power vs. time 

 
(a) 

 
(b) 

 
(c) 
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 (d) 

 
(e) 

Figure 9. Histograms of steady-state errors from 1000 
Monte-Carlo trials; (a) ball position errors; (b) ball velocity 
errors; (c) coil current errors; (d) coil voltage errors; (e) 
electrical power errors 

Figures 9-a-9-e show the statistical results of ball 
position, ball velocity, coil current, coil voltage, and 
electrical power errors, respectively, at the steady-state 
position. It can be seen from Fig. 9 that all the steady-
state errors are very small. The simulated results of all 
the steady-state errors are multitude in Table 2. 
Figure 9 and Table 2 illustrate a summary of the Monte-
Carlo tested results. These simulated results indicate 
that the minimum, maximum, mean, and standard 
deviation values for the steady-state errors are nearly 
zero. Hence, the proposed algorithm can greatly ensure 
reliable performance despite wide initial ball position 
dispersions. 
Table 2 Statistics for steady-state errors. 

State error Mean Standard 
deviation 

Minimum Maximum

Ball position 
(m)  

1.4(10-11) 7.9 (10-9) -1.9 (10-7) 8.9 (10-8) 

Ball velocity 
(m/s)  

-3.4 (10-5) 1.2 (10-5) -6.1 (10-5) -1.4 (10-5) 

Coil current 
(Amp) 

1.1 (10-4) 3.8 (10-5) 4.3 (10-5) 2.2 (10-4) 

Coil voltage 
(Volt)  

0.0084 0.0143 -0.007 0.054 

Electric Power 
(Watt)  

0.0534 0.0089 -0.0432 0.34 

 
7. CONCLUSION 
 
A new analytical algorithm has been developed for the 
magnetic suspension system. The proposed algorithm 
employs a six- term exponential function that allows 

iteration on a single algorithm parameter (exponential 
factor) such that initial and final states are accurately 
satisfied while minimizing the peak of electrical power. 
The closed –loop and the reference ball position profiles 
do not exceed the interval [0 0.1] for the nominal and 
off-nominal approaches. The reference profiles have 
been tracked remarkably with low overshoot, typical 
steady-state time, and excellent performance 
characteristics. The obtained results using the Monte-
Carlo simulation showed that the maximum, minimum, 
standard deviation, and the mean for the steady-state 
errors are very small compared to the prior works. That 
shows the reliability of the new algorithm even for a 
wide range of ball position dispersions.   
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NOMENCLATURE 

L(y), Lo,L1 Magnetic inductance constants 
i(t) Electrical current 
m Mass of the suspended ball  
g Gravitional acceleration 
R Circuit resistance 
y Degree of the freedom of the ball 
E Electrical energy of the electrical cicuit 
φ  Magnetic flux 
k Viscous friction 
x1, x2,x3 System states 
u System input 
A, B Matrices for linearization 
Pref Electrical power 
vref Reference voltage 
ε Exponent factor 

 
 

НОВА АНАЛИТИЧКА СТРАТЕГИЈА 
УПРАВЉАЊА СИСТЕМОМ МАГНЕТНЕ 

СУСПЕНЗИЈЕ У УСЛОВИМА ДИСПЕРЗИЈЕ 
ПОЧЕТНОГ ПОЛОЖАЈА 

 
Ф.Ф. Ал-Бакри, Х.Х. Али, С.О.В. Кафаџи 

 
Разматра се нелинеарни систем магнетне суспензије.  
Приказан је нови онлајн алгоритам за 
стабилизовање суспендоване масе базиран на 
аналитичком приступу. Нови алгоритам користи 
једну аналитичку функцију за креирање положаја 
лоптице и профила брзине. Референтни положај 
лоптице описан је низом временски зависних 
експоненцијалних функција. Гранични услови 
почетног и коначног стања су аутоматски 
задовољени. Изводљив положај лоптице и профили 
брзине су омогућени евалуацијом једног параметра 
алгоритма (експоненцијалним фактором). 
Експоненцијални фактор је срачунат аналитичким 
минимизирањем максималне снаге електричне 
енергије. Нови алгоритам може да генерише 
одговарајући напон калема који осигурава 
стабилност система са командом мале затворене 
петље. GS метод се користи за утврђивање тежње 
затворене петље да прати аналитички референтне 
профиле. У поређењу са раније развијеним 
алгоритмима за магнетну суспензију предложена 
аналитичка шема може да манипулише великим 
дисперзијама почетног положаја лоптице, при чему 
се задовољавају ограничења положаја лоптице и 
напона калема. Приказана је Монте-Карло 
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симулација са променом почетног положаја 
лоптице. Резултати симулације показују високу 

поузданост предложеног алгоритма упркос великој 
дисперзији почетног положаја лоптице. 

 

 
 


