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How Environment Dynamics Affects 
Production Scheduling: Requirements 
for Development of CPPS Models 
 
Production scheduling can be affected by many disturbances in the 
manufacturing system, and consequently, the feasible schedules previously 
defined became obsolete. Emerging of new technologies associated with 
Industry 4.0, such as Cyber-Physical Production Systems, as a paradigm 
of implementation of control and support in decision making, should 
embed the capacity to simulate different environment scenarios based on 
the data collected by the manufacturing systems. This paper presents the 
evaluation of environment dynamics effect on production scheduling, 
considering three scheduling models and three environment scenarios, 
through a case study. Results show that environment dynamics affect 
production schedules, and a very strong or strong positive correlation 
between environment dynamics scenarios and total completion time with 
delay, over three scheduling paradigms. Based on these results, the 
requirement for mandatory inclusion of a module for different environment 
dynamics scenarios generation and the corresponded simulations, of a 
Cyber-Physical Production Systems architecture, is confirmed. 
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1. INTRODUCTION 
 
The fourth Industrial Revolution, named Industry 4.0, 
and the associated development of advanced infor–
mation and communication technologies (ICT), chal–
lenged the traditional approaches in manufacturing. 

Numerous algorithms were developed to predict, for 
example, maintenance actions or production scheduling, 
considering the production dynamics. Cyber-Physical 
Production Systems (CPPS) were developed as a 
paradigm of implementation of control and support in 
decision making. Through historical data, the CPPS 
enables predictions for what might happen in the future. 
However, uncertainty in some environments could be so 
volatile, that it can influence the forecasts based on 
historical data. 

It means that different forecasts could be made on 
the same historical data. In other words, different “fu–
tures” could be imagined, based on the same historical 
data. These different “futures”, or different forecasts, 
could be called “scenarios” (a scenario represents “a 
synopsis of a possible course of action or events” [1] or 
“a postulated sequence of possible events” [2]). 

The main motivation for this paper is to answer the 
question: if several scenarios of environmental dyna–
mics are investigated, what might happen to the perfor–
mance of the operation schedules in a manufacturing 
system? How different scenarios of the environment 

dynamics will affect the operation schedules?. (Note: 
This is different from contribution to the prediction 
modelling based on historical data, and/or considering 
different models to generate forecasts, which is the 
scientific issue per se.) 

This paper contributes to the answer to the proposed 
questions with the following aims:  

(1) to evaluate how the environment dynamics affect 
production schedules, and  

(2) to contribute to the future CPPS models deve–
lopments, in the context of requirements for consi–de–
ration of the environment dynamics, e.g. by considering 
different scenarios. 

The paper is further organized as follows.  
Section 2 presents the related work on environment 

dynamics in production scheduling, and CPPS. In 
Section 3 a framework for environment dynamics sce–
narios use in CPPS is presented. Section 4 presents a 
case study for the evaluation of how environment 
dynamics affects production scheduling. Further, in 
Section 5 some requirements for the development of 
CPPS models are presented. Section 6 presents the main 
conclusions of this paper. 

 
2. RELATED WORK 
 
Environment dynamics generates disturbances that can 
control and affect the production scheduling. Distur–
bances are unplanned events that could affect the pro–
duction scheduling, such as machine configurations, 
new-products inclusion, market demand, equipment 
failures [3], among others. 

Some authors had addressed disturbances in produc–
tion scheduling research, through reconfiguration or re–
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scheduling. The term of rescheduling could be used in 
reactive scheduling and/or dynamic scheduling [4,5]. In 
this paper, the terms reconfiguration or rescheduling 
will be used for dynamic scheduling. 

Dynamic scheduling is considered when the list of 
jobs arrival is partially or totally unknown, at the initial 
scheduling planning [6], representing disturbances in 
the scheduling plan, implying corresponding adaptations 
or reconfiguration of the schedules. To adapt to pro–
duction changes, Antonelli and Bruno [7] presented a 
procedure for tasks (of a job) dynamic assignment, in 
which real time control for the task dynamic reassig–
nment is included. 

The real time control for dealing with the distur–
bances leads to the generation of Big Data, as a result of 
continuous real time data collection of all changes in the 
manufacturing process, captured by sensors, usually 
stored in large databases. 

In the scenario of Industry 4.0, these data are 
supposed to be processed by a CPPS. In the last years, 
the research on CPPS starts to grow up in the 
manufacturing area. Publications under the term 
"Cyber-physical Production Systems" on the Web of 
Science™, shows the growth of this research, especially 
in the areas of manufacturing and scheduling, e.g see [8] 
for a review of scheduling in CPPS. 

One of the main features of CPPS is the capability of 
processing Big Data [9] to deal in (near) real time with 
the functional requirements, including control under the 
conditions of environment dynamics, which implies the 
reconfiguration of the scheduling decisions. 

Considering dynamic scheduling in CPPS, Nikolakis 
et al. [10] discussed an end-to-end framework for a 
small scale CPPS considering the dynamic planning and 
scheduling, to adapt the production schedule to the 
disturbances of the manufacturing system, such as 
resources availability and failures. Another disturbance 
that is considered in scheduling research is the para–
meter of new job arrivals, addressed in real time pro–
duction scheduling by [11]. 

Zhu and Zhang [12] proposed a CPPS framework of 
a smart monitoring system considering dynamics in the 
physical part of the CPPS, but the environment dyna–
mics is not considered for the process of simulation, and 
decision making, within the cyber part of the CPPS. 

Meissner and Aurich [13] analysed the impact of 
CPPS in production planning and scheduling, and they 
consider dynamics as the capacity of alternative process 
plan to adapt the scheduling, due to for example a 
machine breakdown. 

Jiang et al. [14] states that it is difficult to apply the 
traditional scheduling policies to the CPPS due to the 
characteristics of CPPS, such as intelligence and dist–
ribution. 

To deal with the characteristics of CPPS, Machine 
Learning has been explored to create new solutions for 
scheduling under CPPS, based on predictions or fore–
casts from previous schedules. The scheduling predic–
tions/forecasts generated by the combination of big data 
and machine learning techniques drive smart planning 
decisions in manufacturing [15]. Also, Machine Lear–
ning in CPPS can be used to “reconfigure the 

manufacturing system without great effort or physically 
changing the system configuration” [16]. 

Recently, studies related to prediction in scheduling 
have emerged. For example, Morariu and Borangiu [17] 
proposed a time series forecasting model for dynamics 
scheduling using a robotic resource that learned and 
detected patterns to predict the next pattern. 

The use of prediction in scheduling is based on time-
series forecasting, considering the pattern of historical 
data from which forecasted data will be generated. For 
example, if the historic data pattern shows some trend in 
data it is possible to predict that in the future horizon 
(scheduling horizon) the data will follow the trend 
pattern. The prediction is often used in nature pheno–
mena, such as wind power density studies [18]. 

However, in the literature referred above, dynamic 
scheduling based on different scenarios are not consi–
dered. In the literature referred, forecasts are usually 
generated from time series, based on the history, i.e., 
following the historical pattern. In turbulent and un–
certain environments, in addition to forecasts generated 
based on history, other scenarios that may not follow the 
historical pattern should be considered. 

In this sense, consideration of different “future” sce–
narios and their impact on operations schedules in a 
manufacturing system, makes the paper’s original 
contribution. 
 
3. A FRAMEWORK FOR ENVIRONMENT DYNA–

MICS SCENARIOS USE IN CPPS 
 
Environment modelling is a common issue of any 
simulation. 

Concerning non-linear dynamics, it was used for 
modelling manufacturing systems behaviour and simu–
lations, e.g. [19-21]. Concerning in particular the CPPS, 
dynamic environment modelling is addressed in [22]. 
Dynamic environment is modelled as a set of beliefs 
about the state of its environment from sensor infor–
mation using a trust model, whose role is to deal with 
the uncertainty in the input data that consists of sensor 
information and predictions about the state of the envi–
ronment from other agents, participants in the CPPS. 

The environment model in fact represents a context 
in which a system could be situated [23]. 

In manufacturing, CPPS embeds simulation to sup–
port learning and subsequent decision making [24]. [24] 
proposed an original generic architecture for a CPPS 
from which other CPPS models can be derived, such as: 

• Traditional Production System (PS) or Manu–
facturing System (MS); 

• “Classical” CPPS (CPPS0) (without learning); 
• CPPS with single loop learning (CPPS1); 
• CPPS with double loop learning (CPPS2). 

In this paper, the “Classical” CPPS, that is CPPS0 is 
considered (Figure 1). The “Classical” CPPS does not 
consider Machine Learning, as the Machine Learning 
functionality is not considered in this paper. 

Considering the environment dynamics as a 
principal topic in this paper, the special attention is 
given to the CPPS module “Environment Model 
Generator”, presented in Figure 1 (detail B). 
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Figure 1. CPPS0 logical architecture adapted from [24] 

The “Environment Model Generator” could be 
named Dynamic Environment Model Generator Module 
(DEMGM). The DEMGM, within the CPPS, is a 
mechanism (algorithm) for mapping input time series 
(data streams from the manufacturing system sensors 
/status – real system parameters) to the output forecasts 
time series (forecasted, or projected) for the system 
parameter k, i.e.: 

0 1:{ } { , ,..., ,..., }k i HDEMGM SD T T T T→  (1) 

where, 
SD are sensorial data for parameter k (detail A at 

Figure 1) (from one sensor), 
H is the horizon of forecasting, i.e. H time units 

ahead from the time moment which is initial moment 
for forecasting, and 

Ti is the time series for the time interval [i; H], 
where i means that the interval [i; H] starts at the time 
moment i, which is i time units ahead from the initial 
moment of the forecasting. (detail C at Figure 1). 

The DEMGM differs from traditional approaches. 
Traditionally, the data collected from the manufacturing 
process is used to predict the data for future decision 
making, for one scenario. 

The environment dynamics in CPPS, considering 
DEMGM for one scenario, is modelled as follows. 

At time unit i is generated a forecast for a 
performance measure (parameter) defined, e.g. 
‘processing time’, till the horizon of forecasting, H time 
units. At the time unit i+1, due to the dynamic nature of 
the environment, the previous forecast may be totally 
invalid, and a new forecast is to be made till the horizon 
of forecasting H. 

In equation (1), the term 0 1{ , ,..., ,..., }i HT T T T  means 
a set of time series in which time serie T0 is the time 
series starting in t0, T1 is the time series starting in t1, T2 
is the time series starting in t2, etc. up to the tH, where 
the value of H is chosen by the planner. 

The difference between the traditional approach and 
the environment dynamics presented in this paper is that 
at the moment i+1 the previous forecast becomes 
invalid and it should not be considered anymore. The 
process will be the same for the next i time units ahead 
from the initial moment of the forecasting.  

This process will continue to repeat, meaning that at 
each reconfiguration moment a new forecast will start 
until the end of the forecasting horizon, or in other 
words, till the end of the planning horizon. 

DEMGM for one scenario consists of 4 sub-modules 
(Figure 2) with the functionalities: 

1) time series data transformation,  
2) time series parameters extraction,  
3) forecast time series parameters decision/design,  
4) forecast (forecasted/projected data) time series 

generator in accordance with the parameters 
decided/designed (projected). 

 
Figure 2. Logical Architecture of Dynamic Environment 
Model Generator Module (DEMGM). 

 
Figure 3. DEMGM input time series, transformed data 
series and dynamic environment model output for one 
parameter. 

Figure 3 shows graphically INPUT time series (data 
streams from the real system sensors), transformed time 
series data in a format more adequate for the further 
process, and generated OUTPUT forecasts time series 
(forecasted, or projected), i.e. the generated dynamic 
environment model (for one parameter only). 

Figures 2 and 3 refer only to one scenario, based on 
historical data, which is the traditional approach. As can 
be seen in Figure 1 (detail C), different scenarios must 
be generated through DEMGM that will serve as input 
for the simulation (detail D at Figure 1). 

Thus, equation (1) only refers to one scenario, 
considering only one time series for the time interval. 

As observed in Figure 1 (detail C), the DEMGM 
should generate time series for different scenarios. 
Thus, based on the input of sensorial data for a 
parameter k, DEMGM outputs forecasts time series 
generated for all scenarios [1, S]: 
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where, 
Ti

s is the time series for the scenario s (detail D at 
Figure 1). Number of scenarios is 1 to S. 

The dynamic environment model can considerer the 
traditional time-series parameters, used in forecasting 
generation, such as variation of the amplitude, trends, 
seasonality, control limits (upper and lower), the 
probability distribution (uniform, normal, binomial, 
exponential). 

The dynamic environment model also needs to 
consider variations of the nominal data to reflect the 
environment dynamics, as lower variations of data from 
the nominal data mean lower environment dynamics 
and higher variations of data mean higher environment 
dynamics. The nominal data is considered as the 
technological constraints presented in the process plan 
for one product. 

 
4. ENVIRONMENT DYNAMICS EFFECT IN PRO–

DUCTION SCHEDULING 
 
4.1 Experimentation plan 
 
In this study a group of 15 machines was considered, on 
which operation 1 (OP1) can be processed in only one 
machine from the set of machines {Machine 1, Machine 
2, Machine 3}, and operation 2 (OP2) can be processed 
in only one machine from the set of machines {Machine 
4, … , Machine 15}. 

Only one parameter for the disturbance was 
considered: the availability of the machines. 

In this study, two different products, implying two 
different process plans (one process plan for each type 
of product) were considered, with their respective 
nominal technological processing time in units of time 
(Table 1). 

The number of jobs considered in this study were: 
10 jobs, 20 jobs, 40 jobs, and 100 jobs. 

Each job is composed of two operations. To each job 
it is associated the production of one piece or one 
product, following the description within one process 
plan, with the associated nominal values for the ope–
ration time duration (processing time) in each machine. 
One process plan can be applied to different jobs, but to 
each job corresponds only one process plan. 

Three environment scenarios were considered with 
different variations of amplitude (0%, 50% and 100%). 
In reality, and considering environment dynamics, these 
nominal values will be never realized; the operations are 
executed with different processing time than fore–
casted/projected. 

In this study, the processing time value along the 
time was generated randomly from the nominal process 
plan input data. Considering the processing time des–

cribed in the process plan, the data generated for the 
environment dynamics data is given in the following 
example: if the processing time is 4, the value generated 
belongs to the interval of [4,8] for 100% of dynamics 
variation of amplitude, or [4,6] for 50% of dynamics 
variation of amplitude. This is because the value of time 
cannot be less than the values presented in the process 
plan, because of technological constraints.  
Table 1. Nominal processing time per process plan 

  Nominal Processing Time 
  Process Plan 1 Process Plan 2 

Machine 1 4 5 
Machine 2 5 6 
Machine 3 

OP1 
6 7 

Machine 4 6 7 
Machine 5 5 7 
Machine 6 3 7 
Machine 7 1 3 
Machine 8 2 2 
Machine 9 5 4 
Machine 10 7 5 
Machine 11 4 2 
Machine 12 6 1 
Machine 13 7 1 
Machine 14 5 1 
Machine 15 

OP2 

7 2 
 

The environment dynamics scenarios were simulated 
over 3 scheduling models: 

• Scheduling Model 1: control and decision 
making under the fixed horizon with 
reconfigurations scheduling paradigm. 

• Scheduling Model 2: control and decision 
making under the rolling horizon scheduling 
paradigm. 

• Scheduling Model 3: control and decision 
making under the real time management 
scheduling paradigm. 

The first scheduling model, the fixed horizon with 
reconfigurations scheduling paradigm, considers the 
scheduling of all jobs (10, 20, 40, 100, for each case) 
among the resources (machines), till the completion 
time of all jobs scheduled. 

The second scheduling model, the rolling horizon 
scheduling paradigm, considers the scheduling of the 
jobs (10, 20, 40, 100, for each case) among the 
resources (machines), till the rolling horizon (planning 
horizon). In this case, some jobs are not scheduled 
during the rolling horizon. The remaining jobs could be 
scheduled in the next rolling horizon. 

The third scheduling model, the real time mana–
gement scheduling paradigm, considers the scheduling 
of the jobs (10, 20, 40, 100, for each case) among the 
resources (machines), that are able to be scheduled 
within the reconfiguration period. 

Note that in all three scheduling models presented 
the reconfiguration period is 1 unit of time. 

Additionally, it has been considered the cumulative 
delay, i.e. the delay “in the function of the executed 
planned schedule elapsed time” [25]. See more details 
on cumulative delay in [25]. 

In this study, schedule’s optimization is not the 
demonstration objective, as one of the paper’s 
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objectives is to evaluate how environment dynamics 
could affect production schedules. 

 
4.2 Simulations and results 
 
Simulations ran at the computer Intel® Core™ i7-7700 
CPU @ 3.60GHz, 32.0 Gb (RAM), with a simulator 
developed by the authors. 

The simulation results of the 3 scheduling models 
tested in 3 environment scenarios (environment vari–
ation of amplitude of the nominal values of 0%, 50%, 
and 100%) are graphically presented in Figure 4, Figure 
5, Figure 6, respectively. The same results are presented 
in Table 2 for better readability. 

Figure 7,  Figure 8, Figure 9, and Figure 10 show the 
simulation results obtained for the total completion time 
with delay, in function of the environment dynamics, for 
10, 20, 40 and 100 jobs scheduled, respectively. 
Table 2. Simulation results of the 3 scheduling models 
tested in 3 environment scenarios, i.e. over 3 environment 
models 

 
Nº of Jobs 
Concluded 

10 
Jobs 

20 
Jobs 

40 
Jobs 

100 
Jobs 

 
Scheduling 

Model 
Environment Scenario 1  

(variation 0%) 
Model 1 25.00 50.00 98.00 322.00 
Model 2 25.00 54.00 113.00 396.00 
Model 3 22.00 41.00 77.00 191.00 

 Environment Scenario 2  
(variation 50) 

Model 1 28.00 60.00 126.00 422.00 
Model 2 27.00 63.00 134.00 525.00 
Model 3 28.00 47.00 93.00 236.00 

 Environment Scenario 3  
(variation 100%) 

Model 1 37.00 67.00 161.00 564.00 
Model 2 43.00 73.00 178.00 653.00 

Total 
Completi
on Time 

with 
delay 

Model 3 27.00 53.00 105.00 270.00 

 
Figure 4. Simulation results of 3 Scheduling Models over 
the environment scenario 1 (variation of amplitude 0%) 

 
Figure 5. Simulation results of 3 Scheduling Models over 
the environment scenarios (variation of amplitude 50%) 

 
Figure 6. Simulation results of 3 Scheduling Models over 
the environment scenarios (variation of amplitude 100%) 

 
Figure 7. Effect of environment dynamics in total 
completion time over the 3 scheduling models for 10 jobs 
scheduled 

 
Figure 8. Effect of environment dynamics in total 
completion time over the 3 scheduling models for 20 jobs 
scheduled 

Results show that the environment dynamics, i.e. 
different environment scenarios, affect the production 
schedules, especially when additional jobs are 
introduced in the scheduling plan. 

The results for the scheduling model 1 (fixed 
horizon with reconfiguration scheduling paradigm) 
demonstrate that when it is considered the scheduling of 
100 jobs, the total completion time with delay increases 
approximately 75.16% when compared with the 
environment scenario equal to 0% (i.e. a stable scenario 
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with no changes in the nominal process plan) and 
compared with the environment scenario equal to 100% 
(i.e. a higher level of variation of the amplitude on the 
nominal process plan). Similarly to scheduling model 1, 
in scheduling model 2 (rolling horizon scheduling 
paradigm), the total completion time with delay 
increases approximately 64.90%. 

 
Figure 9. Effect of environment dynamics in total 
completion time over the 3 scheduling models for 40 jobs 
scheduled 

 
Figure 10. Effect of environment dynamics in total 
completion time over the 3 scheduling models for 100 jobs 
scheduled 

The scheduling model 3 (real time management 
scheduling paradigm) simulation results, considering the 
3 environment scenarios, shows less effect on 
production schedules, when compared with the other 
two scheduling models. 
 
4.3 Correlations between environment dynamics 

and total completion time with delay 
 
The results of the correlation analysis between 
environment dynamics scenarios and total completion 
time with delay, for scheduling of different number of 
jobs over different scheduling models are presented on 
Table 2. 

Analysing correlation between environment dyna–
mics and the total completion time with delay, the 
results of the effect of different environment scenarios 

in production schedules, over the 3 scheduling models, 
for 10, 20, 40, 100 jobs scheduled, shows a very strong 
or strong (in one case) positive correlation.  
Table 3. Correlation table 

Total Completion Time with 
Delay  Sched. 

Model 1 
Sched. 

Model 2 
Sched. 

Model 3 

10
 

Jo bs
 Environment 

scenarios 1 to 3 0.9608 0.9122 0.7777 

20
 

Jo bs
 Environment 

scenarios 1 to 3 0.9948 0.9995 1.0000 

40
 

Jo bs
 Environment 

scenarios 1 to 3 0.9979 0.9798 0.9966 

10 0 Jo bs

Environment 
scenarios 1 to 3 0.9950 0.9999 0.9968 

 
A strong positive correlation is obtained when the 

number of jobs scheduled is small (10 jobs), maybe due 
to the number of machines considered, were the second 
operation of each job can be processed, virtually, in 
parallel, i.e. creating a non-wait time between the 
operation 2 of the jobs. 
 
 
5. REQUIREMENTS FOR DEVELOPMENT OF CPPS 

MODELS 
 
CPPS integrates simulation and decision making to 
control and effectively change the performance of the 
manufacturing processes. Due to disturbances that can 
occur within the manufacturing system, such as, mac–
hine breakdowns, unplanned maintenance, the arrival of 
new and/or urgent jobs, new requests of the market, 
among others, the control should be more flexible to 
respond effectively to the environment dynamics. 

The results obtained in this paper leads to the need 
of consideration the environment dynamics as a 
requirement in future CPPS models developments, to 
deal with the disturbances by consideration of different 
scenarios. Some requirements for CPPS developments 
are presented in literature. Galaske and Anderl [26] 
established some requirements for design a resilient 
CPPS: robustness and adaptability, self-regulation and 
self-recovery, short response time, intelligent compo–
nent, autonomous decision, redundancy, dynamic dis–
ruption database, and escalation scenario. Other re–
quirements has been stated by Ribeiro [27], such as (1) 
the nature of the control path between system com–
ponents, (2) granularity of CPPS (a kind of meta-CPPS 
by our mean), (3) modularity, (4) functional or struc–
tural decomposition, and (4) Coupled or embedded 
design for management of CPPS. Monostori et al [28] 
presented also some requirements (expectations) for 
development of CPPS models, such as “robustness at 
every level, self-organization, self-maintenance, self-
repair, self-X, safety, remote diagnosis, real-time 
control, autonomous navigation, transparency, predic–
tability, efficiency, model correctness”. Antao et al [29] 
identified CPPS requirements: scalability, reliability, 
security & privacy, timing & determinism, safety, 
recovery, interoperability, reconfigurability. 

In literature, presented in this paper, the environment 
dynamics scenarios is not considered. Thus, this paper 
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contributes to the literature with the requirements for 
development of CPPS models: environment dynamics.  

Adding the environment dynamics, i.e. considering 
different “future” scenarios for simulation and further 
decision making, the “classical” CPPS (CPPS0), can 
implement full real time management to deal with the 
dynamic requirements over unexpected events. 

The implementation of continuous real time sensors 
data collection, and assurance of the Big Data collection 
and processing (as a result of the environment model) 
should be also considered. 

The above considerations justify the requirement 
that the DEMGM should be a mandatory module of a 
CPPS architecture. 

Other requirements for development of CPPS models 
could be: (1) implementation of analytical models of 
forecasted data based on historical data, (2) consideration 
of different scenarios in simulation, including different 
organisational forms of the manufacturing systems (e.g. 
large and complex networks), (3) embed machine 
learning for analysing and generating the environment 
model, especially for the CPPS1 and CPPS2, and (4) 
implementation of different management models, 
according to the organisational form of the enterprises. 

 
6. CONCLUSIONS 

 
Historical data are usually used to predict the manu–
facturing system’s behaviour. However, some unex–
pected disturbances can occur, forcing the recon–
figuration of the manufacturing system. In production 
scheduling, this change implies the generation of new 
feasible schedules, usually different from the forecasted 
schedule. 

An evaluation of how the environment dynamics 
affect the production schedules is presented, over three 
different scheduling paradigms: fixed horizon with 
reconfigurations, rolling horizon, and real time mana–
gement, for different environment scenarios. 

Results show the need to include the environment 
dynamics as a requirement for the development of CPPS 
models, i.e. the inclusion of the DEMGM module. In 
other words, it is necessary to have the capability to 
evaluate different scenarios, to quickly respond to dis–
turbances and changes. 

Future work should focus on the development of 
CPPS models with consideration of environment dyna–
mics, considering different parameters (machine break–
downs, new products arrival, …).  Also, future work 
should include large and complex production networks 
dynamics modelling, as an environment for production 
scheduling in CPPS. 
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КАКО ДИНАМИКА ПРОИЗВОДНОГ 
ОКРУЖЕЊА УТИЧЕ НА ПРОГРАМИРАЊА 

ПРОИЗВОДЊЕ: ЗАХТЕВИ ЗА РАЗВОЈ 
МОДЕЛА САЈБЕР-ФИЗИЧКИХ 

ПРОИЗВОДНИХ СИСТЕМА (СФПС) 
 

К. Алвеш, Г. Д. Путник, Л. Варела 
 

На програмиранје производње могу утицати многи 
поремећаји у производном систему, па су, после–
дично, претходно дефинисани проиѕводни програми 
застарели. Појава нових технологија повезаних са 
Индустријом 4.0, као што су Сајбер-Физички 
Производни Системи (СФПС), као парадигма имп–
лементације контроле и подршке у доношењу 
одлука, требало би да имају уграђене капацитете за 
симулацију различитих сценарија окружења на ос–
нову података које прикупљених од стране самих 
производних система. Овај рад представља оцену 
утицаја динамике производног окружења на програ–
мирање производње, узимајући у обзир три модела 
програмирања и три сценарија производног окру–
жења, кроз студију случаја. Резултати показују да 
динамика производног окружења утиче на програ–
мирање производње, и да постоји врло јака или јака 
позитивна корелација између сценарија динамике 
производног окружења и укупног завршног времена 
са кашњењем, преко три парадигме програмирања 
проиводње. На основу ових резултата потврђен је 
захтев за обавезним уграђивањем модула за генери–
сање различитих сценарија динамике производног 
окружења и одговарајуће симулације у архитектуре 
Сајбер-Физичких Производних Система. 

 


