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An Application Of Dingo Optimization 
Algorithm (DOA) For Solving 
Continuous Engineering Problems 
 
In the current research, problems in engineering are becoming more and 
more prominent. One of the classes of engineering problems in 
engineering design problems, where a set of variables is calibrated in 
order for the optimization function to have a minimal or maximal value. 
This function considers energy efficiency, cost efficiency, and production 
efficiency in engineering design. One of the ways such problems are solved 
is metaheuristics. In this paper, we demonstrate how Dingo Optimization 
Algorithm (DOA) can be used to solve certain optimization problems in 
mechanical engineering. Firstly, a brief review of the DOA and its 
biological inspiration is given, along with the most important formulae. 
The pseudo-code for this algorithm was written using MATLAB R2020a 
software suite. Dingo Optimization Algorithm (DOA) was used to optimize 
engineering problems, such as pressure vessel optimization, stepped 
cantilever beam, car side-impact, and cone clutch optimization. The results 
presented in this paper show that the DOA can produce relevant results in 
engineering design problems. 
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1. INTRODUCTION  
 
Most engineering problems can be formulated as 
optimization problems. Different methods have been 
studied in mathematical programming, operations 
research, etc. Since 2000, quite a few novel 
metaheuristics have been developed to solve 
optimization problems better. Today, the most famous 
biologically inspired metaheuristic algorithms are 
Whale Optimization Algorithm (WOA), Genetic 
Algorithm (GA), Ant Colony Optimization (ACO), 
Differential Evolution (DE), Lion Optimization 
Algorithm (LOA), Grasshopper Optimization Algorithm 
(GOA), Sine Cosine Algorithm (SCA), Bat Algorithm 
(BA), Particle Swarm Optimization (PSO), Grey Wolf 
Optimizer (GWO), Simulated Annealing (SA), etc. The 
differential evolution algorithm (DE) was applied by 
Gašić, Abderazek for solving structural optimization 
problems [1]. In the paper by Khalifeh et al. [2], Harris 
Hawks’ Optimization (HHO) was used to optimize a 
practical problem of a city in Iran called Homashahr, 
where the problem was minimizing the cost of the water 
distribution network. The solution yielded by the 
algorithm was compared to the current cost of the 
network, and the algorithm optimized that cost.  
 In computer science, a particular class of problems 
exists called NP-complete problems or nondeterministic 
polynomial problems. The main characteristic of such 
problems is that the solution space is large to the extent 
that searching it systematically and in detail demands 
temporal and spacial computer resources in plethora. 

This means that a given problem' solution may be 
verified in polynomial time, but whether or not there is 
a solution cannot be determined. One method of solving 
such problems is using metaheuristics. Metaheuristics 
represent a semi-randomized approach to tackling the 
solution space.  

There are two parts to each metaheuristic 
algorithm: exploration and exploitation. Since the 
search space is large, it must be explored using a 
randomized best-effort approach, which is done during 
prospecting. This performs "large hops" in solution 
space but does not pursue the best solution in detail. 
After a part of the solution, space is chosen, it is the job 
of exploitation to systematically search all possibilities 
in the vicinity. Metaheuristic algorithms may use one 
solution to solve a certain problem (called s-based or 
single solution metaheuristics) or a population of 
solutions (called p-based or population-based). S-based 
transforms a single solution to solve a problem, while 
the p-based uses a population of solutions to search the 
solution space and converge to the best member of the 
population. S-based metaheuristics conserve computer 
memory, but special considerations should be taken in 
exploring the neighborhood of a solution and the 
solution space. P-based metaheuristics cover the 
solution space better while lacking the flexibility and 
the memory efficiency of s-based metaheuristics. 
Typical representatives of the s-based metaheuristics are 
Local Search, Simulated Annealing, and Variable 
Neighborhood Search. In contrast, the typical 
representatives of the p-based Meta-heuristics are 
Whale Optimization Algorithm, Genetic Algorithm, and 
Ant Colony Optimization. 
 Metaheuristic algorithms have been applied to 
many engineering problems, namely in the field of 
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engineering design [3,4], industry scheduling [5,6], and 
machining [7]. 

The whale optimization algorithm [8] (WOA) mi–
mics the behavior of humpback whales. This algo–rithm 
was used to solve various optimization problems, such 
as the knapsack problem [9] and the traveling salesman 
problem [10]. Other search agents are moving towards 
the prey, which is the current best solution, with varying 
strategies. In the exploration phase, each whale moves 
towards a random whale to further explore the search 
space, while in the exploitation phase, the whales 
encircle the prey and move towards it. 

The swarm intelligence of ants inspires ant colony 
optimization [11] (ACO). The main characteristic of this 
algorithm is that each time a search agent solves the 
search space, he leaves a trail of pheromones behind. In 
time, this trail lingers, while if more and more ants go 
through the same route, the trail is strengthened. This 
pheromone trail may represent a part of the solution or 
the solution space and defines the motion of search 
agents in the next operation, with the parts of the 
solution where the pheromone trail is the strongest 
having the highest probability of being selected. This 
algorithm was used to solve, for instance, the traveling 
salesman problem [12] and engineering design problems 
[13].  

Bats' echolocation inspires the Bat optimization 
algorithm [9] (BA). The spatial orientation of bats 
works so that a bat finds out about its surroundings 
based on the echo his shriek returns. The bats let out a 
shriek of random wavelength in a random search 
direction. Based on the average loudness of bats and the 
chosen direction, the bats move towards the prey, 
indicated by the best solution. This algorithm was used 
to solve engineering problems [14,15], as well as 
distribution generation problems [16]. 

A genetic algorithm [17] is a class of algorithms 
based on natural selection. First, a population is created, 
where each solution consists of parts called genes. A 
portion of the population is selected at the end of each 
iteration, based on a higher fitness value (goal function), 
to be further modified in the next iteration. Then, the 
selection is mutated using various operators by selecting 
a part of the solution and changing it somehow. This 
algorithm was applied in structural design [18] and fuel 
cell design [19] problems.  

The sine cosine algorithm [20] bases the movement 
of the population on sine and cosine functions. The 
initial population is created randomly, and it moves 
towards or from the best solution using sine and cosine-
based mathematical models. Several random and 
adaptive variables are present in the algorithm to better 
explore the solution space and achieve convergence. 
This algorithm has been used in solving a wide range of 
optimization problems [21,22]. 

Simulated annealing [23] is inspired by the 
annealing process in metallurgy. The main problem in 
optimization is getting stuck in local optima. This 
problem is particularly present in single-solution 
metaheuristics. In order to avoid this, the solution space 
must be explored in a certain manner. Simulated 
annealing does this by accepting worse solutions than 
the current best with a probability. As time or iterations 

pass, the probability of accepting a worse solution is 
lower, therefore focusing on the exploitation part of the 
algorithm. Simulated annealing was used in engineering 
problems [24,25]. 

The Grey wolf optimization [26] (GWO) draws 
inspiration from wolf packs. In the grey wolf hierarchy, 
there are alpha, beta, delta, and omega members. The 
wolves hunt the prey (best solution), each in their own 
manner. The alpha, beta, and delta are the second, third 
and fourth best search agents, while the omega wolves 
are other search agents. The main characteristic of this 
algorithm is that the alpha, beta, and delta wolves move 
directly towards the prey. In contrast, all other wolves 
move with a mean vector of movement vectors of alpha, 
beta, and delta wolves. This algorithm solved heat 
distribution [27] and mechanical design problems [28]. 

In this paper, the Dingo Optimization Algorithm 
(DOA) is used to solve selected engineering problems. 
The first problem is the optimization of a pressure 
vessel, where the main goal is to reduce the material, 
montage, and welding costs. This problem was solved 
by Differential Evolution (DE) algorithm in [29]. The 
second engineering problem is stepped cantilever beam 
optimization, where the goal is to minimize the weight 
under a set of constraints. Gandomi used the cuckoo 
Search Algorithm (CSA) to solve this problem [30]. 

The third problem is the automobile side-impact 
optimization problem, intending to minimize total 
vehicle weight using eleven design variables. This 
problem was first subjected in a paper by Gu [31]. The 
fourth and last engineering problem is cone coupling 
optimization. Better cone couplings have less volume, 
which is the optimal value for this problem. This 
example was defined in [32].  

This paper consists of five sections. In section 1 
brief introduction to the field of metaheuristics, 
engineering design problems, and used algorithms is 
given. In section 2, the Dingo Optimization Algorithm 
(DOA) is described in detail. In section 3, optimization 
models are discussed, and section 4 compares 
experimental results for the selected set of engineering 
problems in applied mechanics. Finally, in section 5, 
conclusions based on experimental results are discussed.  
 
2. DINGO OPTIMIZATION ALGORITHM 
 
Dingoes are mammals that live predominantly in 
Australia and represent an ancient lineage of dogs [33]. 
The name "dingo" stems from the Dharug language 
used by the Indigenous Australians of the Sydney area. 
The word "dingo" stands for "dog" in their language. 
The taxonomy of this species is unclear since the 
scientific community cannot agree whether dingoes are 
a subspecies of dogs or wolves or an entire species on 
their own. There are four taxonomical terms for the 
dingo: Canis familiaris, Canis familiaris dingo, Canis 
dingo, and Canis lupus dingo. The main characteristic of 
dingoes that inspired this algorithm is the social 
hierarchy. When dingos hunt, they either hunt alone or 
in cooperative packs. The typical diet consists of small 
game such as rabbits, rodents, birds, and lizards. This 
species is not a carnivorous one since dingos can also 
eat fruits and plants. When near human settlements, they 
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may scavenge for food, a common occurrence in their 
Asian range. In Figure 1, a typical representation of the 
hunting behavior of dingos is given. 

 
Figure 1. Hunting behavior of dingoes: (a) chase and 
approach the prey, (b) encircle and harass the prey, (c) 
attack and hunt down the prey 

The pack is led by its most dominant member, male 
or female. Their responsibility is to make decisions for 
the pack, select sleeping places, and lead the hunt. The 
second level in the hierarchy is the beta dingo, which is 
the mediator between the alpha and the rest of the pack. 
Also, if the alpha dies, the beta takes over his place. 
Other pack members are the subordinates, who follow 
alphas and betas. Dingoes have highly developed 
communication, which exchanges information about the 
pack, a form of greeting, contesting dominance, etc. 
Eight sound classes with 19 sound types have been 
identified, most of which are barking, howling, and 
other sounds. Dingoes are said to be intelligent 
predators. This is reflected in the behavior that dingoes 
try to find the weak spot of the animal they're hunting 
and exploit it. Usually, they prey on young, vulnerable, 
and wounded animals. They feed on small prey, such as 
fish, insects, crabs, frogs, rabbits, and large prey, such 
as kangaroos, cattle, water buffalo, and feral horses. 
Hunting strategy is characterized in their phases as 
follows, as shown in Figure 1: 

 Chasing and approaching 
 Encircling and harassing 
 Attack 

Two main parts of this algorithm are exploration and 
exploitation. Exploration (represented in Figure 1 (a), 
also called the encircling phase) serves to explore the 
problem space as broadly as possible. In contrast, 
exploitation (represented in Figure 1 (b), also called the 
attack phase) serves to converge to a current best 
solution in the final iterations of the algorithm. The best 
search agent is the goal or aim prey, while the other 
search agents change their strategies to get closer to 
prey whilst exploring the search space to their fullest. In 
the encircling phase, dingoes move according to 
equations (1)-(5): 

( ) ( )= ⋅ −pdD A P x P i                                    (1) 

( ) ( ) ( )1+ = − ⋅pP i P i B D d                            (2) 

12= ⋅A a         (3) 

22= ⋅ −B b a b                                           (4) 

max

33
⎛ ⎞⎛ ⎞

= − ∗⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
b I

I
                                          (5) 

Here, vectors a1 and a2 represent vectors of random 
variables in [0,1]. In these formulae, vector D represents 
the distance vector, while the vector P represents the 
position vector. The subscript d represents the dingos, 
while the subscript p represents the prey. Here, the prey 
refers to the best search agent, while the dingos refer to 
all other search agents. Vectors A B determine the 
portion of the solution space around the prey to which 
other dingoes converge. B It is used to determine 
whether the prey is moving away from the search agent 
or the prey is chased by the pack, indicated by values 
less than -1 in the first case and greater than 1 in the 
second case.  
In the hunting phase, a common supposition in the case 
of this class of biologically inspired algorithms is that 
the members of the pack (other search agents) have a 
good intuition about where the prey (the best search 
agent) is located. In this phase, the alpha and beta are 
the two best solutions in the dingo pack, shown in the 
formulae by their subscripts, while other dingoes follow 
them, updating their positions accordingly. The 
movement equations are (6)-(11), given below: 

1α α= ⋅ −D A P P                                (6) 

2β β= ⋅ −D A P P      (7) 

3= ⋅ −o oD A P P                                                  (8) 

1 α α= − ⋅P P B D                                                  (9) 

2 β β= − ⋅P P B D        (10) 

3 0= − ⋅oP P B D                                                 (11) 

The intensities of each dingo are calculated as 
follows: 

( )
1log 1

1 100
α

α

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

I
F E

                        (12) 

( )
1log 1

1 100
β

β

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

I
F E

                          (13) 

( )
1log 1

1 100
⎛ ⎞

= +⎜ ⎟⎜ ⎟− −⎝ ⎠
o

o
I

F E
                           (14) 
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If the position is not updated, the hunt is over, and 
dingoes proceed to attack the prey. The value b is 
linearly decreased with a number of iterations. The 
values αD  are in the range [-3b, 3b]. Therefore, as ite–
rations pass, this range is shortened, and the dingoes 
slowly come to a stop. 

The pseudo-code for this algorithm is given below: 
Input: The population of dingoes Dn (i = 1, 2, …, n) 

Output: The best dingo. (This being the case of 
minimization problem) 

(1) Generate initial search agents Din 

(2) Initialize the value of b , A , and B  
(3) While Termination conditions not reached 

do 
(4) Evaluate each dingo’s fitness and intensity 

cost. 
(5) αD = dingo with the best search 

(6) βD = dingo with the second-best search 

(7) oD = dingoes search results afterward 

(8) Iteration1 
(9) Repeat 
(10)  For i=1: Dn do 
(11) Renew the latest search agent status 
(12)  End for 
(13)  Estimate the fitness and intensity cost of 

dingoes 
(14)  Record the value of αF , βF   and oF  

(15)  Record the value of b , A , and B  
(16)  Iteration = Iteration + 1 
(17)  Check if Iteration >= Stopping criteria 
(18)  Output 

 End while 

3. PROBLEM FORMULATION 
 
In this section, each optimization problem is described 
in detail, namely: fitness or goal function, the practical 
basis for the problem, which parameter it is consisted 
of, and which conditions are required of the variables. 
In each example, the fitness function is denoted by f(x), 
while the i-th constraint is represented by gi(x). Every 
step of this process was done using the MATLAB 
R2020a software suite. 
 
3.1 Example 1  
 
The primary concern for designing a pressure vessel 
(Figure 2) is to reduce the costs of material, montage, 
and welding. The problem takes into account the 
following variables: shell thickness (denoted by x1, in 
Figure 2), dish end thickness (denoted by x2, Ts in 

Figure 2), shell radius (denoted by x3, R in Figure 2), 
shell length (denoted by x4, in figure 2). 

 
Figure 2. Pressure vessel design problem 

The mathematical formulation constraints of this 
problem are described in Eqs. (15) to (21): 

( ) 2 2 2
1 3 4 2 3 1 4 1 30.622 1.7781 3.1661 19.84f x x x x x x x x x x= + + +    (15) 

( )1 1 30.0193 0g x x x= − + ≤
                               

(16) 

( )2 2 30.00594 0g x x x= − + ≤                            (17) 

( ) 2
3 3 4 3

4
1296000 0

3
g x x x xπ π= − − + ≤               (18) 

( )4 4 240 0g x x= − ≤                                           (19) 

The considered variable ranges are described in Eq. 
(20) to (21): 

0 100; 1,2;ix i≤ ≤ =                                           (20)  

10 200; 3,4;ix i≤ ≤ =                                        (21) 
 

3.2 Example 2 
 
A cantilever beam (Figure 3) is an important element in 
mechanical engineering, whose design is to be handled 
with utmost care. Minimization of the said beam’s 
weight represents the main goal in design. As seen in 
Figure 3, the beam consists of five hollow box-shaped 
bearings and square-shaped frames. The lengths of the 
five bearings are this problem’s variables. Due to the 
fact that the beams’ basis is a square for each beam, the 
values for hi and bi are the same and are the five 
variables used in this model. 

 
Figure 3. Stepped cantilever beam design problem 

The mathematical formulation constraints of this 
problem are described in Eqs. (22)  to (24) : 



FME Transactions VOL. 50, No 2, 2022 ▪ 335
 

( ) ( )1 2 3 4 50,6224= + + + +f x x x x x x         (22) 

 ( ) 3 3 3 3 3
1 2 3 4 5

61 27 19 7 1 1 0= + + + + − ≤g x
x x x x x

             (23) 

The considered variable ranges are described in Eq 
(24). 

1 2 3 4 50.01 , , , , 100x x x x x≤ ≤                              (24) 
 

3.3 Example 3 
 
The automobile (Figure 4) is exposed to a side impact, 
taking into consideration the procedures of the EEVC, 
which is short for the European Enhanced Vehicle-
Safety Committee. The aim is to minimize the car's total 
weight using eleven mixed variables. 

Eleven variables should be optimized: the thickness 
of the B-Pillar inner (x1), the thickness of the B-Pillar 
reinforcement (x2), the thickness of the floor side inner 
(x3), the thickness of the cross members (x4), the 
thickness of the door beam (x5), the thickness of the 
door beltline reinforcement (x6), the thickness of the 
roof rail (x7), the thickness of the materials of B-pillar 
inner (x8), the thickness of the materials of floor side 
inner (x9), barrier height (x10) and hitting position (x11). 

 
Figure 4. Car model for side impact design problem 

The mathematical formulation constraints of this 
problem are described in Eqs.(25) to (38) : 

( ) 1 2 3 1 5 71.98 4.90 6.67 6.98 4.01 1.78 2.73= + + + + + +f x x x x x x x  (25) 

subject to 

( ) ( )1 1= ≤ag x F kN                                             (26) 

( ) ( )2 : 0.32 /= ≤ug x VC m s                                 (27) 

( ) ( )3 : 0.32 /= ≤mg x VC m s                                (28)                                                              

( ) ( )4 1: 0.32 /= ≤g x VC m s                                 (29)                                                 

( ) ( )5 : 32= Δ ≤urg x mm                                       (30)                                            

( ) ( )6 : 32= Δ ≤mrg x mm                                       (31)                                                  

( ) ( )7 : 32= Δ ≤lrg x mm                                        (32)                                                   

( ) ( )8 : 4= ≤pg x F kN                                            (33)                                               

( ) ( )9 : 9.9 /= ≤MBPg x V mm ms                           (34)                                              

( ) ( )10 : 15.7 /= ≤FDg x V mm ms                          (35)                                            

1 2 3 4 5 6 70.5 , , , , , , 1.5≤ ≤x x x x x x x                       (36)                                             

10 1130 , 30− ≤ ≤x x                                                 (37)                       
{ }8 9, 0.192,0.345∈x x                                    (38) 

Variables
1, , , , , , , , ,Δ Δ Δa u m ur mr lr p MBP FDF VC VC VC F V V  are 

mathematically described in the paper [29]. 
 
3.4 Example 4 
 
The cone clutch (Figure 5) problem must be designed to 
minimize the volume coupling and be subjected to two 
constraints. Problem variables in the case of this prob–
lem are the inner radius x1 and the outer radius x2 of the 
coupling. 

 
Figure 5. Cone clutch design problem 

The goal function in the case of this problem is: 

( ) ( )3 3
1 2= −f x x x                                        (39) 

while the conditions to be met are: 

 ( ) 1
1

2
2= ≥

x
g x

x
                           (40) 

( )
( )

( )

2 2
1 1 2 2

2
1 2

5
+ +

= ≥
+

x x x x
g x

x x
             (41) 

11≤ x , 2 10≤x                                                (42) 
 

4.  RESULTS AND DISCUSSION 
 
This section gives the results obtained by using DOA on 
a set of selected engineering problems. 

In the case of the pressure vessel problem, what has 
been considered a good result for the goal function is 
5885.3327, with the results shown in Table 1. 
Table 1. Comparison of results for the pressure vessel 

Variables GWO[30] GOA[31] WCA[32] DOA 
x1 0.8220 0.8736 0.7781 0.7781 
x2 0.4060 0.4318 0.3846 0.3846 
 x3 42.6020 45.2666 40.3196 40.3196 
x4 170.4840 199.9998 200.0000 200.0000 

f(x) 5964.5000 7666.1258 5888.3327 5885.3313 
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As the results show, DOA has shown better results 
than current literature. 

In the case of the cantilever beam design problem, the 
results are presented in Table 2. The results from the 
literature, where the ALO, MMA, and GOA methods are 
used for this problem, are to be found in the same table. 
Table 2. Comparison of results for the cantilever beam 

Variables ALO[33] GOA[31] MMA[34] DOA 

x1 6.0180 6.0110 6.0100 6.0174 
x2 5.3110 5.3120 5.3000 4.9686 
x3 4.4880 4.4830 4.4900 4.4797 
x4 3.4970 3.5020 3.4900 3.4002 
x5 2.1580 2.1630 2.1500 2.0840 

f(x) 1.3390 1.3390 1.3400 1.3030 
 

As can be seen from the results, the DOA gives 
near-optimal results, close to the MMA, ALO, and 
GOA methods. 

For the problem of a car side impact, the results are 
displayed in Table 3, along with results obtained by 
MFO, GOA, and WOA methods. 
Table 3. Comparison of results for the car side impact 

Variables MFO[35] GOA[31] WOA[3] DOA 
x1 0.5000 0.5000 0.5000 0.5000 
x2 1.1160 1.1150 1.1080 1.1130 
x3 0.5000 0.5000 0.5340 0.5000 
x4 1.3010 1.3030 1.3050 1.3070 
x5 0.5000 0.5000 0.5000 0.5000 
x6 1.5000 1.5000 1.4730 1.5000 
x7 0.5000 0.5000 0.5000 0.5000 
x8 0.3450 0.3450 0.3450 0.3440 
x9 0.3450 0.2860 0.1920 0.2850 
x10 -19.5300 -19.7150 -19.6990 -20.1530 
x11 0.0000 0.3200 3.4810 0.0510 
f(x) 22.8420 22.8434 23.0420 22.8430 

 
In the case of car side impact optimization, DOA 

gives the same result as MFO and GOA, while WOA 
gives slightly worse results. 

The DOA, GWO, GOA, and WCA algorithms were 
found in the literature for the case of the cone clutch 
problem. The result comparison is given in Table 4.  
Table 4. Comparison of results for the cone clutch 

Variables GWO[30] CS[36] GOA [31] DOA 
x1 4.2860 4.2850 4.2860 4.2857 
x2 2.1420 2.1420 2.1430 2.1429 

f(x) 68.8930 68.8870 68.8940 68.8776 
 
As can be seen from Table 4, the DOA gives better 

results than all three algorithms. 
As can be seen from comparing the results to the 

solutions in the literature, the DOA has shown to obtain 
optimal or near-optimal solutions in the case of given 
engineering problems. This indicates that the DOA has 
the potential for solving this class of optimization prob-
lems. 
 
5. CONCLUSION 

 
This paper describes the DOA algorithm and applies it 
to a selected set of engineering problems. This set com–

prises pressure vessel, cantilever beam, car side-impact, 
and cone clutch design problems, which are described in 
detail, and highlighted by figures, goal function, and 
constraints descriptions. 

The chosen input parameters are 100 search agents and 
500 iterations of the algorithm. This is because, as was 
discovered during the research, increasing the values of 
these input parameters did not yield better solutions. 

In the case of pressure vessel optimization, the DOA 
gives better results than the methods it was compared to. 
In the case of the other three optimization problems, 
namely: cantilever beam, cone clutch, and car side 
impact problem, the DOA yielded near-optimal solu–
tions. The main downside to this algorithm, as is with 
all p-based metaheuristic algorithms, is that it is compu–
tationally intensive. Therefore, the DOA should be 
tested on problems with more dimensions. Since the 
results of this paper have been compared to the results 
found in the literature, the DOA yielded optimal or 
near-optimal results. This means that the algorithm sho–
uld be tested to solve other mechanical design problems, 
which could represent the basis for future work. The 
results are shown in this paper, considering that with 
this amount of search agents and iteration count, near-
optimal or better results, compared to the current 
literature, were obtained, paving the way for testing this 
algorithm further in the area of mechanical design. The 
main downside to this algorithm, as is with all p-based 
metaheuristic algorithms, is that it is computationally 
intensive, which should hinder problems with a large 
number of dimensions. The algorithm's parameters 
should be tuned for the problems where the optimal 
solution was not found with the help of metaheuristic 
algorithms. Some of the problems could potentially 
have better solutions outside the defined lower and 
upper bounds, leading to further research. Because 
metaheuristic algorithms use stochastics to move 
through the solution space, different random number 
generators and varying seed values should be tested to 
find better solutions for optimization problems. 
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NOMENCLATURE 

DOA  Dingo Optimization Algorithm 
WOA  Whale Optimization Algorithm 
CSA  Cuckoo Search Algorithm 
GA    Genetic Algorithm 
HHO Harris Hawks Optimizer 
ACO  Ant Colony Optimization 
DE    Differential Evolution 
LOA  Lion Optimization Algorithm 
GOA  Grasshopper Optimization Algorithm 
SCA  Sine Cosine Algorithm 
BA    Bat Algorithm 
PSO  Particle Swarm Optimization 
GWO  Grey Wolf Optimizer 
SA  Simulated Annealing 
VNS  Variable Neighborhood Search 
A   Coefficient vector  
B   Coefficient vector 
b   Linearly decrement from 3 to 0 at every 

iteration  

1a   Random vector in [0,1] 

2a   Random vector in [0,1] 

dD   Distance between the dingo and prey 

pP    Position vector (prey) 

P   Position vector (dingo) 
I   Number of iteration 
maxI  Maximum number of iteration 

αF    Fitness value of alpha dingo 

βF   Fitness value of beta dingo 

οF   Fitness value of other dingoes 

αI   Intensity of alpha dingo 

βI   Intensity of beta dingo 

οI   Intensity of other dingoes 

αD   dingo with the best search 

βD   dingo with the second best search 

oD   all dingoes except the best and the second best 
f(x)  objective function 
gi(x) constrains 
R1  inner radius of the coupling 
R2  outer radius of the coupling 

 
 
ПРИМЕНА ДИНГО ОПТИМИЗАЦИОНОГ 
АЛГОРИТМА (ДОА) НА РЕШАВАЊЕ 
КОНТИНУАЛНИХ ПРОБЛЕМА У 

ИНЖЕЊЕРСТВУ 
 

Б. Миленковић, Ђ. Јовановић, М. Крстић 
 

У скорашњим истраживањима, проблеми у 
инжењерству се све више истичу.Једна класа 
проблема у инжењерству се бави проблемима 
дизајна, код којих се скуп варијабли калибрише, 
како би оптимизациона функција имала минимум 
или максимум. Ова функција често узима у обзир 
енергетску ефикасност, трошкове израде, произ–
водње. Један од начина за решавање ових проблема 
јесте коришћење метахеуристика. У овом раду се  
користи Динго оптимизациони алгоритам (ДОА) за 
решавање проблема у машинском инжењерству. 
Прво је дат кратак приказ ДОА, заједно са био–
лошком инспирацијом за њега,  као и скуп најваж–
нијих формула. Псеудокод овог алгоритма је 
написан у „MATLAB R2020a“ софтверском алату. 
Динго оптимизациони алгоритам (ДОА) је употреб–
љен за оптимизацију проблема у инжењерству, 
попут: суда под притиском, конзолне греде, бочног 
судара и конусног квачила. Резултати овог рада 
приказују да ДОА може дати релевантне резултате у 
области проблема пројектовања у инжењерству.

 

 

 

 

 

 

 


