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Fault Identification of Ball Bearings 
using Fast Walsh Hadamard Transform, 
LASSO Feature Selection, and Random 
Forest Classifier 

To reveal the machinery health condition, time-frequency analysis is an 
effective tool when signals are non-stationary. To identify bearing faults, 
numerous techniques have been proposed by various researchers. 
However, little research focused on image processing-based texture feature 
extraction for the identification of faults. The time-frequency image 
contains many sensitive fault information regarding bearing conditions, 
which can be extracted in the form of features. Therefore, in this 
paperwork, a methodology is proposed based on Fast Walsh Hadamard 
Transform (FWHT) time-frequency spectrogram, gray level co-occurrence 
matrix (GLCM), and machine learning techniques. A feature vector is 
constructed which consists of one dimension and two-dimension features 
extracted from Fast Walsh Hadamard Transform coefficients. To identify 
the fault conditions, LASSO-based feature ranking is applied to determine 
the suitable features. Finally, classifiers like Support vector machine 
(SVM), Random forest, and K-nearest neighbors (KNN) are evaluated for 
identifying bearing faults. Training, Testing, five-fold cross-validation 
performed on fusion feature vector. Results indicate that ranked fusion 
features are effective to diagnose bearing faults with good accuracy.  
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1. INTRODUCTION 
 

Rolling bearings are a key component used in industrial 
machinery. It is observed that failure of bearing leads to 
the breakdown of machinery and production losses, 
therefore the diagnosis of bearing faults is essential. In 
the last few decades, researchers identifies various 
techniques to diagnose bearing faults in running or 
stationary conditions. To avoid unexpected breakdowns 
and catastrophic failure of machinery various methods 
are used, like wear debris analysis, acoustic emission, 
vibration, thermal infrared, etc. Vibration-based fault 
diagnosis emerged as the most effective technique to 
diagnose faults, due to its effectiveness to monitor the 
conditions of machinery in a running state[1-6]. 
However, it is a challenging task to deal with the 
vibration signals which continuously change with time. 
Features computed from the time and frequency signals 
were examined in detail to diagnose multiple fault 
conditions in bearings[7]. When Fast Fourier Transform 
(FFT) is applied to detect an incipient fault, the 
harmonic characteristic frequency is difficult to detect 
due to the inherent noise. Therefore it is difficult to 
identify the characteristic frequency by direct spectrum 
analysis[8]. To analyze the non-stationery signal, the 
time-frequency analysis method has been successfully 
applied and found to be effective, due to the generation 

of both time and frequency information of signal 
simultaneously. Short-time Fourier transform (STFT) 
[9], Wavelet Transform [10], Empirical mode 
decomposition (EMD) are widely used and successfully 
applied to diagnose the faults[11]. However, each 
method has its pros and cons depending upon the nature 
of the signal and the effectiveness of techniques applied 
to diagnose faults. The drawback of STFT is fixed 
window size, which is not suitable to get good time 
resolution at higher frequencies and good frequency 
resolutions at lower frequencies simultaneously. On the 
other hand, Wavelet transforms (WT) emerge as an 
effective time-frequency signal processing technique to 
investigate and diagnose bearing faults. However, the 
selection of base wavelets is still a challenging task 
[12]. Huang et al.[13], proposed Empirical mode 
decomposition (EMD) as an adaptive signal time-
frequency method for the analysis of nonlinear and non-
stationary signals. Authors successfully applied EMD 
and its variants for fault diagnosis but it has a certain 
disadvantage too. Mode mixing is the biggest 
disadvantage of EMD, followed by a wide frequency 
band obtains from intrinsic mode functions. Recently 
the effectiveness of Walsh Hadamard transforms 
(WHT), to diagnose faults has been reported by various 
authors [14-15]. WHT is a generalized class of Fourier 
transform and its characteristics are, it is a non-
sinusoidal, orthogonal transformation technique that 
depends upon a set of basis or Walsh function. The size 
of the matrix is square waves with values of +1 or −1. 
Compared to the FFT, the fast Walsh-Hadamard 
transform (FWHT) requires less storage space and only 
uses real additions and subtractions, while the FFT 
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needs intricate details  [16]. Because of its unique 
advantage of representing signals with sharp discontinu-
es, it can be strongly applied in the field of fault diagno-
sis, signal processing, and image processing [12-17]. 
       In bearing, defects are classified as Ball defect 
(BD), Outer race defect (ORD), Inner race defect (IRD), 
cage defect, etc. Due to the operating conditions, 
geometry, and friction at surfaces, different faults are 
developed. When these fault characteristics are 
represented with either scalogram or spectrogram, then 
extraction of texture features plays an important role. 
Recently various authors conducted experimental 
studies to explore the suitability of texture features for 
bearing fault classifications. Texture analysis methods 
such as gray-level co-occurrence matrix (GLCM) [18], 
local binary patterns (LBP)  have been applied in tool 
condition monitoring[19], surface roughness 
determination [20] , face recognition [21], EEG 
classification [22] are some of the application areas 
where texture analysis is given significant results. 
GLCM which is proposed by Haralick et al. [18] is 
considered a powerful technique to analyze the texture 
features computed from the time-frequency 
spectrogram. GLCM is applied in various fields of 
engineering and medical science [23]. Chen et al. [24] 
proposed fault diagnosis methods relevant to texture 
features computation from adaptive optimal kernel time-
frequency spectrogram and uniform local binary 
patterns. A detailed experimental study has been carried 
out and the results reveal the usefulness of the 
methodology. In another study, texture features-based 
fault diagnosis methods using S-Transform and GLCM 
were proposed by Zhao et al. [25]. Results indicate the 
advantage of extracted texture features to identify 
various bearing faults using Support Vector Machine 
(SVM). Potential benefits of feature selection methods 
were explored to enhance the fault diagnosis accuracy. 
The aim is to identify significant features and discard 
irrelevant features, to form a new subset of feature 
vector which is less in dimension. Chi-Square feature 
ranking method utilized by Vinay et al. [26] to diagnose 
bearings faults using Random Forest and the diagnosis 
accuracy is found to be satisfactory. A ten-fold cross-
validation procedure was applied to get statistically 
unbiased results. Results reveal improvement in fault 
diagnosis accuracy when a ranked feature vector was 
used. Mutual Information [27], Fisher score [28], 
Malhanobis distance [29] are the techniques used for 
feature ranking. In the present study, a methodology is 
proposed to extract the 1-D and 2-D (time-frequency 
images) statistical features from Fast Walsh Hadamard 
Transform. LASSO feature ranking techniques have 
been applied to select the most informative features and 
a modified feature set was constructed. Case Western 
Reserve University (CWRU) bearing data set was used 
to conduct the experimental study. The combination of 
ranked feature vectors and classifiers is applied to get 
the maximum fault diagnosis accuracy. Considering the 
fewer variations in rotational speed of shaft, minimal 
fault size, the ranked feature set is divided into training 
and testing sets. To achieve statistically unbiased results 
k-fold cross-validation procedure is applied. The results 
obtained reveal the utility of the proposed method. The 

major advantage of the methodology is to utilize a novel 
feature set which consists of features extracted from 
vibration signals (1-D) and texture features (2-D) to 
diagnose the bearing faults. The paper is organized as 
follows: Brief descriptions of FWHT and GLCM is 
presented in Section 2 and 3. In Section 4 machine 
learning techniques are discussed in brief, followed by 
the LASSO feature selection technique in section 5. The 
experimental procedure and results are highlighted in 
sections 6 and 7. Finally, the conclusion is highlighted 
in section 8. Figure 1shows the methodology used to 
carry out the study. 

 
Figure 1. Flowchart for fault diagnosis methodology 

 

2. FAST WALSH HADAMARD TRANSFORM (FWHT) 
 

Fast Walsh-Hadamard transform can be applied in 
different fields of engineering like data compression, 
speech, and image processing. Due to its inherent 
characteristic of orthogonal transformation, a signal is 
decomposed into a rectangular waveform with only 
binary values of ± 1. This transformation has also been 
adopted as a low-complexity transform method for 
image processing. In this study, a fast version of WHT 
is used, as it doesn’t require storage space and takes less 
computational time compared to Fast Fourier Transform 
(FFT). The Fast Walsh-Hadamard transform (FWHT) 
for a signal  z(t) of length N can be given by: 

 1
0

1
,

N
n jj

y z WL n j
N


   (1) 

where j = 0, 1,…,N-1 and WL(n,j) are Walsh functions. 
The N number of elements is breakdown into two parts 
with N/ 2 number of elements after which they are 
combined to form FWHT [30]. 

 
3. GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) 

 
GLCM represents a configuration of how frequently 
different blends of pixel brightness appear in an image. 
A GLCM matrix is a method to calculate the 
relationship of an image pixel. The picture is a 
component of two variables (x,y). Gray Level Co-
Occurrence Matrix (GLCM) is a measurable technique 
for separating a textural include from a spectrogram 
image. The Gray-Co-Matrix function generates a gray-
level co-occurrence matrix (GLCM) by computing how 
often a pixel with the intensity value i appears with a 
spatial connection to a pixel with the value j.To 
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GLCM 

illustrate this, Figure 2 shows how the Gray-Comatrix 
quantifies the values in a GLCM. In the output of 
GLCM, element (1,1) contains the value 2 because there 
are only two instances in the input image while two 
horizontally adjacent pixels have the values 1 and 1, 
respectively. GLCM (5, 4) contains the value 1 because 
there is only one instance where horizontally adjacent 
pixels have values 5 and 4. The process continues for 
scanning the images to other pixel pairs (x,y) and 
calculates values for other corresponding elements of 
the GLCM [31]. 
 

 
 
 
 
 
 

 
 
 

Figure 2. GLCM matrix 

4. MACHINE LEARNING ALGORITHMS 
 

4.1 Support Vector Machine 
 

Due to its multiple disciplinary applications like EEG, 
condition monitoring, fault diagnosis, neuroscience, and 
many more, the support vector machine is the most 
preferable classifier[32]. It is one of the important 
machine learning algorithms. There are various types of 
kernels available i.e. linear, quadratic, cubic, Gaussian, 
etc. In this study, Radial Basis Function (RBF) kernel is 
considered. Kernel-based SVMs are implemented when 
data cannot be linearly separated by a hyperplane for 
classification[33]. 
 
4.2 K - Nearest Neighbor (KNN) Classifier 
 
The KNN is a memory-based classifier, it uses a 
majority vote ofk neighbor’s nearest distance to the 
instance which is in consideration. To calculate the 
distance between instances of various fault conditions, 
Euclidean distance is primarily used in feature space. 
The KNN performs pretty well in the scenarios where 
the decision boundaries are very irregular and where 
each class has several different subtypes [34-35]. It is 
considered an effective machine learning model for pre-
diction and it's applied satisfactorily for various applica-
tions such as fault diagnosis, image classification, etc. 
 
4.3  Random Forest (Ensemble Bagged Trees) 
 
Ensemble learning provides an advantage over the 
conventional decision trees algorithm as it uses a 
combination of different models to mitigate the bias of a 
single model. The Random Forest algorithm which 
employs the ensemble of bagged trees works similarly, 
by taking decision trees of various depths and splits 
randomly and creating an ensemble of trees. Bootstrap 
Aggregation (Bagging) creates multiple sets for training 
from a single data set [36]. Another advantage of this 
method is that the performance of a single decision tree 

does not matter and thus the trees with greater depth and 
splits can be trained without worrying about the issues 
of higher variance and thus overfitting. The prediction 
about the class of example is made by taking a majority 
vote from the individual members of the model [37]. 
 
5. FEATURE SELECTION USING LASSO 
 
LASSO (Least Absolute Shrinkage and Selection 
Operator) is useful for prediction as well as for feature 
selection. While applying ML, a feature vector is 
randomly split into training and testing of data, most 
often in the ratio 70:30.To avoid overfitting of data as 
well as to achieve a lesser variance with the tested data, 
regularization is carried out by computing a “penalty” 
parameter to the extracted coefficients [38].In general, 
regularization is of two types: L1 and L2. LASSO 
regression is based on the implementation of L1 
regularization which is based on sparse models to 
compute fewer coefficients. The variables which are 
having a non-zero coefficient after the shrinking process 
is applied, are preferred as a relevant feature. LASSO is 
mathematically represented as: 

 21 1
n p

i j ij j ji j
y x          (2) 

where λ represents the magnitude of shrinkage. For 
feature selection, λ =0 indicates all features are 
considered, and λ = ∞ indicates no feature is selected. 
Finally, it increases the interpretability of the model is 
increased by eliminating unrelated variables which are 
less associated and, in turn, allows to reduce overfitting 
[39]. 
 
6. EXPERIMENTAL PROCEDURE 
 
6.1  CWRU Dataset 
 
To carry out the study, bearing data from the Case 
Western Reserve University (CWRU) with different 
speeds and bearing conditions are taken into account [41]. 
The drive end of the motor and dynamometer are joined 
with the help of a coupling device, and with the help of 
the accelerometer vibration signal is captured which is 
shown in Fig. 3. Signals are recorded from the drive side 
of the bearing with different conditions as (1) normal 
bearing (NB); (2) inner race fault (IR); (3) ball fault (BF); 
(4) outer race fault (OR) and variation in rpm of the shaft 
are 1730, 1750, 1772 and 1797 rpm respectively. Parame-
ters of deep-groove ball bearing are listed in Table 1.  

 
Figure 3. Bearing Test Rig (CWRU) 

1 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 0 0 0 
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1 0 0 1 0 1 
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1 1 5 6 

2 4 5 4 

4 5 1 1 
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Table 1. Bearing Data 

Sr.No. Name Value 
1 Bearing type 6205 (SKF) 
2 Outside run dia. (mm) 52 
3 Inside run dia. (mm) 25 
4 Ball dia. (mm) 7.94 
5 Number of balls 9 
6 Contact angle   

 
6.2  Bearing Characteristic Frequency 

The bearing consists of four components: the outer race, 
inner race, ball, and cage. The corresponding 
frequencies associated is given by [40] :  

1 cos
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where fr is the rotational frequency of inner race d , is 
ball diameter, D  is pitch diameter, n  is the number of 
balls, and αis the contact angle. Fig.4 indicates the FFT 
plot of different bearing conditions like normal, inner 
race, outer race, and ball fault. We also observe that the 
frequency associated with it is reflected in the 
amplitude-frequency graph according to the above 
equations. Time response and FFT plot are shown in 
Fig. 4 (a-d) for normal bearing at 1750 rpm and 
maximum amplitude appears at varying compliance 
(VC) 85.22 Hz is shown, in Fig. 4 (a). For other fault 
conditions of bearing like inner race and outer race 
maximum peak is observed at 157.97 Hz and 104.52Hz 
respectively shown in Fig. 4 (b-c). Peak is observed at 
143.7 Hz, for ball fault which is double the peak of ball 
spin frequency (BSF), as shown in Fig. 4 (d). 
 

  

(a) 
  

(b) 
  

(c) 

  

(d) 
Figure 4: FFT plot at 1750 rpm category: (a) normal, (b) ball 
fault, (c) inner race fault (d) outer race fault. 
 

  

(a) normal bearing (b) ball fault 
  

(c) inner race fault (d) outer race fault 

Figure 5: Images for bearing at different fault sizes at 1750 
rpm category: (a) normal, (b) ball fault, (c) inner race fault 
(d) outer race fault. 

6.3  Fault Pattern Identification and Diagnosis 
Results 

 
After acquiring the signals, the Fast Walsh Hadamard 
Transform is applied to extract the features from vibration 
signals. From the extracted coefficients, various 
spectrograms are generated and GLCM is applied to the 
spectrogram to extract the features. The feature vector is 
constructed of size 64 × 46 which is the combination of 
one dimensional and two-dimensional features. The 
spectrogram of various states of bearing is shown in Fig. 
5. Each spectrogram shows the distinct characteristics of 
bearing conditions 1750 rpm. Fig. 5(a) shows the normal 
bearing condition at 1750 rpm. Likewise, Fig. 5(b) 
corresponds to the ball fault. Fig. 5(c-d) corresponding to 
inner fault defect and outer fault defect. We observed that 
color intensity and distribution of spectrogram are 
changing from healthy to the defective bearing.  It is 
difficult to distinguish the fault directly from the images. 
Therefore, some relevant texture feature has to be 
extracted for different fault conditions. One dimension 
and two dimensions features are mentioned in Table 2. 
The range of variation of each feature is different as 
compared to other features. To overcome this, feature 
normalization is done to ensure all the features are on a 
similar scale. Z-score Normalization is given by:  

_
i i

i scale
i

X
X





   (7) 
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where, 

iX  = Feature i  

i = Mean of Feature i 

i = Standard Deviation of Feature i 
 

7. RESULTS AND DISCUSSION 
 

To validate the utility of the methodology proposed, 
Random Forest, SVM, and KNN Ml models have been 
considered for training and fivefold cross-validation. The 
feature vector is constructed from 46 features computed 
from 64 experimental conditions. In the beginning, to 
develop ML models, all features are needed for training. 
Afterward testing and fivefold cross-validation are carried 
out to assess the efficacy of our proposed procedure for 
fault identifications. To execute, fivefold cross-validation, 
the features vector is split into five equal-sized folds and 
then five iterations are performed. In the first stage, one 
fraction of five-fold is utilized for testing and the 
remaining four fractions are used for training. Similarly, 
in the second stage, two parts are used for testing, and the 
remaining three parts are used for training. The process 
will continue, till five-fold and finally, the results of the 
average classification are obtained. To identify the 
relevant features, we performed a feature ranking with 
LASSO (Least Absolute Shrinkage and Selection 
Operator) and the classified features are listed in Table 2. 
These 46 features are ordered accordingly the modified 
feature vector is adopted for fault identification. Table 3, 
shows the fault identification accuracy achieved after 
applying training, testing, and five-fold cross-validations. 
As observed from  Table 3, 100 % training and testing 
accuracy was achieved with Random Forest and 93.8 % 
maximum accuracy with five-fold cross-validation. SVM 
identifies all faults with a maximum of 100 % training 
accuracy, and 78.90% testing accuracy with twenty-three 
ranked features. Similarly,81.3% five-fold cross-
validation accuracy at the fourth feature is reported from 
SVM. Another classifier, KNN identifies faults with a 
maximum 100 % training accuracy, with twenty-nine 
ranked features and 94.70% testing,92.2% five-fold 

cross-validation accuracy with twenty-sixth and twenty-
ninth features. Thus, it can be seen from Table 3 that 
compared to the other two classifiers, Random Forest 
offers the best identification accuracy with training, 
testing, and five-fold cross-validation. When Random 
forest is applied along with LASSO techniques, bearing 
faults are identified at less computational cost and with 
optimum accuracy. For multi-fault conditions, 
classification accuracy depicts the overall performance of 
the developed model. To know whether all fault 
conditions are predicted equally well, the confusion 
matrix plays a vital role. Table 4 shows the confusion 
matrix which allows us to visualize the individual class-
wise prediction of the performance of the machine 
learning algorithm. In our study, we have included the 
confusion matrix which is obtained after performing 
training and cross-validation on ranked feature vectors 
with different classifiers. In the confusion matrix, 
columns and rows represent the actual and predicted 
classes. The diagonal matrix depicts the cases, where 
predicted cases are equal to the actual cases. 

The Sum of all values of the diagonal matrix gives the 
predicted accuracy. While observing the confusion matrix 
obtained from SVM, all cases are correctly predicted 
when training of classifier was done whereas 52 cases are 
correctly predicted and 12 cases are incorrectly predicted. 
With Random Forest ML model, again all cases with all 
four conditions were predicted correctly from training, 
whereas 60 cases are predicted correctly and only 4 cases 
are predicted incorrectly with five-fold cross-validation. 
Similarly, with the KNN classifier, again all cases and all 
fault conditions predicted correctly with training and 59 
cases predicted correctly and 5 cases are incorrectly 
predicted respectively. It can be seen that Random forest 
gives maximum accuracy when cross-validation accuracy 
is considered followed by SVM and ANN respectively. 
Further, out of all three fault conditions, the ORD fault 
condition is predicted correctly as compared to the other 
two fault conditions and at the same time, the normal 
condition of bearing is predicted with 100 % accuracy. 

Table 2. Lasso Features 

Sr. No. Feature Name Sr. No. Feature Name 
1 Maximum Probability 24 Sum Entropy 
2 Information Measure of Correlation 2 25 Peak to RMS Ratio 
3 Energy 26 Crest Factor 
4 Covariance 27 Signal to Noise and Distortion Ratio 
5 Median  28 Norm Entropy 
6 Variance 29 Inverse Difference Normalized 
7 Mean 30 Kurtosis 
8 Homogeneity 31 Sum Average 
9 Inverse Difference 32 Difference Variance 
10 Information Measure of Correlation 1  33 Sum of Squares Variance 
11 Standard Deviation 34 Contrast 
12 Root Mean Square  35 Inverse Difference Moment Normalized 
13 Mode 36 Auto Correlation 
14 Correlation 37 Sure Entropy 
15 L Factor 38 Shape Factor 
16 Minimum Value in Signal 39 Sum Variance 
17 Maximum Value in Signal 40 Maximum to Minimum Difference  
18 Difference Entropy 41 Log Energy Entropy 
19 Entropy 42 Form Factor 
20 Root Sum of Squares  43 Cluster Shade 
21 Skewness 44 Cluster Prominence 
22 Shannon Entropy 45 Correlation Coefficient 
23 Dissimilarity 46 Threshold Entropy 
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Table 3. Training, Testing, and 5-Fold Cross Validation Accuracies 

Classifier 
 
 

Rank 

SVM Random forest KNN 

Training 
 

Testing 
 

5-fold 
Training 

 
Testing 

 
5-fold 

Training 
 

Testing 
 

 
5-fold 

 
1 56.3 42.10 43.8 92.2 42.10 40.6 90.6 42.10 37.5 
2 92.2 63.20 64.1 100 36.80 53.1 100 52.60 67.2 
3 92.2 63.20 71.9 100 47.40 60.9 100 57.90 75 
4 100 73.70 81.3 100 84.20 89.1 100 78.90 84.4 
5 100 52.60 65.6 100 63.20 79.7 100 52.60 73.4 
6 100 68.40 65.6 100 100 85.9 100 78.90 75 
7 100 57.90 56.3 100 73.70 85.9 100 78.90 71.9 
8 100 52.60 60.9 100 84.20 85.9 100 68.40 73.4 
9 100 63.20 53.1 100 94.70 84.4 100 63.20 75 
10 100 57.90 53.1 100 84.20 85.9 100 63.20 65.6 
11 100 57.90 67.2 100 84.20 84.4 100 68.40 75 
12 100 52.60 68.8 100 100 82.8 100 78.90 82.8 
13 100 68.40 64.1 100 84.20 79.7 100 73.70 70.3 
14 100 63.20 68.8 100 84.20 87.5 100 78.90 84.4 
15 100 68.40 59.4 100 100 89.1 100 68.40 84.4 
16 100 57.90 64.1 100 84.20 82.8 100 68.40 81.3 
17 100 57.90 57.8 100 94.70 84.4 100 84.20 84.4 
18 100 73.70 62.5 100 89.50 90.6 100 78.90 82.8 
19 100 68.40 67.2 100 78.90 85.9 100 73.70 84.4 
20 100 68.40 64.1 100 100 90.6 100 89.50 73.4 
21 100 56.30 57.8 100 100 85.9 100 75 84.4 
22 100 68.40 60.9 100 84.20 90.6 100 84.20 81.3 
23 100 78.90 64.1 100 84.20 93.8 100 89.50 84.4 
24 100 68.40 64.1 100 89.50 85.9 100 89.50 81.3 
25 100 52.60 64.1 100 78.90 87.5 100 73.70 87.5 
26 100 63.20 64.1 100 84.20 92.2 100 94.70 81.3 
27 100 57.90 54.7 100 89.50 76.6 100 78.90 89.1 
28 100 47.40 56.3 100 100 85.9 100 94.70 84.4 
29 100 47.40 56.3 100 84.20 92.2 100 94.70 92.2 
30 100 47.40 57.8 100 84.20 89.1 100 89.50 85.9 
31 100 47.40 57.8 100 84.20 87.5 100 94.70 81.3 
32 100 57.90 53.1 100 94.70 89.1 100 84.20 81.3 
33 100 68.40 53.1 100 84.20 81.3 100 84.20 89.1 
34 100 52.60 59.4 100 78.90 84.4 100 84.20 82.8 
35 100 68.40 57.8 100 78.90 85.9 100 94.70 85.9 
36 100 47.40 56.3 100 84.20 90.6 100 84.20 85.9 
37 100 52.60 54.7 100 94.70 89.1 100 89.50 84.4 
38 100 47 56.3 100 78.90 90.6 100 74 79.7 
39 100 57.90 56.3 100 89.50 89.1 100 78.90 85.9 
40 100 57.90 53.1 100 94.70 84.4 100 84.20 85.9 
41 100 52.60 56.3 100 89.50 92.2 100 78.90 82.8 
42 100 47.40 53.1 100 89.50 89.1 100 73.70 81.3 
43 100 52.60 54.7 100 84.20 90.6 100 94.70 81.3 
44 100 52.60 54.7 100 73.70 82.8 100 84.20 87.5 
45 100 52.60 57.8 100 78.90 92.2 100 73.70 79.7 
46 100 63.20 53.1 100 84.20 85.9 100 89.50 82.8 

Table 4. Confusion Matrix 

 BD NB IRD ORD 
BD 16 0 0 0 
NB 0 4 0 0 
IRD 0 0 16 0 
ORD 0 0 0 28 

 

 BD NB IRD ORD 
BD 10 0 1 5 
NB 0 4 0 0 
IRD 1 0 11 4 
ORD 0 0 1 27 

 

(a) Training accuracy (SVM)
 (b) Fivefold accuracy (SVM) 

 BD NB IRD ORD 
BD 16 0 0 0 
NB 0 4 0 0 
IRD 0 0 16 0 
ORD 0 0 0 28 

 

 BD NB IRD ORD 
BD 15 0 0 1 
NB 0 4 0 0 
IRD 1 0 13 2 
ORD 0 0 0 28 

 

(c) Training accuracy (SVM) (d) Fivefold accuracy (Random Forest) 
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 BD NB IRD ORD 

BD 16 0 0 0 

NB 0 4 0 0 
IRD 0 0 16 0 
ORD 0 0 0 28 

 

 BD NB IRD ORD 
BD 15 0 0 1 
NB 0 4 0 0 

IRD 0 0 13 3 

ORD 1 0 0 27 
(e)   Training accuracy (KNN) (f) Fivefold accuracy (KNN) 

 
8. CONCLUSION 

In this paper, bearing fault diagnosis is performed with 
the application of FWHT, LASSO, and ML models.  
From FWHT coefficients and GLCM features, a hybrid 
feature vector is initially constructed. with different 
bearing fault conditions. Important and meaningful 
features are identified from LASSO based feature 
ranking technique. Training, Testing, and cross-
validation accuracies are calculated using SVM, 
Random forest, and KNN models. The results indicate 
that the FWHTranked features identify various bearing 
faults with good accuracy and can be further extended 
to other signal processing methods and with the ranked 
features for different rotating machinery components 
like turbines, gears rotors, pumps, etc. 
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NOMENCLATURE 

FIR Inner Race Frequency 
FOR Outer Race Frequency 

FBALL Ball Frequency
FCage Cage Frequency
xi Ith Feature 
μi Mean of Feature i 
σi Standard Deviation of Feature i 
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ИДЕНТИФИКАЦИЈА ГРЕШАКА У 

КУГЛИЧНИМ ЛЕЖАЈЕВИМА ПРИМЕНОМ 
БРЗЕ ВОЛШ АДАМАРД ТРАНСФОРМАЦИЈЕ, 

LASSO ИЗБОРА КАРАКТЕРИСТИКА И 
КЛАСИФИКАЦИЈОМ НАСУМИЧНЕ ШУМЕ 

 
В. Дејв, Х. Такер, В. Вакхарија 

 
Да би се открило стање исправности машине, ана–
лиза временске фреквенције је ефикасан алат када 
су сигнали нестационарне природе. У циљу иден–
тификације грешке у лежајевима, разни истражи–
вачи су предложили бројне технике. Међутим, мало 
истраживања се фокусирало на екстракцију карак–
теристика текстуре засноване на обради слике за 
идентификацију грешака. Слика временске фрек–
венције садржи много осетљивих информација о 
грешкама у вези са условима лежаја, које се могу 
издвојити у облику карактеристика. Стога је у овом 

документу предложена методологија заснована на 
временско-фреквенцијском спектрограму брзе Волш 
Адамардове трансформације (ФВХТ), матрици ко-
појављивања сивог нивоа (ГЛЦМ) и техникама 
машинског учења. Конструише се вектор обележја 
који се састоји од једнодимензионалних и дво-
димензионалних обележја екстрахованих из коефи–
цијената Фаст Волш Адамард трансформације. Да 
би се идентификовали услови квара, примењује се 
рангирање карактеристика засновано на LASSO-у да 
би се одредиле одговарајуће карактеристике. 
Коначно, класификатори као што су машина за 
подршку векторима (МПВ), случајна шума и К-
најближи суседи (КНС) се процењују за идентифи–
кацију грешака у лежајевима. Обука, тестирање, 
петострука унакрсна валидација изведена на вектору 
карактеристика фузије. Добијени резултати показују 
да су рангиране карактеристике фузије ефикасне за 
дијагнозу кварова на лежајевима са добром 
тачношћу. 

 

 

 
 
 

 


