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1. INTRODUCTION

Function Approximation Technique
(FAT)-Based Nonlinear Control
Strategies for Smart Thin Plates with
Cubic Nonlinearities

The current work introduces three nonlinear control solutions for the
regulation of a vibrating nonlinear plate considering model uncertainty.
These solutions are feedback linearization control (FBL), virtual velocity
error-based control (VVEC), and backstepping control (BSC). In the FBL
control, a nonlinear control law is designed with linear closed-loop
dynamics such that dynamic stability is ensured. Whereas, by the VVEC
(or so-called passivity-based approach in the robotics community) the
limitations of the feedback linearization are overcome. On the other side,
the BSC selects virtual control variables with stabilized intermediate
control laws based on Lyapunov theory. Systematic modeling for the target
vibrating plate with piezo patches is described. In effect, considering the
nonlinear influence makes the resulted mode shapes for the vibrating
structure are highly coupled and careful control design is required. Using
the Galerkin approach, the partial differential equation for the smart plate
is transformed into definite ordinary differential equations; the multi-input
multi-output model is established. The aforementioned control strategies
are evaluated and investigated in detail. In essence, they are powerful
tools for dealing with nonlinear dynamic systems, however, the VVEC
could be considered superior in comparison with the FBL control and the
BSC since the designed control structure does not include inertia inverse
matrix and modal coordinate acceleration that could make computational
problems. As a result, simulation experiments were focused on the VVEC
strategy, and the latter was implemented on a simply supported thin plate
structure with collocated piezo-patches. The results show the validity of the
proposed control architecture.

Keywords: Nonlinear vibrations, feedback linearization, passivity-based

control, backstepping control, adaptive approximation control

and bending deflection are considered. In a membrane
structure, the thickness is thinner than a thin plate with a

Piezoelectric materials can transform electrical energy
into mechanical energy or vice versa. Much attention is
devoted to using them in vibration suppression of
flexible structures such as strings, beams, plates, shells,
etc. [1]. Integration of smart materials, e.g. piezoelectric
patches, with flexible components (structures) makes
them adaptively accommodate external disturbances and
attenuate vibrational motions if exist. A suitable control
law is always required to get perfect performance.
Consequently, this paper is concerned with the function
approximation technique (FAT)-based adaptive control
approaches for vibration suppression of a piezo-
electrically actuated/sensed thin plate considering
nonlinear effects. For modeling of transverse vibration
of a plate structure, the following points should be
noticed [2]:

In a thick plate structure, both the shear deformation
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negligible bending stiffness while the bending loadings
are resisted by the membrane action. The bending
deflection is considered for a thin plate considering the
effect of the axial stretching (loading) that complicates
the dynamics and control tasks. The current work is
interested in modeling and control of this category of
plates.

The key cause of structural nonlinearity comes from
in-plane stretching of the flexible structure, however,
the nonlinear behavior for thin structures could originate
from nonlinear geometry, inelastic behavior of the
structure, the nonlinear applied excitation loadings, etc.
These structural phenomena cannot be sufficiently
investigated by linear theory since the deflection of the
target structure is large in comparison with the
thickness. Moreover, considering the effect of such a
large deflection on the response of the flexible structure
is essential [3,4]. In effect, considering the nonlinear
influence makes the resulted mode shapes for the
vibrating structure is highly coupled and careful control
design is required. Despite there being different types of
nonlinearity sources, see e.g. [5,6], this study is focused
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on the nonlinearity resulting from axial stretching of
plates. Due to the accompanying complexity of the
nonlinear equation of motion for the vibrating plates, a
little work reported in the literature has been focused on
the analytical derivation of the nonlinear dynamics for
the plates and the finite element method FEM is the
potential tool for modeling and analysis. . Plates and
plate-like  structures play important roles in
miscellaneous application such as floor and foundation
slabs, lock-gates, offshore structures, the wing structure
of an aircraft, and aircraft fuselage, see e.g. [7-9]. The
reader is referred to [10-14] for more details on
applications and modeling of plate-like structures. To
model a thin plate structure with piezo-patches, a partial
differential equation PDF is obtained based on the
Newton-Euler formulation. It is an infinite-dimensional
system that has infinite degrees-of freedom DOFs. This
complicates the control problem since it may
theoretically require several distributed piezo-actuators
to fully actuate and regulate the vibrating plate.
However, the first mode shapes are considered since
they are dominant in the low-frequency region such that
high-frequency amplitudes would be neglected.
Galerkin's approach is used to transform the infinite-
dimensional PDF of the target plate into finite N-
ordinary differential equations ODEs. The resulting
nonlinear ODEs for the vibration plate are represented
as a multi-input multi-output dynamic system. Cubic
nonlinear stiffness terms are resulted due to the coupling
of the bending-tension effect.

In effect, two essential strategies that are possible to
damp vibration of structures are passive vibration
damping [15,16] and active vibration damping. This
study is focused on adaptive vibration damping of plate-
type structures considering disturbance and complex
nonlinearities. To suppress the nonlinear vibrations of
adaptive plate-like structures, piezo-patches are bonded
on the surface of the plates that can generate counteract
moments and sense the resulting deflection for
stabilization of the target vibrating plates. As a result,
the objective of the controller is to regulate the
vibrational motion of the target system under parameter
uncertainty and disturbances, see e.g.,, [17-23].
However, if the dynamic system undergoes uncertain
complex nonlinear terms, the linear control architectures
e.g. PID family controllers are no longer useful and
hence the best solution tools are nonlinear control
strategies. In effect, there are two substantial techniques
for dealing with the abovementioned problem: adaptive
control and sliding mode control [24]. Adaptive control
is a powerful tool to control dynamic systems with
unknown constant parameters [25]. The Lyapunov
theory is used as a basis for guaranteeing the stability of
the proposed control law and the corresponding
updating laws associated with unknown parameters. For
unknown time-varying parameters, adaptive
approximation control is used instead to comprise
model-free techniques or so-called intelligent control
[25-34]. On the other hand, robust control requires
knowledge of limits of uncertainty. One of the well-
known robust techniques used is the sliding mode
control SMC that uses a signum function associated
with a suitable sliding surface. However, a signum-
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based term can be easily integrated with adaptive
control algorithms for compensating modeling error if
exists.

The current work introduces three nonlinear control
solutions for the regulation of the vibrating nonlinear
plate considering the model uncertainty. These solutions
are feedback linearization control FBL, virtual velocity
error-based control VVEC, and backstepping control
BSC. These control algorithms are strong tools to
control complex dynamic systems such as the miniature
robot described in [35]. In FBL control, a nonlinear
control law is designed with linear closed-loop
dynamics such that dynamic stability is ensured [36,37].
Whereas, by the VVEC (or so-called passivity-based
approach in the robotics community) the limitations of
the feedback linearization are resolved [25,26]. On the
other side, the BSC assumes that virtual control
variables with stabilized intermediate control laws based
on Lyapunov theory [24]. The above-mentioned control
algorithms are reformulated based on FAT in
connection with a robust sliding term for compensating
modeling/approximation errors if exist. Systematic
modeling for the target vibrating plate with piezo
patches is described. In effect, considering the nonlinear
influence makes the resulted mode shapes for the
vibrating structure are highly coupled and careful
control design is required. Using the Galerkin approach,
the partial differential equation for the smart plate is
transformed into definite ordinary differential equations;
the multi-input multi-output model is established. The
aforementioned control strategies are evaluated and
investigated in detail. In essence, they are powerful
tools for dealing with nonlinear dynamic systems,
however, the VVEC could be considered superior in
comparison with the FBL control and the BSC since the
designed control structure does not include inertia
inverse matrix and modal coordinate acceleration that
could make computational problems. As a result,
simulation experiments were focused on the VVEC
strategy, and the latter was implemented on a simply
supported thin plate structure with collocated piezo-
patches. The results show the validity of the proposed
control architecture. The contributions of the current
paper are:

1. Considering the axial stretching in the plate model
complicates the dynamic behavior and control task
since coupled cubic nonlinearity terms occur. To
our knowledge, this point has been a little
considered in previous work.

2.Introducing three powerful nonlinear control
strategies and describing features and shortcomings
of every technique in detail.

3.Regressor-free techniques have been presented as a
basis for control laws and the associated closed-loop
dynamics.

The remainder of the paper is organized as follows.
Section 2 introduces the dynamic modeling of the smart
thin plate while the nonlinear control structures are
described in section 3. Section 4 introduces simulation
results and discussions. Section 5 concludes.

Remark 1. In effect, we avoid using the terminology
“’passivity-based control" for the VVEC since the
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passivity property may not hold for the current
modeling of the vibrating plate. The idea of passivity-
based control is to exploit the skew-symmetric matrix
property such that (M — 2C, where M is the inertia
matrix and C is the damping matrix). Fortunately, the
target plate has an inertia matrix with constant-value
elements while the elements of the damping matrix are
assumed to be positive (c;) and these ease the proof of
the stability for the VVEC away from the passivity
concept. In effect, the damping term will be integrated
into the complex stiffness terms and hence it will not
make an obstacle for proving the dynamic stability for
the investigated system.

2. DYNAMIC MODELLING OF THE SMART PLATE

This section is focused on modeling a vibrating thin
plate with surface bonded piezo patches. The effect of
the piezo-patches can be added as moment loadings. To
this end, consider a thin plate with m collocated piezo-
patches, see Fig. 1. The following assumptions are
considered [1]:

1. The plate is thin with a uniform thickness.

2. The dynamics of the piezo-patches are neglected.

3. The plate undergoes large deflection that imposes
axial stretching on it.

where F'is the Airy stress function, m is the mass of the

plate, V* is the biharmonic operator, & refers to the
plate thickness, p is the external transverse load per unit
area, M ,(.) is the piezo-actuator external moment per

unit length, D is the flexural rigidity, £ is Young's
modulus, and v is the Poisson's ratio.

Now it is necessary to transform the resulting PDFs
of (1) into ODEs using the Galerkin technique, hence
expanding w and F in terms of mode shape function and
modal amplitudes

G = D D Y6, (0) (2a)
m=1 n=1
F3,0= YD 4 (6,0)a,,(0) (2b)
r=l s=1

By substituting (2) into (1), multiplying (1a) and (1b) by
wi(x,y) and [I, respectively and integrating the
equations across the area of the target plate to obtain

Mmm‘ijn + Z D mn Kmn[j + pij - Zam qanrsmm‘j =
mn

ce(o’M, oM,
I j 2 2P (x, y)dxdy (3a)
Ox oy
00
Zars Arstu = qulqmannkltu (3b)
r,s m,n,k,l
where,

anij = J‘J.m l//mnl//ydxdy = mij
(Orthogonality property)

4
Kmnij = J.J.v l//mnl//ijdXdy = kz_'j
(Orthogonality property)
py = ”p y ydxdy

DYt - O*F o*w  0*F o*w _0*F 0*w
w= 2 2 + 2 2 o oxo -
oy° ox°  ox” oy X0y OxOy (13)
a
2 2
mazw+p+6 Mpx+8 My
o’ ox? oy?
V4F_ o*w _62w o*w (1b)
Eh Ox0y o’ op?
with
— o* 5 ot ot . EW
et ot P e
Ox ox“oy” Oy 12(1-v7)
i-piezo-
actuator
—
= -<\_i—piezo—
sensor
' Z, w
Z’ w Xi1 Xi2

II })//Illz } """""" E i-piezo

°
x
=<

Y, vY Y VYv

— — — Simply supported edges

Fig.1: A simply supported thin plate with surface bonded piezo-transducers
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V rs
Arstu = J. —¢¢tu dxdy

oy, o* oy, o*
B mnkltu = J.J. Y onn L - !//;n 1 l//zk[ i dxdy
ox0y OxOy ox oy

az«zs azwm,, O OV
2

9
rsmmj J:[ g 4 ijdxdy
Ot azwm,,
6x6y Ox0y

By substituting (3b) into (3a), complex cubic
nonlinear terms appear

My +k,-,»q,»,~ + Uij (¢() V() 909090) + Py =

| j{a & ]w,, (x,y)dxdy @

As we see, (4) includes a cross-coupling term
represented by o, and this complicates the controller
task; hence advanced nonlinear control techniques are
required to regulate the vibration motion of the plate.
Now, let us expand the right-hand side of (4) related to
piezo moments. Assuming equal piezoelectric charge
constants in x and y directions, then

M, =M, =Hx-x)[Hy-y)-Hy-y)k, 0 (5)

where 1 is a constant that depends on the physical
parameters of the regular plate and the piezo-actuators,
see [1] for more details. H(.) is a Heaviside unit step
function and v,(¢) is the piezo-actuator voltage. Taking
the second derivatives for M, and M,, and summing the
result with further simplifications, we can get

’M, M, L

o Tyt zak (5 YW () ©)
with
o, (5,) = ik[( aa(xa— xXy)  08(x- ka)](H(y )
X ox
—H(y—yy))+ (aa(ya— ) _ 000y - yz")J(H(x _
Y oy

Xy )= H(x = xy))]

and N, refers to the number of piezo-actuators used that
is equal to the number of piezo-sensors. So the right-
hand side of (4) can be reformulated as

j j [a My OM }/ (x, y)dydx =

a b L
[N DICACROMOMERTES ™
k=1

Ne /o
Z(-[o J‘OZZZ" Wy (x,y)dydxjvak O
=)
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Using the following Dirac-Delta function property

d"5(x — x, d"(o(x
f G=30) gy 4O
- X" dx v,
Then (7) becomes
N, a rb
ZU [[acorm, <x,y)dydx]vak<r> -
—=\JoJdo .
" ®)
Z A i Var ()
k=1
where
Yok Yok
oy (X34, ) oy (X1, )
= dy - j . dy |+
/u/k J‘ ax y ax y
Vit Yik
Xk Yok
ov.(x , oy, (x,
j v y2k)dx_J‘ v ylk)dx
ox ox
Xik Vit
Equation (4) can be reformulated as
mij'qu +kyqy +0y +d,~j =uy,
i=123,.,N ©)
j=123,...M
where
ab
=[] ey (x )y,
00
NH
= z/lk:uijkvak (0
k=1
Writing (9) in matrix form to obtain
Mg+Kq+o+d=u (10)
where
my 0 kyy 0 o1
M = K= Polo=
0 My 0 Ky O nm
dy Uy
d=| : |u=
dyu Unm

At this stage, it is suitable to consider the damping
effect and a viscous damping term is used

MG+Cq+Kg+o+d=u (11a)
with
o 0
C=|: :
0 Cnm
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For control purposes, (11a) can be reformulated as

Mg +n(q.4,t) =u,

11b
n(q,9.t)=Cq+Kqg+o+d (11b)

Remark 2. In effect, the damping term can help
suppress the model vibration; however, it should have
positive values for each element of the damping matrix
(C). Therefore, to avoid this constraint, it is integrated
within the nonlinear term 7(q,q,¢)such that the

damping matrix does not appear while proving the
dynamic stability of the investigated plate.

Remark 3. For detailed derivation for dynamics of a
simply supported plate considering axial stretching due
to large deflection, the reader is referred to [3,4].

Remark 4. For simplicity, we will refer to the dimen-
sion of the dynamic matrices in terms of the number of
the mode shapes (/). Therefore, the dimension of the
dynamic matrices can be represented as

m 0 ki - 0 o
vl AV SRR o=l f |
0 m; 0 k, oy
d, U
d=|: |u=
d u

3. CONTROL STRUCTURE

The proposed controller aims at suppressing the
vibrational motion of the target smart plate. The input
control is provided by the piezo-actuator while the beam
deflection (or equivalently modal amplitude) is sensed
indirectly via the sensor voltages. This section
introduces three powerful nonlinear control strategies
considering the model uncertainty and the nonlinear
effect due to large deflection. These strategies are 1)
feedback linearization FBL, 2) virtual velocity error-
based control VVEC, and 3) backstepping control BSC.
The key idea of FBL is to cancel the nonlinearity
embedded in the dynamic system by selecting a
nonlinear input control such that we obtain closed-loop
dynamics. However, the problem associated with FBL
is the presence of an inertia inverse matrix in the control
structure that could complicate the solution if an
adaptive control algorithm is used. Therefore, VVEC is
used alternatively to overcome these drawbacks by
introducing filtered errors. The last approach includes
applying intermediate control law in a recursive style
until we obtain the actual control law and this scheme is
called the BSC.

3.1 FAT-based FBL
As aforementioned, the FBL strategy includes designing
a nonlinear control law such that the closed-loop

dynamics is linear, and hence the intuitive controller can
be expressed as [26]

w=Miy K (G—40)~K, (q—q0)|+ i—resen@ Px) (12a)
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where the symbol (=) refers to the estimation, ¢, € R
is the desired value for the modal vector, K, € R” and

K, e R™ are both diagonal positive definite matrices,

0
k€ R™ is a robust sliding gain, B = L } e R*
!

T .
x:[eT e'T] eR¥, P=PT eR*™ is a symmetric
positive definite matrix satisfying the Lyapunov
equation

A"P+PA=-0 (12b)
with
A= 0 Il c R21><21
-K, -K,

and ©=0" eR*?is also a symmetric positive
definite matrix, ande =g —¢q,. Substituting (12a) into
(11) results in the following closed-loop dynamics

e+ K e+Ke+xsgn(B' Plx)= 13
M~ (Mi+i)+ee=q-q,

where  (+)=()—(:) ¢ R  and
modeling/approximation error. Equation (13) is a linear

closed-loop dynamics (if it is without the robust sliding
term), however, due to the presence of the robust

represents  the

term;csgn(BTPTx) the system is no longer linear.

Using the FAT, the inertia and nonlinear
matrices/vectors can be represented as

M =Wl o, +ey (14a)
n=w,op,+e, (14b)

where W, e R”* | and W, e R'P " are  weighting

matrices, @,, € R

and ¢, € R are matrices of basis
function, with g referring to the number of basis

function terms. Using the same set of basis functions,
the corresponding estimates can be represented as

M =Wy (152)
W=wp, (15b)

Thus, the controller (12a) becomes

u=owlis —Kia=0-K, =40+ W0, = 1)

K sgn(BT PT x)]

and the closed-loop dynamics (13) becomes
é+Kdé+er+ngn(BTPTx): an
=M W0+ W, 0+ e

Representing (17) in a state-space form
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X= Ax—BlJ\;[_l(VIN/AZ(pM(j+VI7ﬂT¢U )—g+

(18)
K sgn(BTPTx)]
Let us select the following updated laws
Wy =~0uoug(x" PBM™) (19a)
5 T ppyy-1
W, =-0,p,(x" PBM™") (19b)

where Q) € RPP s a positive definite adaptation
matrix?

Theorem 1. The dynamics of the vibrating plate
modeled in (11) with the control law, closed-loop
dynamics, and the associated updating laws described in
(16)-(19) are stable in the sense of the Lyapunov theory.
Proof.

Let us select the following Lyapunov-like function
along with the closed-loop dynamics (18)

1 1 (sp 13 mp g
V= ExTPx + Etr(WA,T,QA}l Wy + W,]TQ,;‘W,]) (20)

Taking the time-derivative of (20) and substituting (18)
leads to

V= —%xT(Bx - xTP[BA;[fl(VIN/AT,goMij + VIN/UT% )—
Be+Bngn(BTPTx)]— tr(WAﬁQJI)WM)— (21)
tr(W,,TQ,;IW,,)
Equation (21) can be re-written as
s 1. ~T T -1 17
V——Ex Ox —tr| Wy | @y q\x’ PBM ™" |+ @y Wy,

- zr(ﬁ/,f ((/),7 (" PBAT )+ 7, D -
x" PB(—¢ + ksgn(B' P"x))

(22)
Substituting (19) into the above equation to get

V= —%xTGx - xTPB(—e + ngn(BTPTx)) = —%xr®x + )(Te -

Zki‘li‘
(23)

where y = B" P" x . Selecting the components x; such
that

K; 2|gi|+é‘i (24)

where J; is a positive constant and hence (23) becomes
. 1 !
V=-—>xlox-) &ly 25
> El i1 (25)
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Equation (25) is stable in the sense of Lyapunov theory.

Remark 5. A good way for selecting the positive
definite matrices P and Q in (12b) is choosing Q first
than solving (12b) to determine P for a given 4. If the
produced P is positive definite, then the system stability
is ensured.

Remark 6. Two disadvantages can be noted for the
adaptive FBL technique which is: (1) the regressor
matrix depends on angular link acceleration, and (2) the
update adaptive law of parameter vector requires the
inversion of inertia matrix which could be subject to
singularity and computationally intense. These
shortcomings will be resolved by using the control
strategy mentioned in the next subsection.

3.2 FAT-based VVEC

Although this approach does not linearize the motion
equation of the target system, it has two distinct advan-
tages: (1) it does not require measurement /estimation of
manipulator acceleration, and (2) calculation of inertia
matrix inverse is not requested [3826]. In effect, this
technique has been invented by Slotine and Li [37] and
it depends on the sliding mode concept. Consequently,
the following control law can be selected as

u=Mi+nH— K 405 — k'sgn(s) (26)
where
s=qg—-r=e+Ae,

e=qg—-4y, (27
r=q, —Ae.

where K, € R™ is a positive definite feedback gain

matrix, se R’ is the virtual velocity error, re R’ is the
required velocity and is equal to the desired velocity

minus the scaled position error, andA e R™ is a
diagonal positive definite matrix that is related to the
time constant of the closed-loop dynamics. Substituting
(27) and (26) into Eq. (11) to obtain

M5 + K 45+ Kcsgn(s) = M+ + & (28)

Using the FAT, we can get the following closed-
loop dynamics

Ms + K ;s + ksgn(s) = VIN/qu)Mr' + I/IN/”Tgo,7 +¢ (29)

As noted in Eq. (29), the inertia matrix inverse and the
modal acceleration disappear from the right-hand side.
Let us select the following update laws of the unknown
parameter vector that can ensure convergence of
tracking errors.

Wy :QM(DM’;ST

. (30)
2 T
Wy =0p0s

where O, e RV W), e RP1 . and W, eR P4 are

11

weighting matrices, ¢, € R andg, € R are
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matrices of basis function, with f referring to the
number of basis function terms.

Theorem 2. The dynamics of the vibrating plate
described in Eq. (11) with the control law, closed-loop
dynamics, and the associated updating laws for the
weighting matrices introduced in (26)-(30) respectively
is stable the sense of Lyapunov theory.

Proof.
V= %STMS +tr(Wy Oy Wy, +W,0,'W,) (31)
Taking the time-derivative of (31) to obtain

V=s" Ms+ %STMS - tr(WN’AZQX;WM + WUTQ;WU) (32)

Knowing that M =0 and Substituting (29) into the

above equation to get

V= —sTdes +sTe+s ksgn(s) -
T O
tr(WM(— Oyrs” +O0uWy D - (33)

tr(VIN/UT (— (/7,7rsT + Q,;IWU D

Substituting (30) in (33) leads to

!
V=—sTKdSs—sT(8—ZK,-|S,-|) (34)
i=1

Selecting the components «; such that
K> |gl-| +0; (35)

where 0; is a positive constant and hence (34) becomes

/
V<—s"Kus= ) 5]s| (36)
i=1

Equation (34) is stable in the sense of Lyapunov theory.

3.3 FAT-based BSC

The key idea of backstepping control is to design a
control law recursively by considering some of the state
variables as virtual control variables and designing
intermediate control laws in a backstepping manner. To
this end, let us design a systematically backstepping
control framework for the target plate dynamics
described in (11) considering the following state
variables

n (37)
X2 =4

The dynamics can be reformulated in terms of state-
space form as follows.

.).CIZ.XZ
L (38)
Xo=M"(u+n)=f+gu

174 = VOL. 50, No 1, 2022

where, f=M"'n,g=M"

Two steps are required to design the target control
architecture: 1) reformulating (38) in terms of error
dynamics, and 2) capturing the control law and the
associated updating laws based on a Lyapunov function.

Step 1. Let us denote the error dynamics X for x; as
X1=x =Yg (39)

where y, =¢q,. Hence the associated dynamics with
(39) that ensure stability are

X, =k +%, (40a)
where
Xy=Xy=p,p=—k(xy = yy)+ Vg (40b)

with p e R referring to the virtual input control variable

that stabilizes (40a), and k; € R™ isa positive definite

gain matrix. Now, let us describe the dynamics X, as
fcz:f'+éu+VI~/fT(pf+VI7gT¢gu—p+g (41)

where 7, € R'P is a weighting matrix

andg, € R @, € R'P! are basis function matrices.

Step 2. Now define the following Lyapunov function
for the modified dynamics described in (40a) and (41)

1[ore e ~p g~ ~ o~
V= XE T X+ TrV O W] + WgTleWgT] (42)

where Q) e R"PPis an adaptation matrix. Taking the

time-derivative of (42) and substituting (40a) and (41)
to obtain

V ==k +)?2[§1 +f+Gu+ W], +VT/ngogu—pJ—
A oW LT oW (43)
S Qf e Qg g
Expanding (43) with some manipulations to get
V =Tk~ by + B[y 4oy + 7+ Gu— el
~ N A ~ N A 44)
{7 0 -0} |7 ] -7 )|
Choosing the following control law with associated
updating laws
u=G" [_ [ =G +kx)+p —xsgn(fz)]
Wi =0,0,% (43)
A T ~
Wg = Qggogux2
Then we can obtain
V =Xk — Xoky Xy + %) € — %5 rc5gn(X,)
(46)

. —_ — - ~T -
V = _.xlklxl - X2k2x2 + xZ & — ZKi|x2i|

i
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We see that choosing the component x; such

thatx, > |gi| +0;, where 9; is strictly positive leads to
R I (47)

Table 1 makes a detailed comparison for the
aforementioned three control algorithms.

Table 1. A Comparison between the FBL, the VVEC, and the
BSC strategies

Control law: Eq. (12).

Closed-loop dynamics: Eq. (13).

Updating laws: Eq. (19).

Although the control law is

nonlinear, the closed-loop dynamics

are linear.

e The closed-loop dynamics and the
updating laws include acceleration

FAT- variable and inertia inverse matrix

FBL that make computational problems
such as singularity.

e One of the preferred solutions to the
above is to assume that the inertia
matrix is known (identification
procedure is required).

e It does not need satisfaction of]

passivity conditions to ensure

stability.

Control law: Eq. (26).

Closed-loop dynamics: Eq. (29).

Updating laws: Eq. (30).

Both the control law and the closed-

loop dynamics are nonlinear.

e  The closed-loop dynamics and the
associated updating laws do not
include inertia inverse matrix or
modal acceleration.

e However, there is a constraint

FAT- associated with the design of this
VVEC controller is that the passivity
condition should be satisfied to
ensure stability. This

includes s” (M —2C)s =0.
However, for our plate M =0 while

s”Cs > 0 and hence the stability can
be still guaranteed. In effect, the
damping term is integrated with the
nonlinear term to avoid the

constraints’ Cs > 0.

e Control law: Eq. (45a).

e  Closed-loop dynamics: Egs. (40a)
and (41).

e Updating laws: Eq. (45b).

FAT- ¢ Two disadvantages associated with

BSC control law and the related updating

laws are 1) presence of gfl in the

control law that would make
singularity problem, and 2) presence
of the input control in the updating
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law associated with the unknown
termg .

e Due to the recursive technique
required, for a dynamic system
having higher orders, the
computations would be tedious and
complex expressions would result.

e  The above-mentioned problems can
be solved if we assume thatg is
known (system identification is
required to estimate g ).

e It does not need satisfaction of
passivity conditions to ensure
stability.

4. SIMULATION RESULTS AND DISCUSSIONS

A flexible plate (shown in Fig. 1) with all edges that
are simply supported is simulated using MATLAB
/Simulink package for verification of the proposed
control structure, see Table II for more details on
physical parameters used in simulation experiments.
Two collocated piezo patches are bonded on the surface
of the plate. A pulse force of value 10 N during 1 sec is
applied at a location (a/2,b/2) to excite the vibration
of the beam. Since the dominant modes locate at the
low-frequency region of the frequency response, the
first two mode shapes are considered in our simulation
experiments. Before going into implementation of
control architecture, let us recall (11a) but with d =0.

Mj+Ci+Kqg+o=u (48)

From Eq. (48), we can see that the dynamic
equation includes the convention stiffness term (the
fourth term) and a nonlinearly coupled cubic stiffness
term that complicates the frequency response. By

dividing (49) by M , the coefficient (M g ) represents

the linearized natural frequency. However, the
following points should be noted [36]:

Table 2. Physical parameters and feedback gains used in
simulation experiments

a = 400[mm].b = 350[mm],
Plate h=3[mm] E = 210[GPa},
p= 7800[kg/m3lv =03.

a,= 25[mm],bp = 25[mm],

o ) =025(mm)E, = 6.3x10"[N/m?]

materials

A =201,,0, =0.011,,

Control gai
ontrol gains Qq:751229de:300[29

1. If the excitation force term is added, peak resonances
in natural frequencies may occur.

2. Due to the presence of nonlinear cubic stiffness term,
the natural frequency may not be the same as the

VOL. 50, No 1, 202 = 175



linearized natural frequency and hence nonlinear
resonances may occur. In effect, if we consider only one
mode shape for (49), then the equation is similar to
Duffing’s equation where the system stiffness varies as
a function of the modal coordinate. Here there will be a
jump in the frequency spectrum and as well as the type
of nonlinear stiffness is determined based on the
coefficient of cubic modal coordinate, see page 48 of
[39] for more details.

3. The coefficient M ~'C represents the damping term
that can enhance vibration suppression of the target
dynamic system. It should be noted that this work
assumes that the damping coefficient is constant while
the plate has constant mass distribution and hence the
damping is mass proportional, i.e. there is no dynamic
coupling associated with damping term, see page 14 of
[40] for more details.

4. There are different methods for modal analysis of
nonlinear vibration, however, this topic is beyond the
scope of this paper and the reader is referred to [41-43]
for more details.

Now let us come back to the implementation of control
algorithms for the target vibrating plate. As mentioned
previously in Table II, the FAT-based VVEC has two
significant features: 1) the control structure does not
include the inertia inverse matrix, and also 2) it does not

0.015

—FAT-VWWEC
~without contr

0.01

0.005

g, amplitude

-0.005}

-0.01¢

-0.015

Fig. 2: Modal amplitude response

150

—Without control

------- FAT-VVEC
100}

50t

sz amplitude
(=]

0 2 4 6 8 10

Fig. 3: Sensor voltage response
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¢, amplitude

Vs, amplitude

require the calculation of modal acceleration and hence
this technique is a powerful tool comparing with FAT-
based FBL and FAT-based BSC. Because of the above,
the simulation experiments are focused on FAT-VVEC
under the conditions that the system parameters are fully
unknown. One intrinsic disadvantage for this technique

is that the terms’ (M —2C)s should be equal or less

than zero to ensure stability.

This constraint is equivalent to satisfying the
passivity condition for the target dynamic system.
Fortunately for our plate system, the time-derivative for

the inertia matrix equals zero M =0, besides, the
damping term of the plate system is integrated with the
non-linear termzn and hence the stability of the
vibrating plate can be proved to overcome the condition
of satisfaction of passivity property. The control
structure for FAT-based VVEC includes feedforward
terms that are updated based on FAT and a PD feedback
term plus a sliding term for compensating any modeling
error if exists. The orthogonal Chebyshev polynomials
are used as approximators for the FAT. The number of
basis functions used is 15 and the initial values for the
weighting coefficient matrix are assumed zero. For
simplicity, it is assumed that modeling error is neglected
and hence the robust sliding term can also be neglected.

150

—Without control

--------- FAT-WEC
100
50
-50
-100
“130 2 4 6 8 10
time (s)
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Fig. 4: Input control piezo-voltages

Figures 2 and 3 show the responses of modal
amplitudes and sensor voltages for the vibrating smart
plate considering the first two-mode shapes. As
expected, for an open-loop system the modal
coordinates undergo oscillation due to the application of
the impulse force. Whereas, the proposed VVEC
strategy would suppress the modal vibrations precisely
despite the presence of model uncertainty. The feedback
and adaptation gains used in the simulation are listed in
Table II. The input control response is shown in Fig. 4.
The Pseudo-inverse matrix plays an important role in
the calculation of optimal input voltage if the number of
piezo-actuators is not equal to the investigated number
of mode shapes, see [19] for details.

5. CONCLUSIONS

This work makes a comprehensive study on modeling
and vibration control of smart thin plate-like structures
considering cubic nonlinearities related to axial stretching
loads. Three control strategies are investigated in detail
considering features and shortcomings. The function
approximation techniques are used as a basis for control
structures that make the control task easily dealing with
complex robotic systems. The VVEC shows superior
benefits in comparison with others; the inertia inverse
matrix and the modal acceleration are avoided in the
controller  structure.  Therefore, the simulation
experiments here are focused on this control structure. In
effect, the VVEC is called passivity-based control in the
robotic community and it is a strong tool for stabilization
and tracking control of complex dynamic systems. An
important point should be mentioned that the passivity
property associated with the VVEC strategy is guaranteed
here since the inertia matrix is assumed constant in
modeling and the Coriolis components are negative.
However, integration of piezoelectric materials inertias
with plate inertia matrix makes the system is coupled,
besides complex motions of plate structure may include
variant-time inertia terms that complicate the proof of
passivity constraint. How—ever, future work could be
focused on the following points:
1. Modeling and control of 3D plate-like structure
considering different smart actuation /sensing
scenarios.
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va, (volt)

200

150

100

50

o 2 4 6 8
time (s)
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2. Modeling and control of floating base robots
with integrated flexible structures.

3. Extending the current control algorithms for
vibration suppression of smart shells; here the
nonlinear restoring force term is very complex.

4. Integration of adaptive approximation observer
with the control architecture is important for
flexible structures interacting with external
environments such as aero-elastic nonlinear
structures.
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NOMENCLATURE

a, (1) Time function associated with Airy
stress function

D Flexural rigidity

E Young's modulus

F Airy stress function

h Plate thickness

H() Heaviside step function

I, Identity matrix of (n,n) dimension

K, A positive definite feedback gain matrix
associated with derivative-control term,
c Rl><l

K, A positive definite feedback gain matrix
associated with  proportional-control
term, c Rlxl

K, A positive definite feedback gain

. Ix
matrix, € R
m Mass of the plate

N, Number of piezo-actuators
M, () Actuator external moment per unit
length
P External transverse load per unit area
P A symmetric positive definite matrix
satisfying the Lyapunov equation,
c R2b
G (1) Modal amplitude
44 desired value for the modal vector
9, An adaptation matrix
V A Lyapunov-like function

w(x,y,t) Deflection of plate
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W, Weighting matrices
Greek symbols
v4 Biharmonic operator

W (x,y)  Mode shape of the deflection function
Prs (X, )

Space functions associated with Airy
stress function

c g . Ix1

K A robust sliding gain, € R

?0) Basis function matrices

p Number of basis function

A A constant depending on the physical
parameters of the plate and the piezo-
actuators

£ The modelling/approximation error,
eR'

v () Input piezo-voltage

v Poisson's ratio

HEJUHEAPHA CTPATETMJA KOHTPOJIE
MAMETHHUX TAHKHX IIJIOYA CA KYBHOM
HEJMHEAPHOCTHUMA IPUMEHOM
TEXHHUKE ATPOKCUMAIINJE ®YHKIIHJAMA
(TAD)

X.®.H. An-lllyka, E.H. Adac

VY 0BOM pajy cy yBeleHa TpH HEelIMHEeapHa yIpapbauka
peniema 3a perynanujy BuOpupajyhe HenmnHeapHe iode
¢ 003upoM Ha HecurypHocT mozena. OBa pemiema Cy
KOHTpoONia JMHeapu3aluje nospatHe chpere (DBJI),
KOHTpOJIa 3aCHOBAaHAa HA TpELINM BUPTyelHe Op3uHE
(BBELI) u xonTposa nmospaTtHOT Kopaka (BCLL). ¥ ®bJI
KOHTPOJIM, HEJIMHEapHW 3aKOH YINpaBjbamka je Ju—
3ajHUpaH ca JIMHEapHOM JMHAMHKOM 3aTBOPEHE IETIhE
TaKo J1a je OCHTypaHa JHHaMH4YKa cTabmiHocT. JIok cy
BBEIL (wmm Tako3BaHU NPHUCTYI 3aCHOBaH Ha ITaCHB—
HOCTH Yy 3ajefHUIM poOoTHKe) mpeBasuheHa orpa—
HUYeHa IHHeapm3anuje moBparHe cmopere. Ca apyre
ctpane, BCL] 6upa BupTyenHe KOHTPOJIHE MPOMEHIBHBE
ca CTa0WIM30BaHUM CPEAHBMM 3aKOHHMa YIIPaBJbamba
3acHOBaHMM Ha Teopuju JbamyHoBa. OmucaHo je cuc—
TEMaTCKO MOZENUpame IMbHE BHOpaLMOHE IUIoYe ca
nHe30-3aKprama. Y CTBapH, ¢ 003UPOM Ja HeJMHEapHH
yTUId] YMHHU Ja Cy PE3YJITOBaHH OOJHMIM MOJIOBa 3a
BUOpHpajyhy CTpyKTYpy BeomMa NOBE3aHU U MOTpedaH je
NaXJBbUB JM33ajH ynpaBibawa. Kopucrehm Ianepkun
MIPUCTYTI, MapOyjayiHa JUQepeHnujaiHa jeJHaunHa 3a
MaMeTHY IUTouy ce TpaHcdopmuie y oapehene oOudne
mudepeHnyjaHe jeHauYMHE; YCIIOCTaBJbEH j€ MOJIET ca
BUIIE yNla3a W BHUIIe H3asa. HaBemeHe crpateruje
KOHTpOJIE C€ JETaJbHO MPOIEHY]y U HCTPaxyjy. Y
CYIUTHHH, OHH Cy MONHHM anaTy 3a paj ca HeJIMHEAPHUM
JMHAMHYKKM cuctemMuma, melhytum, BBELL 6u ce morao
cMarpaTH cynepuopHujuMm y mnopehemy ca DBJI
koHTpoioM W BCIl momro mpojekToBaHa KOHTPOJHA
CTPYKTYypa He YKJbY4yje HHEPILMOHY HHBEP3HY MaTPHILY
U MOJAJTHO KOOPJHMHATHO yOp3ame Koje OM MOrjio aa
YYMHH padyHapckum mpobneme. Kao pesyunrar,
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eKCIIEPUMEHTH cuMyJanuje cy Oumu Qokycupanu Ha 3aje/IHUYKUM THe30-3aKkprnama. Pe3ynrtatd Tmokasyjy
BBEI] ctparerujy, a oBa Apyra je UIMIUIEMEHTHpaHa Ha BaJIMHOCT MPEAJIOKEHE apXUTEKTYPE YIPaBIbamba.
jEMHOCTABHO MOAYMPTY CTPYKTYpy TAHKHX IUIOYa ca
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