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Function Approximation Technique 
(FAT)-Based Nonlinear Control 
Strategies for Smart Thin Plates with 
Cubic Nonlinearities 
 
The current work introduces three nonlinear control solutions for the 
regulation of a vibrating nonlinear plate considering model uncertainty. 
These solutions are feedback linearization control (FBL), virtual velocity 
error-based control (VVEC), and backstepping control (BSC). In the FBL 
control, a nonlinear control law is designed with linear closed-loop 
dynamics such that dynamic stability is ensured. Whereas, by the VVEC  
(or so-called passivity-based approach in the robotics community) the 
limitations of the feedback linearization are overcome. On the other side, 
the BSC selects virtual control variables with stabilized intermediate 
control laws based on Lyapunov theory. Systematic modeling for the target 
vibrating plate with piezo patches is described. In effect, considering the 
nonlinear influence makes the resulted mode shapes for the vibrating 
structure are highly coupled and careful control design is required. Using 
the Galerkin approach, the partial differential equation for the smart plate 
is transformed into definite ordinary differential equations; the multi-input 
multi-output model is established. The aforementioned control strategies 
are evaluated and investigated in detail. In essence, they are powerful 
tools for dealing with nonlinear dynamic systems, however, the VVEC 
could be considered superior in comparison with the FBL control and the 
BSC since the designed control structure does not include inertia inverse 
matrix and modal coordinate acceleration that could make computational 
problems. As a result, simulation experiments were focused on the VVEC 
strategy, and the latter was implemented on a simply supported thin plate 
structure with collocated piezo-patches. The results show the validity of the 
proposed control architecture. 
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1. INTRODUCTION  
 

Piezoelectric materials can transform electrical energy 
into mechanical energy or vice versa. Much attention is 
devoted to using them in vibration suppression of 
flexible structures such as strings, beams, plates, shells, 
etc. [1]. Integration of smart materials, e.g. piezoelectric 
patches, with flexible components (structures) makes 
them adaptively accommodate external disturbances and 
attenuate vibrational motions if exist. A suitable control 
law is always required to get perfect performance. 
Consequently, this paper is concerned with the function 
approximation technique (FAT)-based adaptive control 
approaches for vibration suppression of a piezo-
electrically actuated/sensed thin plate considering 
nonlinear effects. For modeling of transverse vibration 
of a plate structure, the following points should be 
noticed [2]: 

In a thick plate structure, both the shear deformation 

and bending deflection are considered. In a membrane 
structure, the thickness is thinner than a thin plate with a 
negligible bending stiffness while the bending loadings 
are resisted by the membrane action. The bending 
deflection is considered for a thin plate considering the 
effect of the axial stretching (loading) that complicates 
the dynamics and control tasks. The current work is 
interested in modeling and control of this category of 
plates. 

The key cause of structural nonlinearity comes from 
in-plane stretching of the flexible structure, however, 
the nonlinear behavior for thin structures could originate 
from nonlinear geometry, inelastic behavior of the 
structure, the nonlinear applied excitation loadings, etc. 
These structural phenomena cannot be sufficiently 
investigated by linear theory since the deflection of the 
target structure is large in comparison with the 
thickness. Moreover, considering the effect of such a 
large deflection on the response of the flexible structure 
is essential [3,4]. In effect, considering the nonlinear 
influence makes the resulted mode shapes for the 
vibrating structure is highly coupled and careful control 
design is required. Despite there being different types of 
nonlinearity sources, see e.g. [5,6], this study is focused 
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on the nonlinearity resulting from axial stretching of 
plates. Due to the accompanying complexity of the 
nonlinear equation of motion for the vibrating plates, a 
little work reported in the literature has been focused on 
the analytical derivation of the nonlinear dynamics for 
the plates and the finite element method FEM is the 
potential tool for modeling and analysis. . Plates and 
plate-like structures play important roles in 
miscellaneous application such as floor and foundation 
slabs, lock-gates, offshore structures, the wing structure 
of an aircraft, and aircraft fuselage, see e.g. [7-9]. The 
reader is referred to [10-14] for more details on 
applications and modeling of plate-like structures. To 
model a thin plate structure with piezo-patches, a partial 
differential equation PDF is obtained based on the 
Newton-Euler formulation. It is an infinite-dimensional 
system that has infinite degrees-of freedom DOFs. This 
complicates the control problem since it may 
theoretically require several distributed piezo-actuators 
to fully actuate and regulate the vibrating plate. 
However, the first mode shapes are considered since 
they are dominant in the low-frequency region such that 
high-frequency amplitudes would be neglected. 
Galerkin's approach is used to transform the infinite-
dimensional PDF of the target plate into finite N-
ordinary differential equations ODEs. The resulting 
nonlinear ODEs for the vibration plate are represented 
as a multi-input multi-output dynamic system. Cubic 
nonlinear stiffness terms are resulted due to the coupling 
of the bending-tension effect.  

In effect, two essential strategies that are possible to 
damp vibration of structures are passive vibration 
damping [15,16] and active vibration damping. This 
study is focused on adaptive vibration damping of plate-
type structures considering disturbance and complex 
nonlinearities. To suppress the nonlinear vibrations of 
adaptive plate-like structures, piezo-patches are bonded 
on the surface of the plates that can generate counteract 
moments and sense the resulting deflection for 
stabilization of the target vibrating plates. As a result, 
the objective of the controller is to regulate the 
vibrational motion of the target system under parameter 
uncertainty and disturbances, see e.g., [17-23]. 
However, if the dynamic system undergoes uncertain 
complex nonlinear terms, the linear control architectures 
e.g. PID family controllers are no longer useful and 
hence the best solution tools are nonlinear control 
strategies. In effect, there are two substantial techniques 
for dealing with the abovementioned problem: adaptive 
control and sliding mode control [24]. Adaptive control 
is a powerful tool to control dynamic systems with 
unknown constant parameters [25]. The Lyapunov 
theory is used as a basis for guaranteeing the stability of 
the proposed control law and the corresponding 
updating laws associated with unknown parameters. For 
unknown time-varying parameters, adaptive 
approximation control is used instead to comprise 
model-free techniques or so-called intelligent control 
[25-34]. On the other hand, robust control requires 
knowledge of limits of uncertainty. One of the well-
known robust techniques used is the sliding mode 
control SMC that uses a signum function associated 
with a suitable sliding surface. However, a signum-

based term can be easily integrated with adaptive 
control algorithms for compensating modeling error if 
exists.  

The current work introduces three nonlinear control 
solutions for the regulation of the vibrating nonlinear 
plate considering the model uncertainty. These solutions 
are feedback linearization control FBL, virtual velocity 
error-based control VVEC, and backstepping control 
BSC. These control algorithms are strong tools to 
control complex dynamic systems such as the miniature 
robot described in [35]. In FBL control, a nonlinear 
control law is designed with linear closed-loop 
dynamics such that dynamic stability is ensured [36,37]. 
Whereas, by the VVEC (or so-called passivity-based 
approach in the robotics community) the limitations of 
the feedback linearization are resolved [25,26]. On the 
other side, the BSC assumes that virtual control 
variables with stabilized intermediate control laws based 
on Lyapunov theory [24]. The above-mentioned control 
algorithms are reformulated based on FAT in 
connection with a robust sliding term for compensating 
modeling/approximation errors if exist. Systematic 
modeling for the target vibrating plate with piezo 
patches is described. In effect, considering the nonlinear 
influence makes the resulted mode shapes for the 
vibrating structure are highly coupled and careful 
control design is required. Using the Galerkin approach, 
the partial differential equation for the smart plate is 
transformed into definite ordinary differential equations; 
the multi-input multi-output model is established. The 
aforementioned control strategies are evaluated and 
investigated in detail. In essence, they are powerful 
tools for dealing with nonlinear dynamic systems, 
however, the VVEC could be considered superior in 
comparison with the FBL control and the BSC since the 
designed control structure does not include inertia 
inverse matrix and modal coordinate acceleration that 
could make computational problems. As a result, 
simulation experiments were focused on the VVEC 
strategy, and the latter was implemented on a simply 
supported thin plate structure with collocated piezo-
patches. The results show the validity of the proposed 
control architecture. The contributions of the current 
paper are: 

1. Considering the axial stretching in the plate model 
complicates the dynamic behavior and control task 
since coupled cubic nonlinearity terms occur. To 
our knowledge, this point has been a little 
considered in previous work. 

2. Introducing three powerful nonlinear control 
strategies and describing features and shortcomings 
of every technique in detail. 

3. Regressor-free techniques have been presented as a 
basis for control laws and the associated closed-loop 
dynamics. 
The remainder of the paper is organized as follows. 

Section 2 introduces the dynamic modeling of the smart 
thin plate while the nonlinear control structures are 
described in section 3. Section 4 introduces simulation 
results and discussions. Section 5 concludes. 

 
Remark 1. In effect, we avoid using the terminology 
‘’passivity-based control'' for the VVEC since the 
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passivity property may not hold for the current 
modeling of the vibrating plate. The idea of passivity-
based control is to exploit the skew-symmetric matrix 
property such that (M – 2C, where M is the inertia 
matrix and C is the damping matrix). Fortunately, the 
target plate has an inertia matrix with constant-value 
elements while the elements of the damping matrix are 
assumed to be positive (cij) and these ease the proof of 
the stability for the VVEC away from the passivity 
concept. In effect, the damping term will be integrated 
into the complex stiffness terms and hence it will not 
make an obstacle for proving the dynamic stability for 
the investigated system. 
 
2. DYNAMIC MODELLING OF THE SMART PLATE 

 
This section is focused on modeling a vibrating thin 
plate with surface bonded piezo patches. The effect of 
the piezo-patches can be added as moment loadings. To 
this end, consider a thin plate with m collocated piezo-
patches, see Fig. 1. The following assumptions are 
considered [1]: 

1. The plate is thin with a uniform thickness. 
2. The dynamics of the piezo-patches are neglected. 
3. The plate undergoes large deflection that imposes 

axial stretching on it.  
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where F is the Airy stress function, m is the mass of the 
plate, 4∇  is the biharmonic operator, h refers to the 
plate thickness, p is the external transverse load per unit 
area, (.)pM  is the piezo-actuator external moment per 
unit length, D is the flexural rigidity, E is Young's 
modulus, and v is the Poisson's ratio.  

Now it is necessary to transform the resulting PDFs 
of (1) into ODEs using the Galerkin technique, hence 
expanding w and F in terms of mode shape function and 
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By substituting (2) into (1), multiplying (1a) and (1b) by 
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where, 

∫∫ == ijijmnmnij mdxdymM ψψ  

(Orthogonality property) 

∫∫ =∇= ijijmnmnij kdxdyK ψψ4  

(Orthogonality property) 

∫∫= dxdypp ijij ψ  

 

 
Fig.1: A simply supported thin plate with surface bonded piezo-transducers 
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By substituting (3b) into (3a), complex cubic 

nonlinear terms appear  
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As we see, (4) includes a cross-coupling term 
represented by σ(.) and this complicates the controller 
task; hence advanced nonlinear control techniques are 
required to regulate the vibration motion of the plate. 
Now, let us expand the right-hand side of (4) related to 
piezo moments. Assuming equal piezoelectric charge 
constants in x and y directions, then 
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where λ is a constant that depends on the physical 
parameters of the regular plate and the piezo-actuators, 
see [1] for more details. H(.) is a Heaviside unit step 
function and va(t) is the piezo-actuator voltage. Taking 
the second derivatives for Mpx and Mpy and summing the 
result with further simplifications, we can get 
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and Na refers to the number of piezo-actuators used that 
is equal to the number of piezo-sensors. So the right-
hand side of (4) can be reformulated as 
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Using the following Dirac-Delta function property 
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Writing (9) in matrix form to obtain 
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At this stage, it is suitable to consider the damping 
effect and a viscous damping term is used 
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For control purposes, (11a) can be reformulated as 
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Remark 2. In effect, the damping term can help 
suppress the model vibration; however, it should have 
positive values for each element of the damping matrix 
(C). Therefore, to avoid this constraint, it is integrated 
within the nonlinear term ),,( tqqη such that the 
damping matrix does not appear while proving the 
dynamic stability of the investigated plate. 
 
Remark 3. For detailed derivation for dynamics of a 
simply supported plate considering axial stretching due 
to large deflection, the reader is referred to [3,4]. 
 
Remark 4. For simplicity, we will refer to the dimen-
sion of the dynamic matrices in terms of the number of 
the mode shapes (l). Therefore, the dimension of the 
dynamic matrices can be represented as 
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3. CONTROL STRUCTURE 
 

The proposed controller aims at suppressing the 
vibrational motion of the target smart plate. The input 
control is provided by the piezo-actuator while the beam 
deflection (or equivalently modal amplitude) is sensed 
indirectly via the sensor voltages. This section 
introduces three powerful nonlinear control strategies 
considering the model uncertainty and the nonlinear 
effect due to large deflection. These strategies are 1) 
feedback linearization FBL, 2) virtual velocity error-
based control VVEC, and 3) backstepping control BSC. 
The key idea of FBL is to cancel the nonlinearity 
embedded in the dynamic system by selecting a 
nonlinear input control such that we obtain closed-loop 
dynamics. However, the problem associated with FBL 
is the presence of an inertia inverse matrix in the control 
structure that could complicate the solution if an 
adaptive control algorithm is used. Therefore, VVEC is 
used alternatively to overcome these drawbacks by 
introducing filtered errors. The last approach includes 
applying intermediate control law in a recursive style 
until we obtain the actual control law and this scheme is 
called the BSC. 
 
3.1 FAT-based FBL 
 
As aforementioned, the FBL strategy includes designing 
a nonlinear control law such that the closed-loop 
dynamics is linear, and hence the intuitive controller can 
be expressed as [26] 
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(11) results in the following closed-loop dynamics 

d
1

TT
pd

qqeεηqM(M

xPBκeKeKe

−=++−

=+++
− ,)~~ˆ

)sgn(
 (13) 

where ).̂((.)).~( −= lRε∈ and represents the 
modeling/approximation error. Equation (13) is a linear 
closed-loop dynamics (if it is without the robust sliding 
term), however, due to the presence of the robust 
term )sgn( xPBκ TT  the system is no longer linear. 
Using the FAT, the inertia and nonlinear 
matrices/vectors can be represented as 
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Representing (17) in a state-space form  
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( )[
])sgn(

~~ˆ 1

xPBκ

εWqWMBAxx
TT

T
M

T
M +−+−= −

ηη ϕϕ
 (18) 

Let us select the following updated laws  

)ˆ(ˆ 1−−= MPBxqQW T
MMM ϕ  (19a) 

)ˆ(ˆ 1−−= MPBxQW T
ηηη ϕ  (19b) 

where ββ llRQ ×∈(.) is a positive definite adaptation 
matrix?  
 
Theorem 1. The dynamics of the vibrating plate 
modeled in (11) with the control law, closed-loop 
dynamics, and the associated updating laws described in 
(16)-(19) are stable in the sense of the Lyapunov theory. 
 
Proof.  
Let us select the following Lyapunov-like function 
along with the closed-loop dynamics (18) 

( )ηηη WQWWQWtrPxxV T
MM

T
M

T ~~~~
2
1

2
1 11 −− ++=  (20) 

Taking the time-derivative of (20) and substituting (18) 
leads to 

( )[
]
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⎞⎜

⎝
⎛
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⎝
⎛−+

−+−Θ−=

−

−

−

ηηη

ηη ϕϕ

WQWtr

WQWtrxPBBκBε

WqWMBPxxxV

T

MM
T
M

TT

T
M

T
M

TT

ˆ~

ˆ~)sgn(

~~ˆ
2
1

1

1

1

 (21) 

Equation (21) can be re-written as 

( )

( )
))sgn((

ˆˆ~

ˆˆ~
2
1

11

11

xPBκεPBx

WΦMPBxWtr
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M
T
M

T
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⎜
⎝
⎛

⎟
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⎞⎜

⎝
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⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ +−Θ−=

−−

−−

ηηηη ϕ

ϕ

 

(22) 

Substituting (19) into the above equation to get  

∑

−+Θ−=+−−Θ−=

i
ii

TTTTTT εχxxxPBκεPBxxxV

χκ

2
1))sgn((

2
1

 

  (23) 

where xPBχ TT= . Selecting the components iκ  such 
that 

iii δεκ +≥   (24) 

where iδ  is a positive constant and hence (23) becomes 

∑−Θ−=
l

ii
T xxV

12
1 χδ  (25) 

Equation (25) is stable in the sense of Lyapunov theory. 
 
Remark 5. A good way for selecting the positive 
definite matrices P and Q in (12b) is choosing Q first 
than solving (12b) to determine P for a given A. If the 
produced P is positive definite, then the system stability 
is ensured. 
 
Remark 6. Two disadvantages can be noted for the 
adaptive FBL technique which is: (1) the regressor 
matrix depends on angular link acceleration, and (2) the 
update adaptive law of parameter vector requires the 
inversion of inertia matrix which could be subject to 
singularity and computationally intense. These 
shortcomings will be resolved by using the control 
strategy mentioned in the next subsection. 
 
3.2  FAT-based VVEC 
 
Although this approach does not linearize the motion 
equation of the target system, it has two distinct advan-
tages: (1) it does not require measurement /estimation of 
manipulator acceleration, and (2) calculation of inertia 
matrix inverse is not requested [3826]. In effect, this 
technique has been invented by Slotine and Li [37] and 
it depends on the sliding mode concept. Consequently, 
the following control law can be selected as 

)sgn(ˆˆ ssKrMu ds κη −−+=  (26) 

where 

.
,

,

eqr
qqe

eerqs

d

d

Λ−=
−=

Λ+=−=
  (27) 

where ll
ds RK ×∈  is a positive definite feedback gain 

matrix, s lR∈  is the virtual velocity error, r lR∈  is the 
required velocity and is equal to the desired velocity 
minus the scaled position error, andΛ llR ×∈  is a 
diagonal positive definite matrix that is related to the 
time constant of the closed-loop dynamics. Substituting 
(27) and (26) into Eq. (11) to obtain 

εηκ ++=++ ~~)sgn( rMssKsM ds  (28) 

Using the FAT, we can get the following closed-
loop dynamics 

εϕϕκ ηη ++=++ T
M

T
Mds WrWssKsM ~~)sgn(  (29) 

As noted in Eq. (29), the inertia matrix inverse and the 
modal acceleration disappear from the right-hand side. 
Let us select the following update laws of the unknown 
parameter vector that can ensure convergence of 
tracking errors. 

T

T
MMM

sQW

srQW

ηηη ϕ

ϕ

=

=

ˆ

ˆ
  (30) 

where ββ llRQ ×∈(.)
ll

M RW ×∈ β , and llRW ×∈ β
η  are 

weighting matrices, ll
M R ×∈ βϕ  and β

ηϕ
lR∈  are 
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matrices of basis function, with β referring to the 
number of basis function terms. 

Theorem 2. The dynamics of the vibrating plate 
described in Eq. (11) with the control law, closed-loop 
dynamics, and the associated updating laws for the 
weighting matrices introduced in (26)-(30) respectively 
is stable the sense of Lyapunov theory. 
 
Proof. 

)~~~~(
2
1 11

ηηη WQWWQWtrMssV MMM
T −− ++=  (31) 

Taking the time-derivative of (31) to obtain 

)ˆ~ˆ~(
2
1 11

ηηη WQWWQWtrsMssMsV T
MM

T
M

TT −− +−+=  (32) 

Knowing that 0=M  and Substituting (29) into the 
above equation to get 
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⎞
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⎟
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⎝
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−

−

ηηηη ϕ

ϕ

κε

WQrsWtr

WQsrWtr

ssssKsV

TT

MM
T

M
T
M

TT
ds

T

ˆ~

ˆ~
)sgn(

1

1  (33) 

Substituting (30) in (33) leads to 

)(
1
∑
=

−−−=
l

i
ii

T
ds

T sssKsV κε  (34) 

Selecting the components iκ  such that 

iii δεκ +≥   (35) 

where iδ  is a positive constant and hence (34) becomes 

∑
=

−−≤
l

i
iids

T ssKsV
1

δ   (36) 

Equation (34) is stable in the sense of Lyapunov theory. 
 
3.3 FAT-based BSC 
 
The key idea of backstepping control is to design a 
control law recursively by considering some of the state 
variables as virtual control variables and designing 
intermediate control laws in a backstepping manner. To 
this end, let us design a systematically backstepping 
control framework for the target plate dynamics 
described in (11) considering the following state 
variables 

qx
qx

=
=

2

1   (37) 

The dynamics can be reformulated in terms of state-
space form as follows. 

gufuMx

xx

+=+=

=
− )(1

2

21

η
 (38) 

where, 11 , −− == MgMf η  
Two steps are required to design the target control 

architecture: 1) reformulating (38) in terms of error 
dynamics, and 2) capturing the control law and the 
associated updating laws based on a Lyapunov function. 

 
Step 1. Let us denote the error dynamics x~  for 1x  as 

dyxx −= 11
~   (39) 

where dd qy = . Hence the associated dynamics with 
(39) that ensure stability are 

2111
~~~ xxkx +−=    (40a) 

where  

dd yyxkxx +−−=−= )(,~
1122 ρρ  (40b) 

with lR∈ρ referring to the virtual input control variable 

that stabilizes (40a), and llRk ×∈1  is a positive definite 
gain matrix. Now, let us describe the dynamics 2

~x as 

ερϕϕ +−+++= uWWuGfx g
T
gf

T
f

~~ˆˆ~
2  (41) 

where llRW ×∈ β
(.)  is a weighting matrix 

and βϕ l
f R∈ ll

g R ×∈ βϕ  are basis function matrices. 

Step 2. Now define the following Lyapunov function 
for the modified dynamics described in (40a) and (41) 

[ ]T
gg

T
g

T
ff

T
f

TT WQWWQWTrxxxxV ~~~~(~~~~
2
1 11

2211
−− +++=  (42) 

where ββ llRQ ×∈(.) is an adaptation matrix. Taking the 
time-derivative of (42) and substituting (40a) and (41) 
to obtain 

[ ]
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T
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12111 ρϕϕ
 (43) 

Expanding (43) with some manipulations to get 
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2212222111

ϕϕ
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Choosing the following control law with associated 
updating laws 

[ ]
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2

2221
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Then we can obtain 

∑−+−−=

−+−−=
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We see that choosing the component iκ  such 
that iiiκ δε +≥ , where iδ  is strictly positive leads to  

∑−−−≤
i

ii xxkxxkxV 2222111
~~~~~ δ  (47) 

Table I makes a detailed comparison for the 
aforementioned three control algorithms. 
Table 1. A Comparison between the FBL, the VVEC, and the 
BSC strategies 

FAT-
FBL 

• Control law: Eq. (12). 
• Closed-loop dynamics: Eq. (13). 
• Updating laws: Eq. (19). 
• Although the control law is 

nonlinear, the closed-loop dynamics 
are linear. 

• The closed-loop dynamics and the 
updating laws include acceleration 
variable and inertia inverse matrix 
that make computational problems 
such as singularity. 

• One of the preferred solutions to the 
above is to assume that the inertia
matrix is known (identification 
procedure is required). 

• It does not need satisfaction of 
passivity conditions to ensure 
stability. 

FAT-
VVEC 

• Control law: Eq. (26). 
• Closed-loop dynamics: Eq. (29). 
• Updating laws: Eq. (30). 
• Both the control law and the closed-

loop dynamics are nonlinear. 
• The closed-loop dynamics and the 

associated updating laws do not 
include inertia inverse matrix or 
modal acceleration. 

• However, there is a constraint 
associated with the design of this 
controller is that the passivity 
condition should be satisfied to 
ensure stability. This 
includes 0)2( =− sCMsT . 

However, for our plate 0=M while 
0≥CssT and hence the stability can 

be still guaranteed. In effect, the 
damping term is integrated with the 
nonlinear term to avoid the 
constraint 0≥CssT . 

FAT-
BSC 

• Control law: Eq. (45a). 
• Closed-loop dynamics: Eqs. (40a) 

and (41). 
• Updating laws: Eq. (45b). 
• Two disadvantages associated with 

control law and the related updating 
laws are 1) presence of 1ˆ −g in the 
control law that would make 
singularity problem, and 2) presence 
of the input control in the updating 

law associated with the unknown 
term ĝ . 

• Due to the recursive technique 
required, for a dynamic system 
having higher orders, the 
computations would be tedious and 
complex expressions would result. 

• The above-mentioned problems can 
be solved if we assume that ĝ  is 
known (system identification is 
required to estimate ĝ ). 

• It does not need satisfaction of 
passivity conditions to ensure 
stability. 

 
 
4. SIMULATION RESULTS AND DISCUSSIONS 

 
A flexible plate (shown in Fig. 1) with all edges that 

are simply supported is simulated using MATLAB 
/Simulink package for verification of the proposed 
control structure, see Table II for more details on 
physical parameters used in simulation experiments. 
Two collocated piezo patches are bonded on the surface 
of the plate. A pulse force of value 10 N during 1 sec is 
applied at a location ( 2/,2/ ba ) to excite the vibration 
of the beam. Since the dominant modes locate at the 
low-frequency region of the frequency response, the 
first two mode shapes are considered in our simulation 
experiments. Before going into implementation of 
control architecture, let us recall (11a) but with .0=d  

uKqqCqM =+++ σ   (48) 

 From Eq. (48), we can see that the dynamic 
equation includes the convention stiffness term (the 
fourth term) and a nonlinearly coupled cubic stiffness 
term that complicates the frequency response. By 
dividing (49) by M , the coefficient )( 1KM −  represents 
the linearized natural frequency. However, the 
following points should be noted [36]: 
Table 2. Physical parameters and feedback gains used in 
simulation experiments 

Plate 

[ ] [ ]
[ ] [ ]

[ ] .3.0,/7800

,210,3
,350,400

3 ==

==
==

νρ mkg

GPaEmmh
mmbmma

 

Piezo-
materials 

[ ] [ ]
[ ] [ ]./103.6,25.0

,25,25
210 mNEmmh

mmbmma

pp

pp

×==

==

Control gains ,300,75
,01.0,20

222

222

IKIQ
IQI

ds

M

==
==Λ

η
 

 
1. If the excitation force term is added, peak resonances 
in natural frequencies may occur. 
2. Due to the presence of nonlinear cubic stiffness term, 
the natural frequency may not be the same as the 
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linearized natural frequency and hence nonlinear 
resonances may occur. In effect, if we consider only one 
mode shape for (49), then the equation is similar to 
Duffing’s equation where the system stiffness varies as 
a function of the modal coordinate. Here there will be a 
jump in the frequency spectrum and as well as the type 
of nonlinear stiffness is determined based on the 
coefficient of cubic modal coordinate, see page 48 of 
[39] for more details. 
3. The coefficient CM 1− represents the damping term 
that can enhance vibration suppression of the target 
dynamic system. It should be noted that this work 
assumes that the damping coefficient is constant while 
the plate has constant mass distribution and hence the 
 damping is mass proportional, i.e. there is no dynamic 
coupling associated with damping term, see page 14 of  
[40] for more details. 4. There are different methods for modal analysis of 
nonlinear vibration, however, this topic is beyond the 
scope of this paper and the reader is referred to [41-43] 
for more details. 
Now let us come back to the implementation of control 
algorithms for the target vibrating plate. As mentioned 
previously in Table II, the FAT-based VVEC has two 
significant features: 1) the control structure does not 
include the inertia inverse matrix, and also 2) it does not 

require the calculation of modal acceleration and hence 
this technique is a powerful tool comparing with FAT-
based FBL and FAT-based BSC. Because of the above, 
the simulation experiments are focused on FAT-VVEC 
under the conditions that the system parameters are fully 
unknown. One intrinsic disadvantage for this technique 
is that the term sCMsT )2( −  should be equal or less 
than zero to ensure stability. 

This constraint is equivalent to satisfying the 
passivity condition for the target dynamic system. 
Fortunately for our plate system, the time-derivative for 
the inertia matrix equals zero 0=M , besides, the 
damping term of the plate system is integrated with the 
non–linear termη  and hence the stability of the 
vibrating plate can be proved to overcome the condition 
of satisfaction of passivity property. The control 
structure for FAT-based VVEC includes feedforward 
terms that are updated based on FAT and a PD feedback 
term plus a sliding term for compensating any modeling 
error if exists. The orthogonal Chebyshev polynomials 
are used as approximators for the FAT. The number of 
basis functions used is 15 and the initial values for the 
weighting coefficient matrix are assumed zero. For 
simplicity, it is assumed that modeling error is neglected 
and hence the robust sliding term can also be neglected.  

 
Fig. 2: Modal amplitude response 

 
Fig. 3: Sensor voltage response 
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Fig. 4: Input control piezo-voltages 

Figures 2 and 3 show the responses of modal 
amplitudes and sensor voltages for the vibrating smart 
plate considering the first two-mode shapes. As 
expected, for an open-loop system the modal 
coordinates undergo oscillation due to the application of 
the impulse force. Whereas, the proposed VVEC 
strategy would suppress the modal vibrations precisely 
despite the presence of model uncertainty. The feedback 
and adaptation gains used in the simulation are listed in 
Table II. The input control response is shown in Fig. 4. 
The Pseudo-inverse matrix plays an important role in 
the calculation of optimal input voltage if the number of 
piezo-actuators is not equal to the investigated number 
of mode shapes, see [19] for details. 
 
5. CONCLUSIONS 

 
This work makes a comprehensive study on modeling 
and vibration control of smart thin plate-like structures 
considering cubic nonlinearities related to axial stretching 
loads. Three control strategies are investigated in detail 
considering features and shortcomings. The function 
approximation techniques are used as a basis for control 
structures that make the control task easily dealing with 
complex robotic systems. The VVEC shows superior 
benefits in comparison with others; the inertia inverse 
matrix and the modal acceleration are avoided in the 
controller structure. Therefore, the simulation 
experiments here are focused on this control structure. In 
effect, the VVEC is called passivity-based control in the 
robotic community and it is a strong tool for stabilization 
and tracking control of complex dynamic systems. An 
important point should be mentioned that the passivity 
property associated with the VVEC strategy is guaranteed 
here since the inertia matrix is assumed constant in 
modeling and the Coriolis components are negative. 
However, integration of piezoelectric materials inertias 
with plate inertia matrix makes the system is coupled, 
besides complex motions of plate structure may include 
variant-time inertia terms that complicate the proof of 
passivity constraint. How–ever, future work could be 
focused on the following points: 

1. Modeling and control of 3D plate-like structure 
considering different smart actuation /sensing 
scenarios. 

2. Modeling and control of floating base robots 
with integrated flexible structures. 

3. Extending the current control algorithms for 
vibration suppression of smart shells; here the 
nonlinear restoring force term is very complex. 

4. Integration of adaptive approximation observer 
with the control architecture is important for 
flexible structures interacting with external 
environments such as aero-elastic nonlinear 
structures. 
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NOMENCLATURE 

)(tars  Time function associated with Airy 
stress function 

D Flexural rigidity 
E Young's modulus 
F Airy stress function 
h Plate thickness 

(.)H  Heaviside step function 

nI  Identity matrix of (n,n) dimension 

dK  A positive definite feedback gain matrix 
associated with derivative-control term, 

llR ×∈  
pK  A positive definite feedback gain matrix 

associated with proportional-control 
term, llR ×∈  

dsK  A positive definite feedback gain 
matrix, llR ×∈  

m Mass of the plate 
aN  Number of piezo-actuators 

(.)pM
 

Actuator external moment per unit 
length 

p External transverse load per unit area 
P  A symmetric positive definite matrix 

satisfying the Lyapunov equation, 
llR 22 ×∈  

)(tqmn  Modal amplitude 

dq  desired value for the modal vector 

(.)Q  An adaptation matrix 

V A Lyapunov-like function 
),,( tyxw  Deflection of plate  

(.)W Weighting matrices 

Greek symbols  
4∇ Biharmonic operator 

),( yxmnψ Mode shape of the deflection function 

),( yxrsφ  
Space functions associated with Airy 
stress function 

κ  A robust sliding gain, llR ×∈  
(.)ϕ Basis function matrices 

β Number of basis function 
λ  A constant depending on the physical 

parameters of the plate and the piezo-
actuators 

ε  The modelling/approximation error, 
lR∈

)(tvak Input piezo-voltage 
v Poisson's ratio 

 
 
НЕЛИНЕАРНА СТРАТЕГИЈА КОНТРОЛЕ 
ПАМЕТНИХ ТАНКИХ ПЛОЧА СА КУБНОМ 

НЕЛИНЕАРНОСТИМА ПРИМЕНОМ 
ТЕХНИКЕ АПРОКСИМАЦИЈЕ ФУНКЦИЈАМА 

(ТАФ) 
 

Х.Ф.Н. Ал-Шука, Е.Н. Абас 
 

У овом раду су уведена три нелинеарна управљачка 
решења за регулацију вибрирајуће нелинеарне плоче 
с обзиром на несигурност модела. Ова решења су 
контрола линеаризације повратне спреге (ФБЛ), 
контрола заснована на грешци виртуелне брзине 
(ВВЕЦ) и контрола повратног корака (БСЦ). У ФБЛ 
контроли, нелинеарни закон управљања је ди–
зајниран са линеарном динамиком затворене петље 
тако да је осигурана динамичка стабилност. Док су 
ВВЕЦ (или такозвани приступ заснован на пасив–
ности у заједници роботике) превазиђена огра–
ничења линеаризације повратне спреге. Са друге 
стране, БСЦ бира виртуелне контролне променљиве 
са стабилизованим средњим законима управљања 
заснованим на теорији Љапунова. Описано је сис–
тематско моделирање циљне вибрационе плоче са 
пиезо-закрпама. У ствари, с обзиром да нелинеарни 
утицај чини да су резултовани облици модова за 
вибрирајућу структуру веома повезани и потребан је 
пажљив дизајн управљања. Користећи Галеркин 
приступ, парцијална диференцијална једначина за 
паметну плочу се трансформише у одређене обичне 
диференцијалне једначине; успостављен је модел са 
више улаза и више излаза. Наведене стратегије 
контроле се детаљно процењују и истражују. У 
суштини, они су моћни алати за рад са нелинеарним 
динамичким системима, међутим, ВВЕЦ би се могао 
сматрати супериорнијим у поређењу са ФБЛ 
контролом и БСЦ пошто пројектована контролна 
структура не укључује инерциону инверзну матрицу 
и модално координатно убрзање које би могло да 
учини рачунарским проблеме. Као резултат, 
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експерименти симулације су били фокусирани на 
ВВЕЦ стратегију, а ова друга је имплементирана на 
једноставно подупрту структуру танких плоча са 

заједничким пиезо-закрпама. Резултати показују 
валидност предложене архитектуре управљања. 

 


