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Industrial Robot Arm Controller Based 
on Programmable System-on-Chip 
Device 
 
Field-programmable gate arrays (FPGAs) and, recently, System on Chip 
(SoC) devices have been applied in a wide area of applications due to their 
flexibility for real-time implementations, increasing the processing 
capability on hardware as well as the speed of processing information in 
real-time. The most important applications based on FPGA/SoC devices 
are focused on signal/image processing, Internet of Things (IoT) 
technology, artificial intelligence (AI) algorithms, energy systems 
applications, automatic control and industrial applications.  This paper 
develops a robot arm controller based on a programmable System-On-
Chip (SoC) device that combines the highperformance and flexibility of a 
CPU and the processing power of an FPGA. The CPU consists of a dual-
core ARM processor that handles algorithm calculations, motion planning 
and manages communication and data manipulation. FPGA is mainly used 
to generate signals to control servo and read the feedback signals from 
encoders. Data from the ARM processor is transferred to the 
programmable logic side via the AXI protocol.  This combination delivers 
superior parallelprocessing and computing power, real-time performance 
and versatile connectivity. Additionally, having the complete controller on 
a single chip allows the hardware design to be simpler, more reliable, and 
less expensive. 
 
Keywords: industrial robot arm, robot controller, motion control system, 
all programmable SoC, FPGA. 

 
 

1. INTRODUCTION 
 

Because of the ability to perform dangerous, dirty and 
/or repetitive tasks with consistent precision and accur–
acy, the industrial robot arm is increasingly used in a 
variety of industries and applications such as handling, 
palletizing, cutting, finishing, sealing and gluing, 
spraying, welding… [1-6]. 

Controller is the core of an industrial robot arm 
system [7]. The robot controller plays an important role 
in ensuring accuracy and directly affects the speed of 
the robot’s movement. In recent years, many studies 
have focused on improving robot controllers both in 
hardware and software. The software includes algo–
rithms that perform kinematics calculations, trajectory 
planning, communication… and the hardware platform 
refers to hardware circuit [8]. A controller must have the 
computational ability to perform trigonometric 
functions in the inverse kinematics problem, trajectory 
interpolation, synchronous motion control. Additionally, 
the control system must be robust and scalable while 
allowing for future system improvements and 
expansion. Nowadays, with the development of 
embedded processors, complex control algorithms can 
be implemented by ARM processors instead of basing 

on industrial computers or PCI cards. Moreover, field 
programmable gate array (FPGA) technology is 
growing and being used more and more in motion 
controllers. In [9], the FPGA is used to control servo 
motors with the control signal is sent from the ARM 
processor. In this paper, the whole controller includes a 
core board and an interface board. The core board 
contains two main chips: STM32F207 ARM processor 
and Itera cyclone II EP2C8Q208 FPGA chip. The 
communication between these two chips is done by the 
FSMC (Flexible Static Memory Controller) technology 
which is a unique technology in STM32. A 
multifunctional robot arm control system based on 
Linux and FPGA is presented in [8]. This paper adopts 
IPC as the controller and FPGA as the core processor of 
the motion control board. Ligong-Sun in [10] designs a 
kind of open robot controller combining powerful 
functions and remarkable advantages, which realizes a 
programmable controller on chip of industrial robot 
using ALTERA FPGA and an embedded soft-core 
processor of NIOS II. In [11], a new motion control IC 
is developed andimplemented on an industry standard 
FPGA provided by Xilinx. This research develops 
functions of closed current loop control, closed 
position/velocity loop control, incremental encoder 
logic, PWM modulation, fault/brake logic, velocity 
estimator, host communication module, UART module 
and delta-sigma Analog to Digital converter. The 
hardware system executes quickly in dedicated parallel 
hardware, so the update rates of the current control loop 
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and position/velocity control loop can reach 120 kHz 
and 20 kHz, respectively. 

The rapid development of modern electronic 
technology, especially the presence of System-on-Chip 
devices provides a new method to implement the robot 
controller. The system-on-chip (SoC) devices combine 
high-performance CPUs and the processing power of 
programmable logic which delivers superior parallel-
processing, computing power, real-time performance 
and versatile connectivity [13]. Barrios-dV et. al. in [12] 
design and implement a real-time controller system for 
robot navigation using a Xilinx Zynq® System on Chip. 
The system consists of a decentralized neural inverse 
optimal controller, an inverse kinematic model, and a 
path-planning algorithm. The motor control is obtained 
based on a discrete-time recurrent high order neural 
network trained with an extended Kalman filter, and an 
inverse optimal controller designed without solving the 
Hamilton Jacobi Bellman equation. In [14], a compact 
CNN accelerator for the IoT endpoint System-on-Chip 
(SoC) is proposed to meet the needs of CNN 
computations. The results show that the compact 
accelerator proposed in this paper makes the CNN 
computational power of the SoC based on the Cortex-
M3 kernel two times higher than the quad-core Cortex-
A7 SoC and 67% of the computational power of eight-
core Cortex-A53 SoC.  

This paper develops a robot controller using a Zynq-
7000XC7Z020SoC device. The XC7Z020 devices are 
equipped with a dual-core ARM Cortex-A9 processor 
integrated with 28 nm Artix-7 based programmable 
logic for excellent performance-per-watt and maximum 
design flexibility. With the dual-core processor, the 
controller can implement two parallel tasks. The main 
core process algorithm calculations include kinematics 
algorithm and trajectory planning. The algorithms are 
executed when receiving commands from the teach 
pendant. Another core handles the communication and 
processing data from teach pendant which includes 
decoding robot language and G-code. After 
implementing the calculation, the controller needs to 
send signals to drivers to control servo motors via a 
motion control board. Because the motion control board 
synchronously controls six servo motors which requirea 
maximum frequency of up to 4Mpps, we utilize parallel 
computing to shorten the control cycle based on FPGA. 

The remainder of this paper is structured as follows: 
Section 2 introduces the trajectory planning and motion 
control algorithms to control the robot arm. Section 3 
describes hardware structure. Section 4 describes 
software design on ARM core and FPGA. Section 5 
shows the experimental results. Finally, Section 6 is 
conclusion. 

 
2. TRAJECTORY PLANNING AND MOTION 

CONTROL 
 
Trajectory planning creates reference signals for the 
robot controller so that the robot moves in the desired 
trajectory. Motion control uses interpolation functions 
and inverse kinematics to generate discrete data of joint 
angle values. The controller sends these values to the 
motion board to generate pulses for servo motor drivers. 

The driver ensures that the motor turns properly at the 
reference value. 

Trajectory planning generates a time schedule for 
how to follow a path given constraints such as position, 
velocity, and acceleration. The trajectory planning can 
be conducted in the joint space or in the workspace. The 
trajectory can be defined by the initial point and final 
point of the path (point-to-point) or a finite sequence of 
points along the path. In this section, we just consider 
the point-to-point trajectory planning problem. 

 
2.1 Joint Space Trajectories Planning 

 
Planning trajectory in the joint space has many 
advantages such as less computation, easier to plan 
trajectories in real-time and no problem with 
singularities.The initial and final pose of the robot is 
usually given in the workspace, solving an inverse 
kinematic problem, we determine the initial and the 
final angles at each joint.The planning algorithm 
generates a function q(t) interpolating the given joint 
variables at each joint. In practice, a trapezoidal velocity 
profile is usually assigned (see Figure 1.a). The velocity 
graph consists of three phases namely constant 
acceleration, constant velocity and constant dece–le–
ration. Assume that the angle from the initial position to 
the final position, qf, the maximum speed ωmax and the 
constant acceleration/deceleration ω  are given in 
advance. We need to determine the acceleration/ 
decelerationtime tc, the time for the constant velocity 
phase , the total time T, and the function of q(t). 

 
a. trapezoidal profile                    b. triangular profile 

Figure 1. Velocity profile 

The velocity at the end of the acceleration phase is 
equal to the constant velocity, so: 

max
ct

ω
ω

= (  1) 

And the angle after the acceleration is: 

2
2 max1

2 2c cq t
ω

ω
ω

= =   (2) 

The area of trapezoid is equal to the total angle qf, so: 

( ) maxc v ft t qω+ =    (3) 
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Therefore, the time for the constant velocity phase is: 

max

max

f
v

q
t

ω
ω ω

= −    (4) 

If tv > 0 or 2
maxfq ω ω⋅ > , the velocity profile is a 

trapezoid, the total time is: 

max

max
2 f

c v
q

T t t
ω
ω ω

= + = +   (5) 

The trajectory is formed by a linear segment con–
nected by twoparabolic segments: 
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  (6) 

If tv < 0 or 2
maxfq ω ω⋅ < ,, the velocity profile is a 

triangle that only consists of acceleration and decele–
ration phase (see Figure 1.b). The trajectory is formed 
by twoparabolic segments, we have: 

21
2 2
f

c c
q

q tω= =    (7) 

Therefore, the acceleration/deceleration time and the 
total time are: 

f
c

q
t

ω
=    (8) 

2 2 f
c

q
T t

ω
= =    (9) 

The maximum velocity in this case is: 

maxc c ft qω ω ω ω= = ≤   (10) 

The function of angle in term of time t:  

( )
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  (11) 

We get six values of Ti for six joints but all joints 
must be stopped at the same time, so the maximum 
value of Ti is selected: 

( )
1,6

max i
i

T T
=

=    (12) 

Then, the velocity ωmax at each joint is recalculated 
by solving equation (5): 

( )2
max

4

2
fT T qω ω ω

ω
− −

=   (13) 

If ( )2 4 0fT qω − <  or 2 /fT q ω< , the accelera–

tion is recalculatedfrom equation (9) and the triangular 
profile is used: 

2

4 fq

T
ω =    (14) 

2.2 Task Space Trajectories Planning 
 
Joint space trajectories are usually used in pick and 
place applications that do not care about the end-effect 
or trajectory. But in many applications, such as welding, 
cutting, etc., it is requiredto control the robot motion to 
follow a specified path in the workspace. So, trajectory 
planning also needs to be executed directly in the 
workspace. In the task space trajectories, the position 
and orientation of the robot’s end-effector are inter–
polated over time and transformed to the values of the 
joint angles bysolving the inverse kinematics. So, it 
requires a large amount of computation. 

The trajectories are usually formed by linear and 
circular paths. Consider the linear trajectory between the 
initial position pi and final position pf. Perform thelinear 
interpolation: 

( ) ( )( )i f ip t p s t p p= −   (15) 

where s is a scalar, [ ]0,1s∈ . Usually, the trajectory 
starts and ends withzero speed, so the trapezoidal profile 
is used to defined s(t): 
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  (16) 

where ( )max 1/ cs T t= −  is the maximum value of ( )s t . 
The values of tc and T are calculated from acceleration am 
and velocity vm that are given in advance (similar as 
equation 1 and equation 5): 

m m c

m

m m

v a t
a lT
v v

=

= +
   (17) 

where  is the length of the line segment. 
In the case of the circular trajectory with radius r, 

center C and orientation matrix R, the coordinate of a 
point on the circle is: 

( )
( )( )
( )( )

cos /

sin /

0

r s t r

P t c R r s t r

⎡ ⎤
⎢ ⎥

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (18) 

where s(t) is the arc length. The value of n(t) = s(t)/ris 
also computed as in the linear interpolation. 
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When robot movement, the orientation of the end-
effector is also changed.The orientation of the end-
effector is represented by the rotation matrix. Denote 
the rotation matrix at the initial position is R(t=0) = Ri 
and at the final position is R(t=T) = Rf. To perform the 
orientation planning, define the matrix Rf

i that trans–
forms the initial orientation to the final orientation. We 
have the relationship Rf = RiRf

i or: 

11 12 13

21 22 23

31 32 33

f T
i fi

r r r
R R R r r r

r r r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (19) 

Calculate the angle-axis parameter uθ from the rota–
tion matrix Rf

i: 
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⎝ ⎠

−⎡ ⎤
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  (20) 

Choose the angle α(t) so that α(t=0) = 0, α(t=T) = 
(and use a trapezoidal profile) to calculate the matrix: 

2
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  (21) 

with cα = cosα, sα = sinα, a = 1 – cα (21) 

Then, calculate the orientation matrix of the end-
effector: 

( ) i tR t R R=   (22) 

2.3 Pulse train generation 
 

Combining the trajectory planning and inverse kine–
matics, the joint angles at each joint can be generated 
over time. The motion control system needs to control the 
servo motors to reach these values. A servo motor is 
controlled by sending pulses to the motor driver. One 
pulse makes the motor rotate one small constant angle 
called resolution. The pulses are generated every 
sampling cycle T. Assuming q(t) is the joint angle at the 
time t and q(t+T) is the joint angle at the next period. The 
number of pulses sent to the controller is determined: 

( ) ( )
( ) ( ) ( ) ( )

0 ,

,

if q t T q t resolution

n q t T q t
if q t T q t resolution

resolution

⎧ + − <
⎪⎪= ⎨ + −⎡ ⎤

+ − ≥⎪⎢ ⎥
⎪⎣ ⎦⎩

 (23) 

The number of pulses is sent to the motion controller 
and the motion controller ensures to generate pulses at 
the same time, so six servo motors will work synch–
ronously. When pulses are generated independently on 
the motion controller, the pulse frequency can be up to 
several MHz so the motor can turn at high resolution 
and leads to many benefits such as: higher efficiency, 

less heat, increased stability, better speed control, higher 
torque to inertia ratio possibilities. 

 
3. HARDWARE DESIGN 

 
The integration of two ARM cores and FPGA on a 
single device helps to simplify the hardware structure. 
This research uses the MicroZed board as a central 
processor board. MicroZed contains two I/O headers 
that provide the connection to two I/O banks on the 
programmable logic (PL) side of the Zynq®-7000 All 
Programmable SoC device. An external board is desi–
gned to connect MicroZed board with servo driver thro–
ugh these I/O headers. In addition, the external board is 
also responsible for converting 2.5V signalson the 
MicroZed board to 5V signalson the servo driver and 
vice versa. The hardware design is shown in Figure 2. 

Unlike traditional robot controllers, the main cont–
roller and motion controller are distinguished, our 
controller is designed on a single board. So, the size of 
the controller is very compact and the communication is 
also simple. Although integrated into a single board, the 
functions of each part are still the same as the previous 
controllers. The main core ARM is mainly responsible 
for algorithm calculations, trajectory planning, commu–
nication with teach pendant and other devices, control–
ling FPGA. FPGA is used to control the servo motor 
and read the feedback signals from the encoder. More–
over, FPGA provides reprogrammable IO and hardware 
reconfiguration capability, so we can expand IO pins to 
control the end-effector tools and create more hardware 
for communication standards. The main controller will 
manage this IO pin function and create software to 
control communications.   

 
Figure 2. Hardware design 

Another advantage of the Zynq All Programmable 
SoC device is communication between ARM core and 
FPGA. Data is communicated via the AXI bus inter–
connect. Advanced Extensible Interface, or AXI, is part 
of ARM’s AMBA specifications. The AXI is a point-to-
point interconnect that is designed for high-perfor–
mance, high-speed microcontroller systems. The AXI 
protocol is based on a point-to-point interconnect to 
avoid bus sharing and therefore allow higher bandwidth 
and lower latency. The Xilinx AXI Interconnect 
contains AXI-compliant master and slave interfacesand 
can be used to route transactions between one or more 
AXI masters and slaves. In our system, the ARM core is 
the master, slaves are modules designed on the FPGA 
side, which means one master interfaces with many 
slaves. Each slave device must have a unique address. 
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When the ARM chip writes data to FPGA, it sends 
address and control signals to slaves. The control signal 
can be ‘read’ or ‘write’. After that, the master sendsthe 
channel address to choose which channel will be read or 
write. Each channel is a 32-bit register. If the control 
signal is ‘read’, the slave will send data to the master, 
otherwise if the control signal is ‘write’, the master will 
send data to the slave. 

 
4. SOFTWARE DESIGN 

 
4.1 FPGA Design 

 
To accelerate the creation of highly integrated and complex 
designs in programmable devices, we use intelligent IP 
integration delivered by the Vivado Design Suite software. 
An IP (intellectual property) core is a block of logic or data 
that is used in making anFPGA or application-specific 
integrated circuit (ASIC) for a product. Figure 3 shows the 
diagram designed using IP blocks, in which some blocks 
are pre-defined in the software, the rest are user-defined 
blocks. The user-defined blocks are programmed by 
VHDL language. The functions of the IP blocks are as 
follows: 

• ZYNQ7 Processing System IP: the software 
interface around the Zynq-7000 Processing 
System. 

• AXI Interconnect IP: connects one or more AXI 
memory-mapped masterdevices to one or more 
memory-mapped slave devices 

• AXI Timer IP: create a trigger signal to synch–
ronize data processing and communication 
between ARM processor core and FPGA. The 
trigger signal is created after every 50us that is 
configured by the software.  

• AXI UART16550 IP: provide the controller 
interface for asynchronous serial data transfer. 
An interrupt signal at the ip2intc_irpt pin is 
created after receiving enough 8 bytes of data.  

• Pulse_train_v1.1 IP (user define IP): includes six 
pulse generator modules that generate the pulse 
signals for six servo motors. All the pulse 
generator modules are triggered by the trigger 
signal from the AXI timer so that they can start 
to generate pulses at the same time.  

• switch_v1.0 and encoder_v1.1 IP (user define 
IP): reads signal from encoder. Encoder IP only 
reads one encoder once, so switch IP is designed 
to choose the encoder.  

The encoder IP consists of Debounce Circuit and 
Decoder Circuit as shown in Figure 4 and Figure 5. The 
debounce circuit is used to reduce noise when the signal 
level changes.FF1 and FF2 always store the last two 
logic levels of the encoder signal.If the signal’slevel 
changes, the values of FF1and FF2 are differentin a 
clock cycle, the output of the XOR logic gate is HIGH 
and reset the counter. If the signal’s level is unchanging, 
the output of the XOR logic gate is LOW and the 
counter begins to count. If the signal’s logic level is 
stable, the counter continues to increment until it 
reaches the debounce_time value. The FF3 is enabled 
and the stable value is clocked through to the output. 
The counter disables itself until there is another change 
on one of the inputs.  

Based on the operation of quadrature encoders [16], 
Table 1 lists the possible a and b input transitions, along 
with the values of direction and position. As seen in the 
truth table, the direction is determined by: 

Direction = a_new XOR b_prev  

 
Figure 3. Block IP design 
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Figure 4. Synchronization and Debounce Circuit 

 
Figure 5. Decoder Circuit 

Table 1: Truth Table 

Previous Inputs New Inputs Results 
a_prev b_prev a_new b_new Direction Position 

0 0 1 0 1 increase 
1 0 1 1 1 increase 
1 1 0 1 1 increase 
0 1 0 0 1 increase 
0 0 0 1 0 decrease 
0 1 1 1 0 decrease 
1 1 1 0 0 decrease 
1 0 0 0 0 decrease 
 
The value of the counter only changes (increase or 

decrease) when the debounce time is met (stable signal) 
and has a rising edge or a falling edge of the encoder pulse. 
The signal edge is detected by using an XOR logic gate. 

The algorithm to generate the pulse signal for servo 
motors in the Pulse_train IP is illustrated in Figure 6. The 
value of pulse width is sent from the ARM processor 
through AXI interconnect. The direction of rotation 
depends on the sign of the pulse width and is outputted to 
servo_dir pins.  The pulse signal is generated on servo_i 
pins. S_AXI_ACLK is a synchronous signal for AXI 
communication and it is used to change the value of the 
“count” variable. The frequency of S_AXI_ACLK is set to 
50 MHz. 

 
4.2 ARM Software Design 

 
The software will be divided into several smaller tasks. 
The tasks are performed depending on the command 
received from a teach pendant. After the ARM processor 
core starts, it conducts hardware initialization such as 
UART, Timer, GPIO and so on. Then, it will wait for the 

teach pendant commands to perform the tasks. Tasks can 
be online or offline.  

 
Figure 6. Pulse generation algorithm 
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The online task means that after receiving a teach 
pendant command, the controller will immediately 
execute this command. Then, it waits for the next com–
mand. The online tasks include: set coordinate system, 
change speed, jogging commands, interpolation com–
mands, … 

In the offline mode, the robot will receive a program 
that is written in the robot language, save the program in 
the memory. Then, the controller will encode and execute 
each command in the program. While implementing the 
program, except for an emergency stop command, all 
commands from the teach pendant will not be executed. 
Because we use the UART interrupt, the controller always 
receives data from the teach pendant, but when a program 
is running, only the emergency stop command is executed. 

 
5. EXPERIMENT RESULTS 

 
Our controller is used to control a Six-DOF robot arm 
which is shown in Figure 7. The controller receives 
commands from a teach pendant that is designed on a 
Samsung tablet (Figure 8). The robot canbe controlled 
to perform tasks such as pick and place, laser cutting, 
point welding, linear welding…  

 
Figure 7. Six DOF robot arm 

 
Figure 8. Teach pendant interface 

Figure 9 shows the results when applying the 
trapezoidal velocity profiles to create the angled command 
at each joint. All six joints are started and finished at the 
same time with a total time of 0.87s. The command angles 
of joint 4 and joint 5 aremuch smaller than the other joints, 
so they move with the triangle profiles with the maximum 
velocity of 40 deg/s.It should be noted that the motor is 

connected to the gearbox 50:1 ratio. The acceleration of 
joint 6 is set slightly larger than other joints.  

Figure 9shows the results of using the robot to draw 
some basic shapes.It can be seen that the robot can imp–
lement interpolation in the workspace and move smoothly. 

 

 
Figure 9. Joint angle trajectory planning 

 

 
Figure 10. Robot movement results 

 

6. CONCLUSION  
 

In this paper, the 6 DOF industrial robot arm controller 
is designed based on the Zynq All Programmable SoC 
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device. The main controller and motion controller are 
designed on a single board. So, the size of the controller 
is very compact, simple, low-cost and low power con–
sumption. 

The developed controller incorporates ARM's com–
putational power and parallel processing capabilities of the 
FPGA, easily communicating with teach pendant and other 
peripherals. The ARM microprocessor was incorporated to 
take advantage of the high-level programming for 
algorithm calculations include kinematics algorithm and 
trajectory planning, handling the communication and 
processing data from teach pendant which inc–ludes 
decoding robot language and G-code. The FPGA-based 
motor motion control has given synchronously control of 
six servo motors which require a maximum frequency of 
up to 4Mpps so the motor can turn at high resolution and 
resulting in higher efficiency, less heat, increased stability, 
better speed control, higher torque to inertia ratio 
possibilities. Moreover, FPGA provides reprogrammable 
IO and hardware reconfiguration capability, so we can 
expand IO pins to control the end-effector tools and create 
more hardware for communication standards. 

The experimental results show that the controller 
can control the robot to implement interpolation in both 
joint space and workspace leading to smooth move–
ments. The robot can be used to perform most of the 
common tasks in industrial production. 

In future work, AI algorithms will be integrated into 
our robot controller. AI algorithms are often used for 
robot motion planning in high-level control and 
artificial neural networks can be implemented with an 
FPGA in a System on Chip (SoC) device. The goal of 
an artificial neural network in the context of robot arm 
control is to train a deep policy neural network to create 
the optimal sequence of motion commands. The output 
of this policy network is torques or velocity commands 
for each actuator. 

APPENDIX 

ROBOT KINEMATICS 

 
Figure 11. Robot coordinates 

Transformation between two joints in a generic form 
is given by [15]: 

1
0
0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

c s c s s a c
s c s c s a s

T
s c d

θ θ α θ α θ
θ θ α θ α θ

α α
−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (24) 

Table 2: DH parameters 

Link ai (mm) αi (deg) di (mm) θi (deg) 
1 a1 90 d1 θ1
2 a2 0 0 θ2
3 a3 90 0 θ3
4 0 -90 d4 θ4
5 0 90 0 θ5
6 0 0 d6 θ6

 
Robot coordinates shown in Figure 11are used to 

establish DH parameters (Table  2). The DH parameters 
are substituted into equation (24) to find the transfor–
mation matrices, from 0

1T to 5
6T. The total trans–

formation matrix between the base of the robot and link 
6 is: 

( )
( )
( )
( )
( )

0 0 1 2 3 4 5
0 1 6 1 2 3 4 5 6

10 0 2 3 4 5
1 2 1 6 3 4 5 6

11 3 4 5
2 3 2 1 4 5 6

12 4 5
3 4 3 2 5 6

13 4 5
4 5 4 3 5 6

14 5
5 6 5 4 6

V U T T T T T T T

V U T T T T T T T

V U T V T T T T

V U T V T T T

V U T V T T

V U T V T

−

−

−

−

−

= = =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

  (26) 

where rij is the orientation elements and (qx,qy,qz) is the 
position elements. These elements are shown in the 
following equations:  

( ) ( )
( ) ( )

( )
( ) ( )
( )

11 6 1 4 1 4 23 6 1 5 23 5 1 4 1 4 23

12 6 1 4 1 4 23 6 1 5 23 5 1 4 1 4 23

13 1 5 23 5 1 4 1 4 23

21 6 1 5 23 5 1 4 1 4 23 6 1 4 1 4 23

22 6 1 5 23 5 1 4 1 4 23

r s s c c s c c c s s c s s c c s

r c s c s s c s c s s c s s c c s

r c c s s s s c c c

r c s s s c c s s s c s c c s s c

r s s s s c c s s s c

⎡ ⎤= − − − +⎣ ⎦
⎡ ⎤= − + − +⎣ ⎦

= + +

⎡ ⎤= − + + − +⎣ ⎦
⎡ ⎤= + +⎣ ⎦ ( )

( )
( )
( )

6 1 4 1 4 23

23 1 5 23 5 1 4 1 4 23

31 6 23 5 23 4 5 23 4 6

32 6 23 5 23 4 5 23 4 6

33 23 4 5 23 5

6 13

6 23

6 33

4 1 23 3 1 23 2 1 2 1 1

4 1 23 3 1 23 2 1

x x

y y

z z

x

y

c c c s s c

r s c s s c s s s c

r c c s s c c s s s

r s c s s c c s s s
r s c s c c
q p d r
q p d r

q p d r
p d c s a c c a c c a c
p d s s a s c a s c

− +

= − −

= + −

= − + −

= −

= +

= +

= +

= + + +

= + + 2 1 1

4 23 3 23 2 2 1z

a s

p d c a s a s d

+

= − + + +
(27) 
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with si = sinθ, ci = cosθi 

cij = cos(θi+θj), sij = sin(θi+θj) 

The above equations are called forward kinematic 
equations that describe the relationship between 
theindividual joints of the robot manipulatorand the 
position and orientation of the end-effector. Contrarily, 
the inverse kinematic problemtransformsthepositionand  
orientationof theend-effector in the Cartesian space to 
the joint space. 

To find the inverse kinematics solution, denote: 

( )
( )
( )
( )
( )

0 0 1 2 3 4 5
0 1 6 1 2 3 4 5 6

10 0 2 3 4 5
1 2 1 6 3 4 5 6

11 3 4 5
2 3 2 1 4 5 6

12 4 5
3 4 3 2 5 6

13 4 5
4 5 4 3 5 6

14 5
5 6 5 4 6

V U T T T T T T T

V U T T T T T T T

V U T V T T T T

V U T V T T T

V U T V T T

V U T V T

−

−

−

−

−

= = =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

= = ⋅ =

  (28) 

The multiplications are carried out and yield the 
results as follows: 

1 01 1 02 1

03 1
1

1 01 1 02

c V s V a M
V d M

V
s V c V

M

+ −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

  (29) 

2 11 2 12 2

2 11 2 12
2

13

c V s V a M
s V c V

V
V
M

+ −⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (30) 

( )23 11 2 12 2 3 3

13
3

23 11 23 12 2 3

c V s V a c a M
V

V
s V c V a s M

M

⎡ ⎤+ − +
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

  (31) 

4 31 4 32

33 4
4

4 31 4 32

c V s V
V d M

V
s V c V

M

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥+
⎢ ⎥
⎣ ⎦

   (32) 

55 41 5 42

43
5

5 41 5 42

c V s V
V

V
s V c V

M

+⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

   (33) 

5 6 5 6 5

5 6 5 6 5
5

6 6

0
0

0 0
0 0 0 1

c c c c s
s c s c c

U
s c

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (34) 

4 511 4 6 4 512 4 6 4 5

4 511 4 6 4 512 4 6 4 5
4

521 6

0
0

0 0
0 0 0 1

c U s s c U s c c s
c U c s c U c c s c

U
U c

− −⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (35) 

4 3 3 3

4 3 3 3
3 4 0

1

j

d s a c
d c a s

U

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (36) 

4 3 3 3

4 3 3 3
3 4 0

1

j

d s a c
d c a s

U

+⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (37) 

1 214 1 1

1 214 1 1
1 4 0

1

j

c U a c
s U a s

U

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (38) 

where Vij is the jth row of matrix Vi, Uijk is the element 
at the jth row and kth column of matrix Ui, M = [0 0 0 
1]. The joint angles θi are solved as follows: 

From two equations V014 = U214 and V024 = U124, 
solve θ1: 

( )1 tan 2 ,y xa p pθ =   (39) 

Substituting θ1 into equation (29) to compute the 
matrix V1. From two equations V114 = U214 and V114 = 
U214, we can solve θ1: 

( )6 431 5 411 5 421tan 2 ,a V c V s Vθ = +   (40) 

where: 

2 2 2 2 2
2 4 3 114 124

2 2
2 114 1242

c
a d a V V

n
a V V

− − + +
=

+
  (41) 

Substituting θ2 into equation (30) to compute the 
matrix V2.From two equations V214 = U314 and V114 = 
U214, solve θ2: 

( ) ( )3 214 224 3 4tan 2 , a tan 2 ,a V V a dθ = − −   (42) 

From two equations V313 = U413 and V323 = U423, we 
have: 

313 4 5 323 4 5,V c s V s s= =   (43) 

If  ( )1
5 4 323 313sin 0 tan /V Vθ θ −≠ → =  

From two equations V413 = U513  and V423 = U523, 
solve θ5: 

( )5 4 313 4 323 333tan 2 ,a c V s V Vθ = +   (44) 

Finally, from two equations V511 = U611 and V521 = 
U621, solve θ6: 

( )6 431 5 411 5 421tan 2 ,a V c V s Vθ = +   (45) 
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КОНТРОЛЕР РУКЕ ИНДУСТРИЈСКОГ 
РОБОТА БАЗИРАН НА ПРОГРАМАБИЛНОМ 

SOC УРЕЂАЈУ 
 

В.Д. Конг 
 

FPGA и SOC уређаји имају широку употребу због 
своје флексибилности за примену у реалном 
времену, повећане снаге процесора као и брзине 
обраде информација у реалном времену. 
Најзначајнија примена базирана на FPGA/SOC 
уређајима се односи на обраду сигнала/слике, IoT 
технологије, AI, апликације енергетског система, 
аутоматско управљање и индустријску примену. 
Развијен је контролер роботске руке базиран на 
програмабилном SOC уређају који представља спој 
веће перформансе и флексибилности процесора и 
процесорске снаге FPGA. Процесор се састоји од 
двојезгреног АRM процесора који врши 
алгоритамска срачунавања, планирање кретања, 
управља комуницирањем и манипулише подацима. 
FPGA се претежно користи за генерисање сигнала за 
управљање серво системом и читање повратног 
сигнала са енкодера. Подаци са ARM процесора се 
преносе на програмабилну логичку страну преко 
AXI протокола. Овом комбинацијм се обавља боља 
паралелна обрада и брже срачунавање, она има боље 
перформансе и разноврсност конективности. Када је 
цео контролер на једном чипу могуће је дизајнирати 
једноставнији, поузданији и јефтинији хардвер.  

 


