
© Faculty of Mechanical Engineering, Belgrade. Allrights reserved FME Transactions (2021) 49, 1025-1034 1025

Received: June 2021, Accepted: September 2021
Correspondence to: Vo Duy Cong, Industrial Mainte-
nace Training Center, Ho Chi Minh City University of
Technology, Vietnam.
E-mail: congvd@hcmut.edu.vn
doi:10.5937/fme2104025C

Vo Duy Cong
Lecturer

Industrial Maintenace Training Center
Ho Chi Minh City University of Technology

268 Ly Thuong Kiet, District 10, Ho Chi
Minh City, Vietnam

Vietnam National University Ho Chi Minh City
Linh Trung Ward, Thu Duc District

Ho Chi Minh City
Vietnam

Industrial Robot Arm Controller Based
on Programmable System-on-Chip
Device

Field-programmable gate arrays (FPGAs) and, recently, System on Chip
(SoC) devices have been applied in a wide area of applications due to their
flexibility for real-time implementations, increasing the processing
capability on hardware as well as the speed of processing information in
real-time. The most important applications based on FPGA/SoC devices
are focused on signal/image processing, Internet of Things (IoT)
technology, artificial intelligence (AI) algorithms, energy systems
applications, automatic control and industrial applications. This paper
develops a robot arm controller based on a programmable System-On-
Chip (SoC) device that combines the highperformance and flexibility of a
CPU and the processing power of an FPGA. The CPU consists of a dual-
core ARM processor that handles algorithm calculations, motion planning
and manages communication and data manipulation. FPGA is mainly used
to generate signals to control servo and read the feedback signals from
encoders. Data from the ARM processor is transferred to the
programmable logic side via the AXI protocol. This combination delivers
superior parallelprocessing and computing power, real-time performance
and versatile connectivity. Additionally, having the complete controller on
a single chip allows the hardware design to be simpler, more reliable, and
less expensive.

Keywords: industrial robot arm, robot controller, motion control system,
all programmable SoC, FPGA.

1. INTRODUCTION

Because of the ability to perform dangerous, dirty and
/or repetitive tasks with consistent precision and accur–
acy, the industrial robot arm is increasingly used in a
variety of industries and applications such as handling,
palletizing, cutting, finishing, sealing and gluing,
spraying, welding… [1-6].

Controller is the core of an industrial robot arm
system [7]. The robot controller plays an important role
in ensuring accuracy and directly affects the speed of
the robot’s movement. In recent years, many studies
have focused on improving robot controllers both in
hardware and software. The software includes algo–
rithms that perform kinematics calculations, trajectory
planning, communication… and the hardware platform
refers to hardware circuit [8]. A controller must have the
computational ability to perform trigonometric
functions in the inverse kinematics problem, trajectory
interpolation, synchronous motion control. Additionally,
the control system must be robust and scalable while
allowing for future system improvements and
expansion. Nowadays, with the development of
embedded processors, complex control algorithms can
be implemented by ARM processors instead of basing

on industrial computers or PCI cards. Moreover, field
programmable gate array (FPGA) technology is
growing and being used more and more in motion
controllers. In [9], the FPGA is used to control servo
motors with the control signal is sent from the ARM
processor. In this paper, the whole controller includes a
core board and an interface board. The core board
contains two main chips: STM32F207 ARM processor
and Itera cyclone II EP2C8Q208 FPGA chip. The
communication between these two chips is done by the
FSMC (Flexible Static Memory Controller) technology
which is a unique technology in STM32. A
multifunctional robot arm control system based on
Linux and FPGA is presented in [8]. This paper adopts
IPC as the controller and FPGA as the core processor of
the motion control board. Ligong-Sun in [10] designs a
kind of open robot controller combining powerful
functions and remarkable advantages, which realizes a
programmable controller on chip of industrial robot
using ALTERA FPGA and an embedded soft-core
processor of NIOS II. In [11], a new motion control IC
is developed andimplemented on an industry standard
FPGA provided by Xilinx. This research develops
functions of closed current loop control, closed
position/velocity loop control, incremental encoder
logic, PWM modulation, fault/brake logic, velocity
estimator, host communication module, UART module
and delta-sigma Analog to Digital converter. The
hardware system executes quickly in dedicated parallel
hardware, so the update rates of the current control loop

1026 ▪ VOL. 49, No 4, 2021 FME Transactions

and position/velocity control loop can reach 120 kHz
and 20 kHz, respectively.

The rapid development of modern electronic
technology, especially the presence of System-on-Chip
devices provides a new method to implement the robot
controller. The system-on-chip (SoC) devices combine
high-performance CPUs and the processing power of
programmable logic which delivers superior parallel-
processing, computing power, real-time performance
and versatile connectivity [13]. Barrios-dV et. al. in [12]
design and implement a real-time controller system for
robot navigation using a Xilinx Zynq® System on Chip.
The system consists of a decentralized neural inverse
optimal controller, an inverse kinematic model, and a
path-planning algorithm. The motor control is obtained
based on a discrete-time recurrent high order neural
network trained with an extended Kalman filter, and an
inverse optimal controller designed without solving the
Hamilton Jacobi Bellman equation. In [14], a compact
CNN accelerator for the IoT endpoint System-on-Chip
(SoC) is proposed to meet the needs of CNN
computations. The results show that the compact
accelerator proposed in this paper makes the CNN
computational power of the SoC based on the Cortex-
M3 kernel two times higher than the quad-core Cortex-
A7 SoC and 67% of the computational power of eight-
core Cortex-A53 SoC.

This paper develops a robot controller using a Zynq-
7000XC7Z020SoC device. The XC7Z020 devices are
equipped with a dual-core ARM Cortex-A9 processor
integrated with 28 nm Artix-7 based programmable
logic for excellent performance-per-watt and maximum
design flexibility. With the dual-core processor, the
controller can implement two parallel tasks. The main
core process algorithm calculations include kinematics
algorithm and trajectory planning. The algorithms are
executed when receiving commands from the teach
pendant. Another core handles the communication and
processing data from teach pendant which includes
decoding robot language and G-code. After
implementing the calculation, the controller needs to
send signals to drivers to control servo motors via a
motion control board. Because the motion control board
synchronously controls six servo motors which requirea
maximum frequency of up to 4Mpps, we utilize parallel
computing to shorten the control cycle based on FPGA.

The remainder of this paper is structured as follows:
Section 2 introduces the trajectory planning and motion
control algorithms to control the robot arm. Section 3
describes hardware structure. Section 4 describes
software design on ARM core and FPGA. Section 5
shows the experimental results. Finally, Section 6 is
conclusion.

2. TRAJECTORY PLANNING AND MOTION

CONTROL

Trajectory planning creates reference signals for the
robot controller so that the robot moves in the desired
trajectory. Motion control uses interpolation functions
and inverse kinematics to generate discrete data of joint
angle values. The controller sends these values to the
motion board to generate pulses for servo motor drivers.

The driver ensures that the motor turns properly at the
reference value.

Trajectory planning generates a time schedule for
how to follow a path given constraints such as position,
velocity, and acceleration. The trajectory planning can
be conducted in the joint space or in the workspace. The
trajectory can be defined by the initial point and final
point of the path (point-to-point) or a finite sequence of
points along the path. In this section, we just consider
the point-to-point trajectory planning problem.

2.1 Joint Space Trajectories Planning

Planning trajectory in the joint space has many
advantages such as less computation, easier to plan
trajectories in real-time and no problem with
singularities.The initial and final pose of the robot is
usually given in the workspace, solving an inverse
kinematic problem, we determine the initial and the
final angles at each joint.The planning algorithm
generates a function q(t) interpolating the given joint
variables at each joint. In practice, a trapezoidal velocity
profile is usually assigned (see Figure 1.a). The velocity
graph consists of three phases namely constant
acceleration, constant velocity and constant dece–le–
ration. Assume that the angle from the initial position to
the final position, qf, the maximum speed ωmax and the
constant acceleration/deceleration ω are given in
advance. We need to determine the acceleration/
decelerationtime tc, the time for the constant velocity
phase , the total time T, and the function of q(t).

a. trapezoidal profile b. triangular profile

Figure 1. Velocity profile

The velocity at the end of the acceleration phase is
equal to the constant velocity, so:

max
ct

ω
ω

= (1)

And the angle after the acceleration is:

2
2 max1

2 2c cq t
ω

ω
ω

= = (2)

The area of trapezoid is equal to the total angle qf, so:

() maxc v ft t qω+ = (3)

FME Transactions VOL. 49, No 4, 2021 ▪ 1027

Therefore, the time for the constant velocity phase is:

max

max

f
v

q
t

ω
ω ω

= − (4)

If tv > 0 or 2
maxfq ω ω⋅ > , the velocity profile is a

trapezoid, the total time is:

max

max
2 f

c v
q

T t t
ω
ω ω

= + = + (5)

The trajectory is formed by a linear segment con–
nected by twoparabolic segments:

() ()

()

2

2
max

max

2

1 0
2

2
1
2

c

c c c

f c

t t t

q t t t t t T t

q T t T t t T

ω

ω
ω

ω

ω

⎧ ≤ ≤⎪
⎪
⎪

= + − ≤ ≤ −⎨
⎪
⎪

− − − ≤ ≤⎪
⎩

 (6)

If tv < 0 or 2
maxfq ω ω⋅ < ,, the velocity profile is a

triangle that only consists of acceleration and decele–
ration phase (see Figure 1.b). The trajectory is formed
by twoparabolic segments, we have:

21
2 2
f

c c
q

q tω= = (7)

Therefore, the acceleration/deceleration time and the
total time are:

f
c

q
t

ω
= (8)

2 2 f
c

q
T t

ω
= = (9)

The maximum velocity in this case is:

maxc c ft qω ω ω ω= = ≤ (10)

The function of angle in term of time t:

()
()

2

2

1 0
2

1
2

c

f c

t t t
q t

q T t t t T

ω

ω

⎧ ≤ ≤⎪⎪= ⎨
⎪ − − ≤ ≤
⎪⎩

 (11)

We get six values of Ti for six joints but all joints
must be stopped at the same time, so the maximum
value of Ti is selected:

()
1,6

max i
i

T T
=

= (12)

Then, the velocity ωmax at each joint is recalculated
by solving equation (5):

()2
max

4

2
fT T qω ω ω

ω
− −

= (13)

If ()2 4 0fT qω − < or 2 /fT q ω< , the accelera–

tion is recalculatedfrom equation (9) and the triangular
profile is used:

2

4 fq

T
ω = (14)

2.2 Task Space Trajectories Planning

Joint space trajectories are usually used in pick and
place applications that do not care about the end-effect
or trajectory. But in many applications, such as welding,
cutting, etc., it is requiredto control the robot motion to
follow a specified path in the workspace. So, trajectory
planning also needs to be executed directly in the
workspace. In the task space trajectories, the position
and orientation of the robot’s end-effector are inter–
polated over time and transformed to the values of the
joint angles bysolving the inverse kinematics. So, it
requires a large amount of computation.

The trajectories are usually formed by linear and
circular paths. Consider the linear trajectory between the
initial position pi and final position pf. Perform thelinear
interpolation:

() ()()i f ip t p s t p p= − (15)

where s is a scalar, []0,1s∈ . Usually, the trajectory
starts and ends withzero speed, so the trapezoidal profile
is used to defined s(t):

()

()

2max

max

2max

0
2

2

1
2

c
c

c
c c

c
c

s
t t t

t
t

s t s t t t T t

s
T t T t t T

t

⎧ ≤ ≤⎪
⎪
⎪ ⎛ ⎞⎪= − < ≤ −⎨ ⎜ ⎟

⎝ ⎠⎪
⎪

− − − < ≤⎪
⎪⎩

 (16)

where ()max 1/ cs T t= − is the maximum value of ()s t .
The values of tc and T are calculated from acceleration am
and velocity vm that are given in advance (similar as
equation 1 and equation 5):

m m c

m

m m

v a t
a lT
v v

=

= +
 (17)

where is the length of the line segment.
In the case of the circular trajectory with radius r,

center C and orientation matrix R, the coordinate of a
point on the circle is:

()
()()
()()

cos /

sin /

0

r s t r

P t c R r s t r

⎡ ⎤
⎢ ⎥

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (18)

where s(t) is the arc length. The value of n(t) = s(t)/ris
also computed as in the linear interpolation.

1028 ▪ VOL. 49, No 4, 2021 FME Transactions

When robot movement, the orientation of the end-
effector is also changed.The orientation of the end-
effector is represented by the rotation matrix. Denote
the rotation matrix at the initial position is R(t=0) = Ri
and at the final position is R(t=T) = Rf. To perform the
orientation planning, define the matrix Rf

i that trans–
forms the initial orientation to the final orientation. We
have the relationship Rf = RiRf

i or:

11 12 13

21 22 23

31 32 33

f T
i fi

r r r
R R R r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (19)

Calculate the angle-axis parameter uθ from the rota–
tion matrix Rf

i:

11 12 13

32 23

13 31

21 12

1
cos 1

2

1
2sin

r r r

r r
u r r

r r

θ

θ

+ + −⎛ ⎞= − ⎜ ⎟
⎝ ⎠

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (20)

Choose the angle α(t) so that α(t=0) = 0, α(t=T) =
(and use a trapezoidal profile) to calculate the matrix:

2

2

2

x x y z x z y

t x y z y y z x

x z y y z x z

r a c r r a r s r r a r s

R r r a r s r a c r r a r s

r r a r s r r a r s r a c

α α α

α α α

α α α

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥= + + −
⎢ ⎥
⎢ ⎥− − +⎢ ⎥⎣ ⎦

 (21)

with cα = cosα, sα = sinα, a = 1 – cα (21)

Then, calculate the orientation matrix of the end-
effector:

() i tR t R R= (22)

2.3 Pulse train generation

Combining the trajectory planning and inverse kine–
matics, the joint angles at each joint can be generated
over time. The motion control system needs to control the
servo motors to reach these values. A servo motor is
controlled by sending pulses to the motor driver. One
pulse makes the motor rotate one small constant angle
called resolution. The pulses are generated every
sampling cycle T. Assuming q(t) is the joint angle at the
time t and q(t+T) is the joint angle at the next period. The
number of pulses sent to the controller is determined:

() ()
() () () ()

0 ,

,

if q t T q t resolution

n q t T q t
if q t T q t resolution

resolution

⎧ + − <
⎪⎪= ⎨ + −⎡ ⎤

+ − ≥⎪⎢ ⎥
⎪⎣ ⎦⎩

 (23)

The number of pulses is sent to the motion controller
and the motion controller ensures to generate pulses at
the same time, so six servo motors will work synch–
ronously. When pulses are generated independently on
the motion controller, the pulse frequency can be up to
several MHz so the motor can turn at high resolution
and leads to many benefits such as: higher efficiency,

less heat, increased stability, better speed control, higher
torque to inertia ratio possibilities.

3. HARDWARE DESIGN

The integration of two ARM cores and FPGA on a
single device helps to simplify the hardware structure.
This research uses the MicroZed board as a central
processor board. MicroZed contains two I/O headers
that provide the connection to two I/O banks on the
programmable logic (PL) side of the Zynq®-7000 All
Programmable SoC device. An external board is desi–
gned to connect MicroZed board with servo driver thro–
ugh these I/O headers. In addition, the external board is
also responsible for converting 2.5V signalson the
MicroZed board to 5V signalson the servo driver and
vice versa. The hardware design is shown in Figure 2.

Unlike traditional robot controllers, the main cont–
roller and motion controller are distinguished, our
controller is designed on a single board. So, the size of
the controller is very compact and the communication is
also simple. Although integrated into a single board, the
functions of each part are still the same as the previous
controllers. The main core ARM is mainly responsible
for algorithm calculations, trajectory planning, commu–
nication with teach pendant and other devices, control–
ling FPGA. FPGA is used to control the servo motor
and read the feedback signals from the encoder. More–
over, FPGA provides reprogrammable IO and hardware
reconfiguration capability, so we can expand IO pins to
control the end-effector tools and create more hardware
for communication standards. The main controller will
manage this IO pin function and create software to
control communications.

Figure 2. Hardware design

Another advantage of the Zynq All Programmable
SoC device is communication between ARM core and
FPGA. Data is communicated via the AXI bus inter–
connect. Advanced Extensible Interface, or AXI, is part
of ARM’s AMBA specifications. The AXI is a point-to-
point interconnect that is designed for high-perfor–
mance, high-speed microcontroller systems. The AXI
protocol is based on a point-to-point interconnect to
avoid bus sharing and therefore allow higher bandwidth
and lower latency. The Xilinx AXI Interconnect
contains AXI-compliant master and slave interfacesand
can be used to route transactions between one or more
AXI masters and slaves. In our system, the ARM core is
the master, slaves are modules designed on the FPGA
side, which means one master interfaces with many
slaves. Each slave device must have a unique address.

FME Transactions VOL. 49, No 4, 2021 ▪ 1029

When the ARM chip writes data to FPGA, it sends
address and control signals to slaves. The control signal
can be ‘read’ or ‘write’. After that, the master sendsthe
channel address to choose which channel will be read or
write. Each channel is a 32-bit register. If the control
signal is ‘read’, the slave will send data to the master,
otherwise if the control signal is ‘write’, the master will
send data to the slave.

4. SOFTWARE DESIGN

4.1 FPGA Design

To accelerate the creation of highly integrated and complex
designs in programmable devices, we use intelligent IP
integration delivered by the Vivado Design Suite software.
An IP (intellectual property) core is a block of logic or data
that is used in making anFPGA or application-specific
integrated circuit (ASIC) for a product. Figure 3 shows the
diagram designed using IP blocks, in which some blocks
are pre-defined in the software, the rest are user-defined
blocks. The user-defined blocks are programmed by
VHDL language. The functions of the IP blocks are as
follows:

• ZYNQ7 Processing System IP: the software
interface around the Zynq-7000 Processing
System.

• AXI Interconnect IP: connects one or more AXI
memory-mapped masterdevices to one or more
memory-mapped slave devices

• AXI Timer IP: create a trigger signal to synch–
ronize data processing and communication
between ARM processor core and FPGA. The
trigger signal is created after every 50us that is
configured by the software.

• AXI UART16550 IP: provide the controller
interface for asynchronous serial data transfer.
An interrupt signal at the ip2intc_irpt pin is
created after receiving enough 8 bytes of data.

• Pulse_train_v1.1 IP (user define IP): includes six
pulse generator modules that generate the pulse
signals for six servo motors. All the pulse
generator modules are triggered by the trigger
signal from the AXI timer so that they can start
to generate pulses at the same time.

• switch_v1.0 and encoder_v1.1 IP (user define
IP): reads signal from encoder. Encoder IP only
reads one encoder once, so switch IP is designed
to choose the encoder.

The encoder IP consists of Debounce Circuit and
Decoder Circuit as shown in Figure 4 and Figure 5. The
debounce circuit is used to reduce noise when the signal
level changes.FF1 and FF2 always store the last two
logic levels of the encoder signal.If the signal’slevel
changes, the values of FF1and FF2 are differentin a
clock cycle, the output of the XOR logic gate is HIGH
and reset the counter. If the signal’s level is unchanging,
the output of the XOR logic gate is LOW and the
counter begins to count. If the signal’s logic level is
stable, the counter continues to increment until it
reaches the debounce_time value. The FF3 is enabled
and the stable value is clocked through to the output.
The counter disables itself until there is another change
on one of the inputs.

Based on the operation of quadrature encoders [16],
Table 1 lists the possible a and b input transitions, along
with the values of direction and position. As seen in the
truth table, the direction is determined by:

Direction = a_new XOR b_prev

Figure 3. Block IP design

1030 ▪ VOL. 49, No 4, 2021 FME Transactions

Figure 4. Synchronization and Debounce Circuit

Figure 5. Decoder Circuit

Table 1: Truth Table

Previous Inputs New Inputs Results
a_prev b_prev a_new b_new Direction Position

0 0 1 0 1 increase
1 0 1 1 1 increase
1 1 0 1 1 increase
0 1 0 0 1 increase
0 0 0 1 0 decrease
0 1 1 1 0 decrease
1 1 1 0 0 decrease
1 0 0 0 0 decrease

The value of the counter only changes (increase or

decrease) when the debounce time is met (stable signal)
and has a rising edge or a falling edge of the encoder pulse.
The signal edge is detected by using an XOR logic gate.

The algorithm to generate the pulse signal for servo
motors in the Pulse_train IP is illustrated in Figure 6. The
value of pulse width is sent from the ARM processor
through AXI interconnect. The direction of rotation
depends on the sign of the pulse width and is outputted to
servo_dir pins. The pulse signal is generated on servo_i
pins. S_AXI_ACLK is a synchronous signal for AXI
communication and it is used to change the value of the
“count” variable. The frequency of S_AXI_ACLK is set to
50 MHz.

4.2 ARM Software Design

The software will be divided into several smaller tasks.
The tasks are performed depending on the command
received from a teach pendant. After the ARM processor
core starts, it conducts hardware initialization such as
UART, Timer, GPIO and so on. Then, it will wait for the

teach pendant commands to perform the tasks. Tasks can
be online or offline.

Figure 6. Pulse generation algorithm

FME Transactions VOL. 49, No 4, 2021 ▪ 1031

The online task means that after receiving a teach
pendant command, the controller will immediately
execute this command. Then, it waits for the next com–
mand. The online tasks include: set coordinate system,
change speed, jogging commands, interpolation com–
mands, …

In the offline mode, the robot will receive a program
that is written in the robot language, save the program in
the memory. Then, the controller will encode and execute
each command in the program. While implementing the
program, except for an emergency stop command, all
commands from the teach pendant will not be executed.
Because we use the UART interrupt, the controller always
receives data from the teach pendant, but when a program
is running, only the emergency stop command is executed.

5. EXPERIMENT RESULTS

Our controller is used to control a Six-DOF robot arm
which is shown in Figure 7. The controller receives
commands from a teach pendant that is designed on a
Samsung tablet (Figure 8). The robot canbe controlled
to perform tasks such as pick and place, laser cutting,
point welding, linear welding…

Figure 7. Six DOF robot arm

Figure 8. Teach pendant interface

Figure 9 shows the results when applying the
trapezoidal velocity profiles to create the angled command
at each joint. All six joints are started and finished at the
same time with a total time of 0.87s. The command angles
of joint 4 and joint 5 aremuch smaller than the other joints,
so they move with the triangle profiles with the maximum
velocity of 40 deg/s.It should be noted that the motor is

connected to the gearbox 50:1 ratio. The acceleration of
joint 6 is set slightly larger than other joints.

Figure 9shows the results of using the robot to draw
some basic shapes.It can be seen that the robot can imp–
lement interpolation in the workspace and move smoothly.

Figure 9. Joint angle trajectory planning

Figure 10. Robot movement results

6. CONCLUSION

In this paper, the 6 DOF industrial robot arm controller
is designed based on the Zynq All Programmable SoC

1032 ▪ VOL. 49, No 4, 2021 FME Transactions

device. The main controller and motion controller are
designed on a single board. So, the size of the controller
is very compact, simple, low-cost and low power con–
sumption.

The developed controller incorporates ARM's com–
putational power and parallel processing capabilities of the
FPGA, easily communicating with teach pendant and other
peripherals. The ARM microprocessor was incorporated to
take advantage of the high-level programming for
algorithm calculations include kinematics algorithm and
trajectory planning, handling the communication and
processing data from teach pendant which inc–ludes
decoding robot language and G-code. The FPGA-based
motor motion control has given synchronously control of
six servo motors which require a maximum frequency of
up to 4Mpps so the motor can turn at high resolution and
resulting in higher efficiency, less heat, increased stability,
better speed control, higher torque to inertia ratio
possibilities. Moreover, FPGA provides reprogrammable
IO and hardware reconfiguration capability, so we can
expand IO pins to control the end-effector tools and create
more hardware for communication standards.

The experimental results show that the controller
can control the robot to implement interpolation in both
joint space and workspace leading to smooth move–
ments. The robot can be used to perform most of the
common tasks in industrial production.

In future work, AI algorithms will be integrated into
our robot controller. AI algorithms are often used for
robot motion planning in high-level control and
artificial neural networks can be implemented with an
FPGA in a System on Chip (SoC) device. The goal of
an artificial neural network in the context of robot arm
control is to train a deep policy neural network to create
the optimal sequence of motion commands. The output
of this policy network is torques or velocity commands
for each actuator.

APPENDIX

ROBOT KINEMATICS

Figure 11. Robot coordinates

Transformation between two joints in a generic form
is given by [15]:

1
0
0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

c s c s s a c
s c s c s a s

T
s c d

θ θ α θ α θ
θ θ α θ α θ

α α
−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (24)

Table 2: DH parameters

Link ai (mm) αi (deg) di (mm) θi (deg)
1 a1 90 d1 θ1
2 a2 0 0 θ2
3 a3 90 0 θ3
4 0 -90 d4 θ4
5 0 90 0 θ5
6 0 0 d6 θ6

Robot coordinates shown in Figure 11are used to

establish DH parameters (Table 2). The DH parameters
are substituted into equation (24) to find the transfor–
mation matrices, from 0

1T to 5
6T. The total trans–

formation matrix between the base of the robot and link
6 is:

()
()
()
()
()

0 0 1 2 3 4 5
0 1 6 1 2 3 4 5 6

10 0 2 3 4 5
1 2 1 6 3 4 5 6

11 3 4 5
2 3 2 1 4 5 6

12 4 5
3 4 3 2 5 6

13 4 5
4 5 4 3 5 6

14 5
5 6 5 4 6

V U T T T T T T T

V U T T T T T T T

V U T V T T T T

V U T V T T T

V U T V T T

V U T V T

−

−

−

−

−

= = =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

 (26)

where rij is the orientation elements and (qx,qy,qz) is the
position elements. These elements are shown in the
following equations:

() ()
() ()

()
() ()
()

11 6 1 4 1 4 23 6 1 5 23 5 1 4 1 4 23

12 6 1 4 1 4 23 6 1 5 23 5 1 4 1 4 23

13 1 5 23 5 1 4 1 4 23

21 6 1 5 23 5 1 4 1 4 23 6 1 4 1 4 23

22 6 1 5 23 5 1 4 1 4 23

r s s c c s c c c s s c s s c c s

r c s c s s c s c s s c s s c c s

r c c s s s s c c c

r c s s s c c s s s c s c c s s c

r s s s s c c s s s c

⎡ ⎤= − − − +⎣ ⎦
⎡ ⎤= − + − +⎣ ⎦

= + +

⎡ ⎤= − + + − +⎣ ⎦
⎡ ⎤= + +⎣ ⎦ ()

()
()
()

6 1 4 1 4 23

23 1 5 23 5 1 4 1 4 23

31 6 23 5 23 4 5 23 4 6

32 6 23 5 23 4 5 23 4 6

33 23 4 5 23 5

6 13

6 23

6 33

4 1 23 3 1 23 2 1 2 1 1

4 1 23 3 1 23 2 1

x x

y y

z z

x

y

c c c s s c

r s c s s c s s s c

r c c s s c c s s s

r s c s s c c s s s
r s c s c c
q p d r
q p d r

q p d r
p d c s a c c a c c a c
p d s s a s c a s c

− +

= − −

= + −

= − + −

= −

= +

= +

= +

= + + +

= + + 2 1 1

4 23 3 23 2 2 1z

a s

p d c a s a s d

+

= − + + +
(27)

FME Transactions VOL. 49, No 4, 2021 ▪ 1033

with si = sinθ, ci = cosθi

cij = cos(θi+θj), sij = sin(θi+θj)

The above equations are called forward kinematic
equations that describe the relationship between
theindividual joints of the robot manipulatorand the
position and orientation of the end-effector. Contrarily,
the inverse kinematic problemtransformsthepositionand
orientationof theend-effector in the Cartesian space to
the joint space.

To find the inverse kinematics solution, denote:

()
()
()
()
()

0 0 1 2 3 4 5
0 1 6 1 2 3 4 5 6

10 0 2 3 4 5
1 2 1 6 3 4 5 6

11 3 4 5
2 3 2 1 4 5 6

12 4 5
3 4 3 2 5 6

13 4 5
4 5 4 3 5 6

14 5
5 6 5 4 6

V U T T T T T T T

V U T T T T T T T

V U T V T T T T

V U T V T T T

V U T V T T

V U T V T

−

−

−

−

−

= = =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

 (28)

The multiplications are carried out and yield the
results as follows:

1 01 1 02 1

03 1
1

1 01 1 02

c V s V a M
V d M

V
s V c V

M

+ −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (29)

2 11 2 12 2

2 11 2 12
2

13

c V s V a M
s V c V

V
V
M

+ −⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (30)

()23 11 2 12 2 3 3

13
3

23 11 23 12 2 3

c V s V a c a M
V

V
s V c V a s M

M

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 (31)

4 31 4 32

33 4
4

4 31 4 32

c V s V
V d M

V
s V c V

M

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

 (32)

55 41 5 42

43
5

5 41 5 42

c V s V
V

V
s V c V

M

+⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (33)

5 6 5 6 5

5 6 5 6 5
5

6 6

0
0

0 0
0 0 0 1

c c c c s
s c s c c

U
s c

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (34)

4 511 4 6 4 512 4 6 4 5

4 511 4 6 4 512 4 6 4 5
4

521 6

0
0

0 0
0 0 0 1

c U s s c U s c c s
c U c s c U c c s c

U
U c

− −⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (35)

4 3 3 3

4 3 3 3
3 4 0

1

j

d s a c
d c a s

U

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (36)

4 3 3 3

4 3 3 3
3 4 0

1

j

d s a c
d c a s

U

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (37)

1 214 1 1

1 214 1 1
1 4 0

1

j

c U a c
s U a s

U

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (38)

where Vij is the jth row of matrix Vi, Uijk is the element
at the jth row and kth column of matrix Ui, M = [0 0 0
1]. The joint angles θi are solved as follows:

From two equations V014 = U214 and V024 = U124,
solve θ1:

()1 tan 2 ,y xa p pθ = (39)

Substituting θ1 into equation (29) to compute the
matrix V1. From two equations V114 = U214 and V114 =
U214, we can solve θ1:

()6 431 5 411 5 421tan 2 ,a V c V s Vθ = + (40)

where:

2 2 2 2 2
2 4 3 114 124

2 2
2 114 1242

c
a d a V V

n
a V V

− − + +
=

+
 (41)

Substituting θ2 into equation (30) to compute the
matrix V2.From two equations V214 = U314 and V114 =
U214, solve θ2:

() ()3 214 224 3 4tan 2 , a tan 2 ,a V V a dθ = − − (42)

From two equations V313 = U413 and V323 = U423, we
have:

313 4 5 323 4 5,V c s V s s= = (43)

If ()1
5 4 323 313sin 0 tan /V Vθ θ −≠ → =

From two equations V413 = U513 and V423 = U523,
solve θ5:

()5 4 313 4 323 333tan 2 ,a c V s V Vθ = + (44)

Finally, from two equations V511 = U611 and V521 =
U621, solve θ6:

()6 431 5 411 5 421tan 2 ,a V c V s Vθ = + (45)

1034 ▪ VOL. 49, No 4, 2021 FME Transactions

ACKNOWLEDGMENT

We acknowledge the support of time and facilities from
Ho Chi Minh City University of Technology (HCMUT),
VNU-HCM for this study.

REFERENCES

[1] H. F. Fauadi and M. S. Jumali: Modelling and
simulation of programmable universal machine
for assembly (PUMA) industrial robot for
automotive related assembly process.
International Symposium on Information
Technology, pp. 1-5, 2008

[2] G. S. Huang, C. K. Tung, H. C. Lin, and S. H.
Hsiao.: Inverse kinematics analysis trajectory
planning for a robot arm. Control Conference,
pp. 965–970, 2011.

[3] E. S. Kheng, A. H. A. Hassan, A. Ranjbaran,
and T. S. Siong.: Range estimation for robot
arm applications using image segmentation and
curve fitting tool. International Conference on
Electrical, Control and Computer Engineering,
pp. 275–278, 2011.

[4] X. Chu, H. Fleischer, N. Stoll, M. Klos, and K.
Thurow.: Application of dual-arm robot in
biomedical analysis: Sample preparation and
transport. Instrumentation and Measurement
Technology Conference, pp. 500–504, 2015.

[5] M. Polishchuk and M. Tkach.: Experimental
Studies of Robotic Assembly of Precision
Parts. FME Transactions, 2021, Vol. 49, No.1,
pp. 44-55.

[6] D. Antonelli and G. Bruno.: Dynamic
Distribution of Assembly Tasks in a
Collaborative Workcell of Humans and
Robots. FME Transactions, 2019, Vol. 47, pp.
723-730.

[7] E. Coste-Maniere and R. Simmons.:
Architecture, the backbone of robotic systems.
IEEE International Conference on Robotics
and Automation, 2000. Proceedings. ICRA,
2000, pp. 67-72,Vol.1.

[8] Cong Han, Hongbin Ma, Wenchao Zuo, Sunjie
Chen, and Xinghong Zhang.: A General 6-
DOF Industrial Robot Arm Control System
Based on Linux and FPGA. Chinese Control
And Decision Conference (CCDC), pp.1220 –
1225, 2018.

[9] Xingqiang He, Zhengdong Wang, Haitao Fang,
Kai He and RuxuDu.: An Embedded Robot
Controller Based on ARM and FPGA. IEEE
International Conference on Information
Science and Technology, pp.702-705, 2014.

[10] Ligong Suna, Fei Xiangb, Xiangwen Sunc,
Sujuan Lid.: Design of Industrial Robot
Controller Based on System on Programmable
Chip. International Conference on Electronic &

Mechanical Engineering and Information
Technology, pp.3877 -3880, 2011.

[11] Shao Xiaoyin, Sun Dong.: A FPGA-based
motion control IC design, IEEE International
Conference on Industrial Technology, pp. 131 -
136, 2005.

[12] Barrios-dV S, Lopez-Franco M, Rios JD,
Arana-Daniel N, Lopez-Franco C, Alanis AY.
An Autonomous Path Controller in a System
on Chip for Shrimp Robot. Electronics. 2020;
9(3):441

[13] I. Bravo-Muñoz, J.L. Lázaro-Galilea and
A.Gardel-Vicente.: FPGA and SoC Devices
Applied to New Trends in Image/Video and
Signal Processing Fields. Electronics, 2017,
Vol.6, No.25.

[14] Ge F, Wu N, Xiao H, Zhang Y, Zhou F.:
Compact Convolutional Neural Network
Accelerator for IoT Endpoint SoC. Electronics.
2019; 8(5).

[15] P. Corke. Robotics, Vision and Control,
Fundamental Algorithms in Matlab®.
Springer, 2011.

[16] Quadrature Decoder (VHDL), Digi-Key Tech
Forum. https://forum.digikey.com/t/quadratu
re-decoder-vhdl/12671

КОНТРОЛЕР РУКЕ ИНДУСТРИЈСКОГ
РОБОТА БАЗИРАН НА ПРОГРАМАБИЛНОМ

SOC УРЕЂАЈУ

В.Д. Конг

FPGA и SOC уређаји имају широку употребу због
своје флексибилности за примену у реалном
времену, повећане снаге процесора као и брзине
обраде информација у реалном времену.
Најзначајнија примена базирана на FPGA/SOC
уређајима се односи на обраду сигнала/слике, IoT
технологије, AI, апликације енергетског система,
аутоматско управљање и индустријску примену.
Развијен је контролер роботске руке базиран на
програмабилном SOC уређају који представља спој
веће перформансе и флексибилности процесора и
процесорске снаге FPGA. Процесор се састоји од
двојезгреног АRM процесора који врши
алгоритамска срачунавања, планирање кретања,
управља комуницирањем и манипулише подацима.
FPGA се претежно користи за генерисање сигнала за
управљање серво системом и читање повратног
сигнала са енкодера. Подаци са ARM процесора се
преносе на програмабилну логичку страну преко
AXI протокола. Овом комбинацијм се обавља боља
паралелна обрада и брже срачунавање, она има боље
перформансе и разноврсност конективности. Када је
цео контролер на једном чипу могуће је дизајнирати
једноставнији, поузданији и јефтинији хардвер.

