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Adaptive Model Predictive Control for a 
Magnetic Suspension System under 
Initial Position Dispersions and Voltage 
Disturbances 
 
A nonlinear magnetic suspension system consisting of a mechanical motion 
and electromagnetic circuit is considered in this paper. An online 
algorithm that is used to stabilize the suspended mass targeting the desired 
ball position, ball velocity and coil current is presented. A steady-state 
condition, in which the ball position, the ball velocity, and the coil current 
were assumed constant, was used as a reference trajectory for the closed-
loop simulations. An adaptive model predictive control method was 
employed to control the coil voltage while the discrete plant model and 
operating conditions were changed at each time step. The effectiveness of 
the proposed control law was validated in the presence of disturbances in 
initial ball position, steady-state ball position, suspended mass, and 
voltage using the Monte-Carlo simulation method. The sinusoidal, step, 
and impulse voltage disturbances were applied consequently to the system 
while imposing random dispersions of the initial ball position. Numerical 
results with five hundred trials illustrated that the designed algorithm can 
stabilize the system and track the desired reference without exceeding the 
state and input constraints despite the wide range of dispersions in initial 
ball position, steady-state ball position, suspended mass, and input voltage 
disturbances.  
 
Keywords: Predictive control, magnetic, suspension system, voltage 
disturbance, Monte-Carlo simulation. 
 

 
 

1. INTRODUCTION  
 

The magnetic levitation and suspension systems can be 
used to reduce the friction between moving surfaces. 
These systems attracted researchers' attention due to 
their wide range of applications. A lot of applications 
have been presented in the literature showing that 
magnetic levitation is used to improve efficiency. For 
example, it is used for trains of high speed [1], magnetic 
bearing [2], a gyroscopic suspension system [3], wind 
turbine [4, 5], vibration isolation, quick response tool 
applications [6-8], and space mission for launch 
assistance system [9].  

The magnetic levitation system presents a non-
mechanical contact force as a magnetic force developed 
in the air gap and that motivated the researchers to pay 
more attention regarding using it in numeral 
applications. However, the problem of controlling the 
position throughout these systems has been representing 
the main challenge. The theories of classical control 
have presented several designs for this purpose. 
However, ensuring steady and smooth performance was 
not quarantined because of using the classical strategies 
of constant linear control which failed rapidly because 

of deviation from the normal response.  Furthermore, 
because of the inherent nonlinearities and the open-loop 
insatiability feature of the magnetic suspension system, 
the development of a high-performance design for 
controlling the position became critical. In addition, the 
controller, usually, for these systems is designed to 
ensure the levitated part to be closer to the nominal and 
desired value, otherwise, the controller performance will 
be hindered by either system nonlinearities or distur–
bance in the system input (voltage, as an example). The 
first attempts of the design methods for the linear and 
nonlinear feedback controllers were noticed in 1996 and 
2001 by Baire and Chiasson [10] and El Haj-jaji and 
Ouladsine [11], respectively. These methods were built 
based on feedback linearization [12]. 

 Other techniques of the feedback linearization cont–
rol were reported by many researchers [13-16]. How–
ever, in [13] and [14], those techniques were imple–
mented for transforming the model of the magnetic 
systems into a comparable and equivalent model with a 
simpler model. Within the simplified models of the 
magnetic suspension systems, only the nominal para–
meters of the systems were taken into account in the 
design of the feedback linearization. This usually re–
sulted in the presence of instability and performance 
depreciated because of the variations of the system 
parameters due to the thermal losses. In [17], the system 
nonlinearity was approximated by using Taylor's series 
expansion with reduced orders only, where the higher-
order terms were neglected and that affected the 
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modeling performance.  The control system was 
guaranteed the systems theoretically, and relatively 
large oscillations and overshoots were noted in the 
transient analysis in the experimental test, especially 
with introducing uncertainties.  Adaptive and robust 
controllers have been introduced in [18]. 

 Nonlinear controller and quantitative feedback 
technique have been reported to design a 2-DOF 
controller to reduce the effect of the uncertainties in the 
system parameters [19, 20]. Therefore, developing a 
simple and efficient method for controlling the magnetic 
suspension system even in the presence of system 
uncertainty became necessary. 

In recent years, sliding mode control has been 
presented, where the magnetic levitation system has 
been modeled as a second-order differential equation 
[21]. However, the experimental setup does not match 
the theoretical modeling because of the assumption of 
frictionless motion of the levitation object. That exhi–
bited an oscillatory response toward the desired posi–
tion. In addition, the response of the open-loop system 
showed an underdamped response which resulted in 
logarithmic decrement before getting the steady-state 
response (desired position). Therefore, it is important to 
design a controller that responds with no overshoots. In 
[22], the H-infinity controller was designed for a ball-
plate system to stabilize the ball with specific per–
formance characteristics. A robust controller was 
designed in [23] for magnetic suspension systems using 
the discontinuous integral method. Theoretical and 
experimental results showed that the designed controller 
was able to achieve good tracking characteristics for the 
magnetic suspension system. A homogenous discon–
tinuous integral method was used in [24] to design a 
sliding mode robust controller that provides smooth and 
accurate tracking. The performance of the designed 
controller was assessed experimentally by applying it to 
a magnetic suspension system which confirmed its 
effectiveness of it. In [25], a flux path control was used 
to design a magnetic suspension system. A model was 
constructed and a proportional-derivative (PD) control–
ler was designed. The results showed that when a small 
step or force disturbance is applied to the system, a new 
equilibrium position for the suspended ball will be 
reached under the real-time control system effect. 

Several researchers have considered some algo–
rithms to improve wind turbines performance [26] and 
[27]. In [26], a new algorithm to optimize a wind tur–
bine position relying on a genetic optimization metho–
dology was proposed. Using the presented technique, 
the aerodynamic wind model has been improved despite 
the effects of viscous fluid flow. While in [27], a 
fabrication of wind turbine rotor blades has been 
developed experimentally based on composite materials.  

The proposed model was verified using CATIA and 
Gerber Garment systems.  

The magnetic levitation has been utilized to 
compute well-suited aerodynamics coefficients for both 
transonic and subsonic aircraft. In [28], Subsonic wind 
tunnels supported by bent sting and external model were 
considered. The presented model has been tested under 
conditions that are significantly similar to aircraft real 
conditions. The simulated results have validated the 

experimental results to compute well-suited aircraft 
aerodynamic coefficients. In [29] and [30], T-35 4.4 m 
× 3.2 m and VTI’s subsonic wind tunnels, respectively, 
were considered. The system performance was tested in 
the presence of wind tunnel and instruments 
calibrations. The results insured an effective 
performance compared to prior subsonic wind tunnel 
models. In [31], six wind tunnels with three transonic 
Mach numbers were considered. The simulated results 
illustrated reasonable drag polar coefficients at sonic 
Mach number compared with other transonic Mach 
numbers.  

Other novel algorithms to stabilize magnetic sus–
pension systems were considered. In [32], and analytical 
strategy to shape system references was proposed. The 
linear control method "Gain Shechting "was utilized to 
steer the suspended mass tracking the generated reference 
profiles in the presence of ball position disturbances. 

Despite many prior works that have stabilized the 
magnetic levitation system numerically or optimally, 
several of these methods are not applicable or feasible 
to be solved in real-time as well as they cannot app–
ropriately cope with wide disturbances of  states and 
inputs. 

This paper presents an online algorithm that utilizes 
steady-state conditions to generate the desired refe–
rences. An adaptive model predictive control, which 
updates the system plant model at each time step, was 
used to create the coil voltage profile that tracks the 
reference profiles. The magnetic suspension system ro–
bustness was considered when the system's initial ball 
position, steady-state ball position, suspended mass, and 
coil voltage experience uncertainty under the proposed 
control law. In this work, random initial ball position, 
steady-state ball position, suspended mass, and voltage 
signal disturbances were considered by using three 
types of input disturbances, sinusoidal, step, and im–
pulse which fed consequently to the system. Monte-
Carlo simulation method was used to demonstrate the 
effectiveness of the proposed algorithm  
 
2. SYSTEM MODEL  

 
The main goal of the magnetic suspension system is to 
stabilize and balance the suspended mass at a certain 
position while satisfying all the system constraints. In this 
work, the voltage was considered as a command (the 
control factor) to control the rigid body ball position. The 
schematic diagram of the magnetic suspension system, 
consisting of a mechanical motion and electric circuit, is 
shown in Fig. 1 [33]. Where m is the mass of the 
suspended ball, y is the position of the ball measured 
from a reference position (y = 0) and directed downward, 
i is the current in the coil, f(y,i) is the magnetic force 
between the electromagnetic system and iron ball 
generated by the electric current (i), u is the control 
voltage, and g is the gravitational acce–leration. 

The inductance (L) of the electromagnetic system 
can be described as a function of the ball position as 
follows [26], 

                                
0

1( )
( )

aL
L y L

a y
 


                                     (1) 
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Figure 1: Magnetic Suspension System Model 

Where L0, L1, and a should be positive constants to 
provide positive coil inductance. Clearly, Eq. (1) shows 
that the inductance increases to reach it maximum value 
(L = L1+ L0) when the ball is moved to (y =0) while it 
takes a minimum value (L=L1) when the ball is located 
at the reference point (y = ∞). A profile of the proposed 
inductance is illustrated in Fig. 2. 

The equation of the motion of the ball can be 
modeled using Newton's second law, so that: 

             ( , )my ky mg f y i                          (1) 

where k is a viscous friction coefficient (not shown in 
Fig. 1 for simplicity). 

The energy stored in the electromagnetic circuit can 
be easily computed by,  

21
( , ) ( )

2
E y i L y i   (2) 

 
Figure 2: Inductance Profile 

A simple way to find the generated magnetic force f 
(y,i) can be accomplished by differentiating Eq. (3) 
concerning the ball position, so that:   

2

0

2
( , )

2 (1 / )

L i
f y i

a y a



                 (3) 

By applying Kirchhoff’s voltage law, it is obtained, 
  

V Ri                             (2) 

where   is the magnetic flux linkage, which can be 

defined as, 

( )L y i                                (6) 

The set of nonlinear models can be described as a 
state-space representation (SSR) formed by supposing   

1 2 3[ ] [ ]x x x x y y i   are the system states and u =V is 

the system input as follows,  
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Figure 2. Reference magnetic profiles for m=0.15 kg and 
y0=0.04 m; (a) ball position vs. time; (b) ball velocity vs. 
time; (c) coil current vs. time; (d) coil voltage vs. time 

Hence, the state space representation (SSR) can be 
expressed in a linear standard form as, 

( ) ( )c c

c c

x A x x B x u
Y C x D u
 
 


                     (8) 
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where n n
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where  
n m

cB   
The state-space representation model of the pro–

posed system for three states (n =3) and one input (m 
=1) can be written as,  
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         [0 0 1], [0]c cC D                (13) 

It is noted that the matrices are highly nonlinear in 
terms of the ball position, ball velocity, coil current, and 
coil voltage, while other system parameters are constant 

as shown in Table 1. The model is obtained as a 
continuous state-space model as described by Eqs. (10, 
11, 12, and 13). However, in our work, a discrete-time 
state-space model is needed to model the controller. 
Thus, the discrete-time state space can be described as 
follows, 

              
( 1) ) ( ) ( ) )

( ) ) )

x k A(x x k B x u(k

Y k C x(k Du(k

     
 

  
         (14) 

where A(x) and B(x) are obtained by sampling the conti–
nuous state-space system. 
 
3. MAGNETIC SUSPENSION REFERENCE  

 
The nonlinear system can be stabilized around either an 
equilibrium operating point or a specific trajectory. A 
steady-state condition, which assumes that the ball 
position, the ball velocity, and the coil current, are cons–
tants, was used to generate a reference trajectory. The 
steady-state position was assumed to be known (yss = 
0.045m). Hence, the steady-state conditions can easily be 
achieved by substituting x1= yss and setting Eq. 7 to zero; 
therefore, the reference position, velocity, current, and 
voltage can be obtained respectively, as follows,  

2

0
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v
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 

                  (15) 

 
Figures 3(a)-3(d), present the reference ball position, 

ball velocity, coil current, and coil voltage profiles, 
respectively. It is noticed from Fig.3 that all the 
reference states and input have constant values during 
the simulations and their values are: yss=0.045m, vss=0 
m/s, iss=7.288 Amp, and Vss=7.288 Volt. 

 
4. ADAPTIVE MODEL PREDICTIVE CONTROL 

 
The main purpose of this work is to stabilize the 
proposed magnetic suspension system around the 
steady-state profiles within 0.5 sec. We have presented 
an adaptive model predictive control (AMPC) to com–
pute gains at each time step, while the discrete plant 
model and operating conditions are changing.  

The AMPC is a powerful optimization strategy for 
feedback control based on a model of a system. This model 
runs forecast forward in time for different actuation 
strategies input to optimize the control over a short period. 
Essentially, this method determines the immediate next 
control action based on the opti–mization. Once the next 
control optimization has been applied, the optimization is 
reinitialized by moving the time window over to find the 
next control. These processes, essentially, keep matching 
that window forward and forward in time. The adaptive 
model predictive control is designed based on a model 
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predictive control; however, the proposed control method 
updates the discrete plant model and operating conditions 
at each time step. The model predictive control objective 
function can be formulated as [34]: 

 
-1

0

( / ) ( / ) ( / )
( )

( / ) ( / ) ( / )

T TN

Tj N

x k j k Qx k j k u k j k
J k

u k j k x k N k Q x k N k

       
      

  (16) 

where the weight matrix for the state n nQ  and the 

weight matrix for the input effort m m is positive-
semi definite and positive definite, respectively. The 

terminal weight matrix n n
NQ    can be computed by 

solving the discrete-time Lyapunov equation [35], 

( )- ( ) ( )- ( ) - ( ) 0
T

LQR LQR NA x B x k X A x B x k X Q x           (17) 

where kLQR is the optimal gain vector obtained by using the 
Linear Quadratic Regulator (LQR) method [36] and [37]. 

The predicted states and input within using five 
prediction steps (N=5) can be expressed as shown in 
Eqs. (18) and (19), respectively.  
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where n NX   and m NU   

Hence, the predicted state sequence is:   

       ( ) (| )k kX k M k x S k Uk             (20) 

( ) n N n NM k     and ( ) n N m NS k      can be 

defined as, 
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  (21) 

The block diagonal matrix ( Q ) can be written based 

on the weighting matrix (Q) and the terminal weight 
matrix NQ   as follows, 
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              (22) 

where ( ) n N n NQ k     . In addition, the block diago–

nal matrix ( R ) can be written based on the weighting 
matrix ( ) as follows, 
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where m N m NR      
It is convenient to convert the model predictive con–

trol scenario into a standard Quadratic Programming 
(QP) one, which objective function can be obtained as 
follows,       

TH S Q S R     (25) 

where m N m NH     , is a positive definite Hessian 

matrix which can be obtained as follows, m NF  , is 
the linear part of the QP objective function and can be 
obtained as follows, 

TF S Q M    (26) 

Hence, the model predictive gain can be computed by: 

1

MPC
k H F    (27) 

Then, the coil voltage can be evaluated as follows, 

1

2

3

( )

( )

ss

ss MPC

ss

x y

V V k x

x i

 
 
  
 
  

                (28) 

The first term of the model predictive control is used 
to stabilize the magnetic suspension system for tracking 
the reference ball position and steady-state current. The 
adaptive model predictive control is designed based on a 
model predictive control; however, the proposed control 
method updates the discrete plant model and operating 
conditions at each time step. Hence, all the model 
predictive control processes are required to be repeated 
in a specific order to update the control over a short 
period.  
 
5. NUMERICAL RESULTS 

 
The objective of dispersion trails is to evaluate the 
performance of the online magnetic algorithm in the 
presence of large perturbations in the initial ball 
position. Nominal and off-nominal simulations were 
tested by integrating the set of nonlinear model Eq. (7) 
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numerically using a fixed-step, Runge-Kutta solver 
(MATLAB's ode4). The coil voltage was computed 
using the steady-state ( ssV ) and closed-loop commands 

to track the desired trajectory. It is important to mention 
that ball position and input voltage were constrained 
with upper and lower values. The ball position profile 
should be within the interval [0- 0.1] m while the input 
voltage profile is limited to be between [0-15] volt [26]. 

  In summary, the steady-state condition was used to 
generate the reference trajectory for a known steady-
state ball position Eq. (15). Then the closed-loop 
command was designed instantaneously based on the 
current discrete system and the operating conditions 
using the adaptive model predictive control Eq. (27). 
Finally, open and closed-loop commands were obtained 
to stabilize the suspended mass targeting the steady-
state ball position, ball velocity, and coil current under 
nominal and off-nominal conditions Eq. (28).   
 
6. RESULTS AND DISCUSSION  
 
6.1 Nominal Conditions 

 
The nominal initial conditions for the magnetic 
suspension system were taken from [33]. During the 

nominal simulation, there was no disturbance in the coil 
voltage and the nominal conditions were m= 0.15 kg 
and y0=0.04 m. Figures 4(a)-4(d), show the reference 
and nominal ball position, ball velocity, coil current, 
and coil voltage profiles, respectively. The red lines 
show the reference trajectories while the blue lines 
demonstrate the closed-loop nominal profiles using the 
adaptive model predictive. As mentioned previously, 
during the nominal simulation, no disturbance was 
applied to the input voltage. It is noted that the 
responses of all states were quite smooth and stable 
without exceeding the state and input constraints. The 
peak of the ball position response (overshoot) was 
relatively small and the system needed only 0.65 sec to 
reach the desired profile for all system states. The final 
state errors were very small because of the mechanism 
of the adaptive model predictive control, which iterated 
the response at each step time until gathering the 
converged response to the reference ball position. These 
results show the ability of the proposed control to get a 
fast response with limited input energy. However, it is 
unlikely to assess the effectiveness of the proposed 
algorithm without taking the off-nominal conditions into 
account. 

 
Figure 4. Nominal magnetic profiles for m=0.15 kg and y0=0.04 m without voltage disturbance; (a) ball position vs.  time; (b) 
ball velocity vs. time; (c) coil current vs. time; (d) coil voltage vs. time 



FME Transactions VOL. 50, No 1, 2022 ▪ 217
 

 

6.2 Off-Nominal Conditions 
 
6.2.1 Initial Ball Position and Input Voltage distur– 

  bances 
 
Many dispersed initial ball positions were tested to 
illustrate the robustness of the proposed magnetic 
suspension algorithm. In this work, we impose random 
initial ball position conditions and input voltage 
disturbances. Three disturbance functions, sinusoidal, 
step, and impulse were applied to the coil voltage after 
reaching the steady-state conditions. The off-nominal 
conditions of the initial position and voltage are shown 
in Tables 2 and 3, respectively.   

Parametric uncertainty is not unusual in dynamic 
systems because these systems usually work under non-
ideal conditions where the design parameters may 
change. Therefore, taking such changes into account, 
when designing a control system, is important [38]. 
Monte-Carlo simulation was utilized to perform the 
proposed online magnetic algorithm by considering 500 
trials for each disturbance of the coil voltage as well as 
considering the random dispersions of initial ball 
positions as shown in Tables 2 and 3. 

Table 2 Off-nominal initial position 

Parameter Max value (m) Min value(m) 
Initial Position    0     0.08 

Table 3: Off-nominal voltage disturbances 

Input 
voltage 

Max freq. 
(H) 

Min freq. 
(H) 

Max 
ampl. 
(Volt) 

Min ampl. 
(Volt) 

Sinusoidal 20 5 0.25 0.05 
Step - - 0.25 0.05 

Impulse - - 0.25 0.05 
 

The input disturbances were applied consequently to 
the system. The sinusoidal disturbance was added first 
to the coil voltage after reaching the steady-state 
conditions at t = 0.9 sec. Then the step disturbance was 
applied to the voltage between [1.1-1.15] sec, and even–
tually, the impulse disturbance was taken into account at 
t = 1.15 sec. This combination of the disturbance 
functions was employed to perform the ability of the 
proposed algorithm to stabilize the system quickly with 
a lower overshoot. 

Figures 5(a)-5(c) present the 500 trials of ball 
position, ball velocity, coil current histories, respec–
tively. These figures match the steady-state conditions 
well in the presence of large dispersions of initial ball 
position and voltage uncertainties. Figure 5(a) was 
obtained to be feasible because all of the ball position 
profiles track the references perfectly within the interval 
[0 - 0.1] m. Figure 5(d) shows 500 closed-loop voltage 
histories. As seen from Fig. 5(d), the steady-state time 
and overshoot vary due to the variation of system 
inputs. This figure shows that the actual trajectories 
track the steady-state references and satisfy the closed-
loop voltage limitation [0-15v]. In addition, as the 
differences between the nominal and off-nominal values 
of the uncertain parameters become larger, the time 
required to reach the steady-state conditions increases. 

 
Figure (5) Off-nominal magnetic profiles with dispersions 
of initial ball position and voltage disturbance; (a) ball 
position vs. time; (b) ball velocity vs. time; (c) coil current 
vs. time; (d) coil voltage vs. time. 

 
a) 

 
b) 
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c) 

 
d) 

Figure 6. Histograms of final errors from 500 Monte-Carlo 
simulations; (a) ball position errors; (b) ball velocity errors; 
(c) coil current errors; (d) coil voltage errors 

Table 4. Statistics for state and input errors under initial 
ball position and input voltage disturbances. 

State error 
Mean 
value 

Standard 
deviation 

Minimum 
value 

Maximum 
value 

( )y m  0.000006 0.000005 -0.0000024 0.000172 

( / sec)v m  -0.00042 0.00037 -0.001252 0.00019 

( )i Amp  0.00361 0.00334 -0.00134 0.00988 

( )V Volt  0.00343 0.002962 -0.00117 0.008499 

 
In summary, the adaptive algorithm has successfully 

led the system to the desired values despite the wide range 
of dispersions of initial ball positions and coil voltages. 

Figures 6(a)-6(c) present the statistical results of the 
final ball position error, final ball velocity error, final 
coil current error, and final coil voltage error, 
respectively. Figure 6 and Table 4 summarize the 
Monte-Carlo simulation results. These statistical results 
demonstrate that the minimum and maximum values are 
nearly close to the steady-state conditions, and all the 
standard deviations are insignificant. Thus, the 
simulated results illustrate the effectiveness and ability 
of the proposed algorithm to stabilize the magnetic 
suspension system.  

 
6.1.3 Initial Ball Position, Steady State Ball Position, 
         and Ball Mass Disturbances   
 
Next, we implemented a Monte-Carlo simulation 
consisting of 500 suspension system trajectories with 

random dispersions in the initial ball position, steady-
state ball position, and ball mass. The random states 
have uniform distributions with mean values equal to 
the nominal states shown in Table 5. Limits for the 
uniform distributions are 50 % from the nominal 
values for initial ball position and steady-state position 
and  66.7 % for ball mass as shown in Table 5.   

Figures 7(a)-7(c) present the 500 trials of ball 
position, ball velocity, coil current histories, respec–
tively. These figures match the steady-state conditions 
well in the presence of large dispersions of the initial 
ball position, steady-state ball position, and suspended 
mass uncertainties Although the ball position, coil 
current, and coil voltage show different final values in 
different simulations Eq. (15), they reach the zero ball 
velocity at the steady-state condition. Figure 7(a) was 
obtained to be feasible because all of the ball position 
profiles track the references perfectly within the interval 
[0 - 0.1] m. Figure 7(d) shows 500 closed-loop voltage 
histories. As seen from Fig. 7(d), the steady-state time 
and overshoot vary due to the variation of system 
inputs. This figure shows that the actual trajectories 
track the steady-state references and satisfy the closed-
loop voltage limitation. In summary, the adaptive 
algorithm has successfully led the system to the desired 
values despite the wide range of dispersions of initial 
ball position, steady-state ball position, and ball mass.  

 

a) 

 
b) 
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c) 

 
d) 

Figure (7) Off-nominal magnetic profiles with dispersions 
of initial ball position, ball mass, and steady-state position; 
(a) ball position vs.  time; (b) ball velocity vs. time; (c) coil 
current vs. time; (d) coil voltage vs. time 

Table 5: Uncertain System Parameters   

System 
Parameter 

Nominal 
value 

Maximum 
value 

Minimu
m value 

Initial ball 
position (m) 

0.04 0.08 0 

Steady state 
position (m) 

0.045 0.09 0 

Ball mass(kg) 0.15 0.25 0.05 
 

Figures 8(a)-8(c) present the statistical results of the 
final ball position error, final ball velocity error, final 
coil current error, and final coil voltage error, respec–
tively. Figure 8 and Table 6 summarize the Monte-Carlo 
simulation results. These statistical results demonstrate 
that the minimum and maximum values are nearly close 
to the steady-state conditions, and all the standard 
deviations are insignificant. Thus, the simulated results 
illustrate the effectiveness and ability of the proposed 
algorithm to stabilize the magnetic suspension system.  

Table 6. Statistics for state and input errors under initial 
ball position, steady-state ball position, and ball mass 
disturbances  

State error 
Mean 
value 

Standard 
deviation 

Minimum 
value 

Maximum 
value 

( )y m  0.000007 0.000006 -0.0000074 0.000346 

( / sec)v m  -0.00053 0.00039 -0.00272 0.00049 

( )i Amp  0.00462 0.0013 -0.00482 0.0244 

( )V Volt  0.001224 0.0029512 -0.0041 0.0191 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 8. Histograms of final errors from 500 Monte-Carlo 
simulations; (a) ball position errors; (b) ball velocity errors; 
(c) coil current errors; (d) coil voltage errors 
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7. CONCLUSIONS  
 
A new algorithm for the magnetic suspension system 
has been developed. The steady-state condition served 
as the reference profile for ball position, ball velocity, 
and coil current. The closed-loop command was 
designed instantaneously based on the current discrete 
system and the operating conditions using the adaptive 
model predictive control method. The proposed 
algorithm was tested in the presence of nominal and off-
nominal conditions. First, under the nominal conditions, 
the peak of the ball position response (overshoot) was 
relatively small and the system needed only 0.65 sec to 
reach the desired profile for all system states. Second, 
under the consequent input disturbances, the algorithm 
was successfully able to stabilize the system quickly 
with a lower overshoot. Eventually, under the wide 
range of the system parameters dispersions, the 
reference profiles were tracked perfectly by the actual 
profiles without exceeding the state and input 
constraints. Finally, the Monte-Carlo simulation results 
performed the effectiveness and robustness of the 
proposed algorithm.   
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NOMENCLATURE 

L(y), Lo, L1 Positive constants 
i(t) Coil current 
m Ball mass  
g Gravitational acceleration 
R Circuit resistance 
y The position of the ball 
f Magnetic force 
  Magnetic flux 

k Viscous friction 
x1, x2,x3 System states 
u System input 
A, B Matrices for linearization 
E Electrical energy 
vss Steady-state velocity 
yss Steady-state position  
Vss Steady-state voltage 
iss Steady-state current 
Q Weight matrix for the states 
  Weight matrix for the input 

Q  
Block diagonal matrix for states 

R  Block diagonal matrix for input 
H Positive-definite Hessian matrix 
F Model predictive gain 

 

 
ПРЕДИКТИВНА КОНТРОЛА АДАПТИВНОГ 

МОДЕЛА ЗА СИСТЕМ МАГНЕТНОГ 
ВЕШАЊА ПОД ДИСПЕРЗИЈАМА ПОЧЕТНЕ 
ПОЗИЦИЈЕ И ПОРЕМЕЋАЈИМА НАПОНА 
 
Ф.Ф. Ал-Бакри, С.О.В. Кафаџи, Х.Х. Али 

 
У раду се разматра нелинеарни систем маг–нетног 
ослањања који се састоји од механичког кретања и 
електромагнетног кола. Представљен је онлајн 
алгоритам који се користи за стабилизацију 
суспендоване масе циљајући жељену позицију 
лопте, брзину лопте и струју завојнице. Стање 
стационарног стања, у коме су положај лопте, 
брзина лопте и струја завојнице претпостављени 
константни, коришћен је као референтна путања за 
симулације затворене петље.  
Метода предвиђања адаптивног модела коришћена 
је за контролу напона завојнице, док су модел 
дискретног постројења и радни услови мењани у 
сваком временском кораку. Ефикас–ност 
предложеног закона управљања је потвр–ђена у 
присуству поремећаја у почетној позицији лопте, 
стабилном положају лопте, сус–пендованој маси и 
напону коришћењем методе Монте-Карло 
симулације. Синусоидни, степе–насти и импулсни 
напонски поремећаји приме–њени су последично на 
систем док су наметнуте насумичне дисперзије 
почетне позиције лопте. Нумерички резултати са пет 
стотина покушаја су илустровали да дизајнирани 
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алгоритам може стабилизовати систем и пратити 
жељену референцу без прекорачења стања и 
улазних ограничења упркос широком опсегу 

дисперзија у почетној позицији лопте, стабилном 
положају лопте, суспендованој маси и улазном 
напону сметње. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


